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Abstract: 
A detailed understanding of the molecular activity of proteins requires knowledge 

of their three-dimensional structure. However, experimental methods for determining 
protein structure, such as crystallography or NMR, are expensive and time consuming. 
For this reason, experimental structures are only available for approximately 30 
thousand of the 30 million protein sequences known today. Computational methods 
for predicting the three-dimensional structure of proteins from sequence have come a 
long way in the last ten years; however, they are still largely unreliable unless a close 
sequence homologue of known structure exists. A local descriptor is a set of 
continuous backbone fragments that are close in three dimensions. By clustering 
structurally similar descriptors, we got a link between sequence and structure at the 
local level. This master thesis used hidden Markov models (HMMs) to model the 
sequence-structure relationship represented by similar local descriptors (i.e. descriptor 
groups), and use this to predict protein fold from sequence (i.e. fold recognition). On a 
set of sequences with no significant sequence similarity to the training set, 74.7% had 
the correct fold as one of the top 5 predictions, and 33.1% had the correct fold as the 
top prediction. Moreover, the results showed that the actual amino acid information is 
necessary for predicting protein structure, while the secondary structure can be used 
as a complement (e.g., a rough alignment can be found by only using secondary 
information, but to find the exact alignment we need the additional information of 
amino acids). 
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Introduction 

The unprecedented increase in the number of new protein sequences arising from 
genomics and proteomics highlights directly the need for methods to rapidly and 
reliably determine the molecular and cellular functions of these proteins (Zhang et al. 
2003). Protein structure represents a powerful means of discovering function, because 
structure is well conserved over evolutionary time, and it therefore provides the 
opportunity to recognize homology that is undetectable by sequence comparison 
(Steven E. Brenner, 2001). 

Structural genomics is a broad initiative of various centers aiming to provide 
complete coverage of the protein structure space (Iddo Friedberg, et al., 2007). It first 
and foremost encompasses the technological and methodological advances enabling 
high-throughput automated treatment of targets, but also target selection, structural 
determination and analysis (Daniel J Rigden, 2006). Currently structural genomics is 
a conjoined experimental and computational effort, which is expected to provide a 
comprehensive repertoire of models of soluble globular protein domains (Steven E. 
Brenner, 2001). 

Because of the massive amounts of protein sequence data that are derived from 
modern large-scale DNA sequencing efforts, experimental structural genomics using 
X-ray crystallography or NMR techniques still are lagging far behind the output of 
protein sequences [1]. Therefore, computational modeling seems to be the only way to 
close this growing gap. 

  A number of different computational approaches for protein structure prediction 
have been developed over the last 30 years (Silvio Carlo Ermanno Tosatto, 2002). It 
can be divided into three classes: homology modeling, fold recognition (protein 
threading) and new fold prediction (ab initio).  

Homology modeling, which is also known as comparative modeling, predicts the 
three-dimensional structure of a given protein sequence (target) based primarily on its 
alignment to one or more proteins of known structure (templates) (Marti-Renom et al., 
2000). This method become less reliable with decreasing sequence similarity between 
the target and its template(s) (especially for sequence identity < 25%) (Hvidsten, et al., 
2003).  

Protein threading is used when there is no clear sequence homology between the 
target and any sequence in the database, but the fold of the target is represented in the 
database. Therefore, the target sequence is threaded through the backbone structures 
of a collection of template proteins (i.e. fold library) and a “goodness of fit” score is 
calculated for each sequence-structure alignment.  
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Ab initio methods predict the structure from sequence alone, without relying on 
similarity at the fold level between the modeled sequence and any of the known 
structures (Bonneau, et al., 2001). It assumes that the native structure corresponds to 
the global free energy minimum accessible during the lifespan of the protein and 
attempt to find this minimum by an exploration of many conceivable protein 
conformations (András Fiser and Andrej Sali). 

In the project, we used hidden Markov models (HMMs) to model the 
sequence-structure relationship represented by similar local descriptors (i.e. descriptor 
groups), and use this to predict protein fold from sequence (i.e. fold recognition). 
Below are the main tasks in the project: 

1) Assign local descriptors (substructures of proteins) to whole protein 
sequences to see whether they can be aligned to the true positions (i.e., 
alignment). 

2) Calculate the probability of a certain sequence being generated by the 
HMMs, and then retrieve fold from these HMMs to see how the hidden 
Markov models work in fold recognition. 

3) Experiment with and evaluate different amino acid alphabets for estimating 
parameters in the HMMs (using different substitution groups, chemical 
properties, etc.) for both alignment and fold recognition. 

 

 

Data 

The Structural Classification of Proteins (SCOP) database is a largely manual 
classification of protein structural domains based on similarities of their amino acid 
sequences and three-dimensional structures. It provides a comprehensive ordering of 
all proteins of known structure according to their evolutionary and structural 
relationships (Lo Conte, et al., 2002). The classification includes different hierarchical 
levels (Tim, et al., 1997): the first two levels, family and superfamily, describe near 
and distant evolutionary relationships; the third, fold, describes geometrical 
relationships. 

A local descriptor (Figure1. a) of protein structure encompasses short segments of a 
protein chain that are located around a selected amino acid residue (Kryshtafovych et 
al., 2003). A detailed description of descriptor construction can be found in (Hvidsten 
et al., 2003). Each descriptor is assigned an identification tag which reflects 
information about the domain of its belonging (according to the ASTRAL 
nomenclature (Brenner et al., 2000)) as well as the number of the central residue 
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(Hvidsten et al., 2003) (e.g. 1e43a2#231 is the descriptor from protein 1e43, chain a, 
domain 2 with origin at residue number 231). A set of structurally similar descriptors 
are clustered together to be a group (Figure1. b). In general, a decision on the 
similarity of descriptors is made by comparing the following parameters: number and 
length of segments, shape of individual segments, number of geometrically similar 
segments and the overall fit quality in terms of the RMSD score of their superposition 
(Hvidsten et al., 2003). 

a. Local descriptor: structure    b. Descriptor group: structure 

     

c. Descriptor group: sequence 

DESCRIPTOR FRAGMENT 1 FRAGMENT 2 FRAGMENT 3 FRAGMENT 4 FRAGMENT 5 

1qama_#37 35-40 FEIGSG 56-60 TAIEI 83-7 KDILQ 96-102 YKIFGNI 108-16 TDIIRKIVF

1g38a_#46 44-9 LEPACA 68-72 VGVEI 88-92 ADFLL 100-6 DLILGNP 144-52 GAFLEKAVR

1g55a_#9 7-12 LELYSG 31-5 AAIDV 55-9 KTIEG 71-7 DMILMSP 100-4 ----LHILD

1hdoa_#9 7-12 AIFGAT 31-5 TVLVR 53-7 GDVLQ 69-75 DAVIVLL 88-96 SEGARNIVA

1booa_#272 270-5 VDIFGG 291-5 ISFEM 33-7 GDSLE 48-54 SLVMTSP 77-85 LSFAKVVNK

1i9ga_#106 104-8 LEAGA- 128-32 ISYEQ 160-4 SDLAD 175-9 --AVLDM 183-91 WEVLDAVSR

1eg2a_#249 247-51 LDFFA- 268-72 ICTDA 45-9 CDCLD 60-4 QLIIC-- 86-94 KRWLAEAER

1ek6a_#8 6-11 LVTGGA 30-4 VVIDN 65-9 MDILD 83-9 MAVIHFA 109-17 LTGTIQLLE

1bxka_#7 5-10 LITGGA 30-4 VVVDK 58-62 VDICD 78-82 --VMHLA 102-10 IVGTYTLLE

1qrra_#7 5-10 MVIGGD 29-33 CIVDN 74-8 GDICD 92-8 DSVVHFG 121-9 VIGTLNVLF

… … … … … … … … … … … 

 
Figure1. a) An example of a local descriptor of protein structure consisting of five 
fragments. b) Descriptors in other proteins that are structurally similar to the 
descriptor in a). c) The sequence alignment resulting from the structure alignment in 
a). Each row is one local descriptor named as ‘protein domain name’#’central amino 
acid’. 
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The data we used in the project is divided into two parts: one is the TRAIN set, 
which contains all non-overlapping groups from a representative set of all known 
protein structures in PDB (i.e. ASTRAL version 1.63). All sequences in TRAIN have 
less than 40% sequence identity to each other. Another is the TEST set, which 
contains descriptors from sequences in a later version of ASTRAL (1.67) that 
structurally match the TRAIN groups. All sequences in TEST have no significant 
sequence similarity to sequences in TRAIN (i.e. E-value < 0.05 using BLAST [2]). 
Moreover, all protein domains in one group (both TRAIN and TEST) come from the 
same fold. For DATASET1, each protein sequence is composed by 21 amino acids (20 
standard amino acids and 1 non-standard amino acid). For both DATASET2 and 
DATASET3, the secondary structure (H: helix, E: strand, C: coil) are combined with 
the previous 21 amino acids information, thus we have 61 (20*3+1) symbols for 
coding a protein sequence. For the TRAIN set, DSSP ([5], Kabsch et al., 1983) was 
used to obtain the secondary structure from PDB, while for the TEST set, PSIPRED 
([6], Jones DT. 1999) was used to predict the secondary structure from sequence. 

To more easily read the sequence into MATLAB, the amino acids are coded as 
integers, see below: 

Without secondary structure: 

A 1; C 2; D 3; E 4; F 5; G 6; H 7; I 8; K 9; L 10; M 11; N 

12; P 13; Q 14; R 15; S 16; T 17; V 18; W 19; Y 20; X 21; 

With secondary structure: 

A-H 1; A-C 2; A-E 3; C-H 4; C-C 5; C-E 6; D-H 7; D-C 8; D-E 

9; E-H 10; E-C 11; E-E 12; F-H 13; F-C 14; F-E 15; G-H 16; 

G-C 17; G-E 18; H-H 19; H-C 20; H-E 21; I-H 22; I-C 23; I-E 

24; K-H 25; K-C 26; K-E 27; L-H 28; L-C 29; L-E 30; M-H 31; 

M-C 32; M-E 33; N-H 34; N-C 35; N-E 36; P-H 37; P-C 38; P-E 

39; Q-H 40; Q-C 41; Q-E 42; R-H 43; R-C 44; R-E 45; S-H 46; 

S-C 47; S-E 48; T-H 49; T-C 50; T-E 51; V-H 52; V-C 53; V-E 

54; W-H 55; W-C 56; W-E 57; Y-H 58; Y-C 59; Y-E 60; 

For example, a sequence from ‘1a0fa2#64_sequencesTRAIN’, 

‘MKLYIYDHCPYCLKARMIFGLKNIPVELHVLLNDDAETPTRMVGQKQVPILQKDDS
RYMPESMDIVHYVDKLDGK’  ‘11 9 10 20 8 20 3 7 2 13 20 2 10 9 1 
15 11 8 5 6 10 9 12 8 13 18 4 10 7 18 10 10 12 3 3 1 4 17 13 

17 15 11 18 6 14 9 14 18 13 8 10 14 9 3 3 16 15 20 11 13 4 

16 11 3 8 18 7 20 18 3 9 10 3 6 9’ (after coded, without secondary structure 
information)  ‘32 27 30 60 24 59 8 20 5 37 58 4 28 25 1 43 31 
22 13 16 28 25 35 23 38 53 12 30 21 54 29 29 35 8 8 2 10 49 
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37 49 43 31 52 17 41 26 41 53 38 24 30 42 27 8 8 47 45 60 33 

39 11 46 31 7 22 52 19 58 52 7 25 28 8 17 26’ (with secondary structure). 

Both DATASET1 and DATASET2 have 361 TRAIN groups that belong to 138 
different SCOP folds. The corresponding TEST set has 105 groups containing 167 
unique sequences with 46 different folds, but DATASET2 introduces secondary 
structure information. DATASET3 has 1802 TRAIN groups containing 2553 unique 
sequences with 77 different folds. All folds have at least 5 groups. The corresponding 
TEST set consists of 399 unique sequences with 53 folds. These sequences match 947 
TRAIN groups (i.e. there are 947 TEST groups). 

For example; group ‘1aisa1#66_TEST’ in the TEST set corresponds to group 
‘1aisa1#66_TRAIN’ in the TRAIN set, i.e. ‘1aisa1#66_TEST’ contains all descriptors 
from domains in the TEST set that structurally match the descriptor 1aisa1#66. 

 

 

Methods 

Hidden Markov Models 

A basic Markov model of a process is a model where each state corresponds to an 
observable event and the state transition probabilities depend only on the current and 
predecessor state (Smith et al., 2002). A hidden Markov model (HMM) is a doubly 
embedded stochastic process with an underlying stochastic process that is not 
observable (i.e., hidden), but can only be observed through another set of stochastic 
processes that produce the sequence of observation (Rabiner, 1989). 

Hidden Markov models (HMMs) now provide a coherent theory for profile 
methods. They are a class of probabilistic models that are generally applicable to time 
series or linear sequences (Sean R. Eddy., 1998). HMMs have been most widely 
applied to recognizing words in digitized sequences of the acoustics of human speech 
(Rabiner, 1989). They were introduced into computational biology in the late 1980s 
(Churchill, 1989), and for use as profile models in mid-1990s (Krogh et al., 1994).  

Now, HMM has many applications in bioinformatics and genomics, like prediction 
of protein-coding regions in genome sequences, modeling families of related DNA or 
protein sequences, prediction of secondary structure elements from protein primary 
sequences, etc. 

In a regular Markov model, the state is directly visible to the observer, and 
therefore the state transition probabilities are the only parameters. In a hidden Markov 
model, the state is not directly visible, but variables influenced by the state are visible. 
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Each state has a probability distribution over the possible output tokens. Therefore the 
sequence of tokens generated by an HMM gives some information about the sequence 
of states. Figure2 shows the rough architecture of a HMM that we are using in our 
project. 

 

Figure2. Rough architecture of the hidden Markov model (HMM) used in the project. 
Rectangles and circles in shade (i.e. F and G) are hidden states; D: observable outputs; 
a: transition probabilities; b: output/emission probabilities. 

 

In order to build a HMM, we need to at least know its two parameters ‘transitions 
probabilities’ and ‘emissions probabilities’. In our data, the sequences and descriptors 
of each TRAIN group are known already, so the two parameters for HMM can be 
estimated from them (i.e. use descriptor information to estimate ‘transition 
probability’, use sequence and descriptor information together to estimate ‘emission 
probability’).  

For example, the descriptor in the sequence ‘1b8aa1#23’ in group 
‘1a0i_1#247_domainsTRAIN’ has three segments [or fragment]: ‘20 26 37 44 69 76’. 
Their correspond positions are shown in bold in the sequence: ‘11 20 15 17 7 20 
16 16 4 8 17 4 4 10 12 6 14 9 18 9 18 1 6 19 18 19 4 18 9 3 

10 6 6 8 9 5 10 19 8 15 3 15 3 6 8 18 14 8 17 1 13 9 9 9 18 

3 13 4 10 5 9 10 8 13 9 10 15 16 4 3 18 18 1 18 4 6 18 18 12 

5 17 13 9 1 9 10 6 5 4 8 10 13 4 9 8 18 18 10 12 15 1 4 17’. 
In the project, all amino acids that don’t construct descriptors are considered as gaps, 
so if coded back to amino acids, it is 
‘--…--KVAGWVW--…--LWIRDRDG--…--EDVVAVEG--…--’. In the HMM we 
used in the project, we call each amino acid position in the descriptor, plus the 
insertion in between segments, a state. The probability of moving from one state to 
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the other state is the transition probability. In Figure2, the bottom line is called the 
main states. They model the fragments (i.e., local descriptors) of a sequence in our 
project. The transition probability are always ‘one’ both between main states (e.g., in 
fragment 20-26 KVAGWVW in the example sequence, the probability of moving from 
K V, or V A, … is ONE) and from main state to the next insert state. The upper 
line are called insert states, which are used to model the remaining part of a protein 
sequence (i.e., all continued gaps are considered as one insert state). The transition 
probabilities of moving between main states and insert states depend on the number of 
continued gaps (e.g., if an insert state has 5 continued gaps, the transition probability 
is 0.2 (1/5) from this insert state to the next state (i.e., first amino acid in the next 
main state), 0.8 for staying in this insert state (i.e., 0.2 for moving from one gap to the 
next gap within the insert state, 4 times moves)). The transition probabilities of 
moving from one amino acid to the forward nonadjacent amino acids or to any 
previous amino acids are zero. Each state has a probability of emitting certain output 
symbols (i.e., emission probability: the probability of a certain amino acid being 
emitted from a certain state), and these output symbols are calculated from fragments 
(e.g. 20-26 KVAGWVW, etc.) or gaps of a modeled protein sequence in our project. So, 
for the first insert state of the example sequence ‘1b8aa1#23’: ‘11 20 15 17 7 20 
16 16 4 8 17 4 4 10 12 6 14 9 18: MYRTHYSSEITEELNGQKV’, the emission 
probabilities of each appeared amino acids are [M: 1/19, Y: 2/19, ..., E: 3/19, …, V: 
1/19], and for those amino acids that haven’t appeared here (e.g., A, C, D, etc.), the 
emission probabilities are zeros. All probabilities mentioned so far are for one 
descriptor only. For a descriptor group, the probabilities (either transition or emission) 
will be added over all descriptors, and then averaged. For example, the emission 
probability of L in the first position in the first segment of sequences in Figure1 is 0.6 
(10 descriptors of which 6 have L in the first position). 

Because the probabilities for either transitions or emissions may be zero in some 
cases, we use ‘PSEUDOCOUNT’ in the project to avoid error. PSEUDOCOUNT is 
used here to get a positive number when having zero probabilities for transitions or 
emissions. In principle, this pseudo count indicates that there is some situation that is 
emitting this symbol or moving from a state x to another state y, even though this is 
not observed in the data. Thus this value should be 1 or larger than 1 (i.e. an integer) 
in theory. But in terms of mathematics, we can give any positive values to 
'pseudocount'. This is needed to avoid 'divided by zero' mistakes. Also, it is used to 
incorporate prior knowledge into the model. Small pseudocount means that we 
estimate the parameters based mostly on the data, while higher pseudocount means 
that we place more confidence in our prior knowledge. Our experience from this 
project is that the smaller the value, the more reliable the HMM is. For DATASET1 
and DATASET2, we used PSEUDOCOUNT ‘0.01’, while for DATASET3, we used 
the value '0.0001'. Thus, in the above example, the zero probabilities will be changed 
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to a very small positive number (e.g., 0.00003, etc), and the original non-zero 
probabilities (e.g. 0.2: 1/5) will be changed a bit too. 

Statistics Toolbox extends MATLAB to support a wide range of common statistical 
tasks [4]. It provides five functions for the analysis of hidden Markov models, 
including the generation of random data (hmmgenerate), maximum likelihood 
estimation of model parameters (hmmtrain and hmmestimate), calculation of most 
probable state sequences (hmmviterbi), and calculation of posterior state probabilities 
(hmmdecode). 

In project, first we built HMMs for all TRAIN groups respectively (i.e., for each 
group in TRAIN set, where the protein sequences and the true paths of these 
respective sequences are known, we used ‘hmmestimate’ to estimate the transition and 
emission probabilities). Then, the function ‘hmmviterbi’, which uses the Viterbi 
algorithm, was used (in the alignment part) to compute the most likely sequence of 
states that the HMM would generate. Finally, in fold recognition, we used 
‘hmmdecode’ to return the logarithm of the probability of the sequence. Because the 
actual probability of a sequence goes towards 0 rapidly as the length of the sequence 
increases, the probability of a sufficiently long sequence is less than the smallest 
positive number a computer can represent. Consequently, ‘hmmdecode’ returns the 
logarithm of the probability instead. 

 

Alignment 

For alignment, we use the generated HMM (from one TRAIN group) and one 
sequence from the corresponding group (either TRAIN group itself or TEST group) to 
estimate the hidden path (i.e. the descriptor situation). Then we align this estimated 
path to the true path to get a match degree. For example, a path corresponds to the 
sequence of states in the HMM that generate a descriptor. In the above example with 
sequence ‘1b8aa1#23’, the descriptor is ‘20 26 37 44 69 76’: 
‘--…--KVAGWVW--…--LWIRDRDG--…--EDVVAVEG--…--’, so the 
corresponding path of this sequence is ‘1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 4 5 6 7 
8 9 9 9 9 9 9 9 9 9 9 10 11 12 13 14 15 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18 
18 18 18 18 18 18 18 18 18 18 18 19 20 21 22 23 24 25 26 27 27 27 …’. Each insert 
state (i.e., continued gaps) corresponds to one number, and each state in the main state 
corresponds to a unique continued number. 

After performing this procedure on all sequences in one group, an average match 
degree for one group is obtained. This average match degree is considered as the 
performance in the alignment part of the project. We used three kinds of match 
degrees in this part, ‘Original’, ‘Replace’ and ‘DescOnly’. 
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-- Original: Compare estimated-paths to their corresponding true-paths, and 
calculate to what degree they match; 

-- Replace: First, replace original paths. E.g., PATH1: ‘1 1 1 1 1 2 3 4 5 6 7 7 7 8 9 
10 10…’  PATH2: ‘0 0 0 0 0 1 1 1 1 1 0 0 0 2 2 0 0…’. In PATH1, numbers ‘1’, ‘7’ 
and ‘10’ are for gaps, and the remaining numbers are descriptors. In PATH2, all gap 
numbers are replaced by ‘0’, and the numbers in one segment are replaced by the 
same number (i.e., ‘1’ for the first segment in a sequence, ‘2’ for the second segment, 
and so on). Then we calculate the match degree for these replaced paths, including the 
gaps; 

-- DescOnly: Exclude gap matches for both ‘Original’ and ‘Replace’ (i.e. only 
consider descriptors’ match) respectively. For example, for original, consider the true 
path ‘1 1 1 1 2 3 4 5 6 7 7 8 9 10 11 11 12’ and the estimated path ‘1 1 1 2 3 4 5 6 7 7 
7 7 8 9 10 11 12’. If we include gaps, then the match score is (3+2+1+1)/17; while if 
we exclude gaps, the match score is 1/8. After replace, the true path and the estimated 
path change to ‘0 0 0 0 1 1 1 1 1 0 0 2 2 2 0 0 3’ and ‘0 0 0 1 1 1 1 1 0 0 0 0 2 2 2 0 3’ 
respectively. Similarly, if we include gaps, then the match score is (3+4+2+2+1+1)/17; 
while if we exclude gaps, the match score is (4+2+1)/8. 
 

Fold recognition 

In fold recognition, for each sequence in the TEST set, we match it to all HMMs 
(i.e., 361 for DATASET1 & DATASET2 and 1802 for DATASET3). We use 
‘hmmdecode’ to calculate the probability of this sequence being generated (or emitted) 
by a certain HMM. Then we pick up the top 30 probabilities, and retrieve folds from 
each of these top 30 groups. The probability of a sequence being generated by a 
certain HMM is the product value of the probability that each elements in this 
sequence is generated by this HMM (i.e., emit probability of that element). 

In order to give small classes (folds) an opportunity, we normalize the scores of the 
predicted folds in TOPS (i.e. top 30 here) in this way: if ‘TOPS = l+m+n+…’, we first 
normalize them to l/L, m/M, n/N,…, then sort these normalized values and pick up the 
top five predictions. Here, L, M, N mean 'how many times a certain group that belong 
to this fold (L, M, N, respectively), appear in the data (i.e. 361 or 1802), and l, m, n, 
mean 'how many times a certain fold appeared in the TOPS predictions. 
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Below is an example for the sequence ‘1vhoa2’ in DATASET3. 

1vhoa2 LOGPSEQS PREDICTED CORRECT 
1iwga3#627_TRAIN -905.131 d.58 c.56 
2pii__#74_TRAIN -914.771 d.58 c.56 

1lfwa2#261_TRAIN -917.844 d.58 c.56 
1kgsa2#51_TRAIN -919.414 c.23 c.56 

4tmka_#203_TRAIN -923.941 c.37 c.56 
1b00a_#19_TRAIN -927.042 c.23 c.56 
1mb3a_#22_TRAIN -927.899 c.23 c.56 
1psda3#397_TRAIN -929.686 d.58 c.56 
1gega_#43_TRAIN -930.272 c.2 c.56 
1loua_#27_TRAIN -930.885 d.58 c.56 

1esc__#299_TRAIN -931.215 c.23 c.56 
1a5t_2#44_TRAIN -931.29 c.37 c.56 

1ho1a_#190_TRAIN -931.562 c.1 c.56 
1f5na2#127_TRAIN -932.743 c.37 c.56 
1nksa_#121_TRAIN -933.074 c.37 c.56 
1m8pa3#430_TRAIN -936.872 c.37 c.56 
1d8wa_#256_TRAIN -937.4 c.1 c.56 
1qj4a_#33_TRAIN -938.456 c.69 c.56 

1m4la_#300_TRAIN -938.63 c.56 c.56 
1jfra_#223_TRAIN -939.066 c.69 c.56 
7reqb1#110_TRAIN -940.967 c.1 c.56 
1glqa2#55_TRAIN -941.341 c.47 c.56 
1jf9a_#313_TRAIN -941.481 c.67 c.56 
1k9sa_#86_TRAIN -941.541 c.56 c.56 

1nbwa3#538_TRAIN -941.759 c.55 c.56 
1kpga_#222_TRAIN -942.103 c.66 c.56 
1a8q__#267_TRAIN -942.231 c.69 c.56 
1kvka2#235_TRAIN -942.576 d.58 c.56 
1gpma1#287_TRAIN -942.793 c.26 c.56 
1ldda_#797_TRAIN -943.391 a.4 c.56 

 

* LOGPSEQS is the ‘logarithm of probability of sequence’ that generated by a 
certain HMM. 

  The predicted top 30 folds are: a.4 (1/19); c.1 (3/122); c.2 (1/113); c.23 (4/30); c.26 
(1/26); c.37 (5/75); c.47 (1/26); c.55 (1/14); c.56 (2/15); c.66 (1/29); c.67 (1/73); c.69 
(3/62); d.58 (6/28). (i.e., numbers in parenthesis are ‘how many times this fold has 
been predicted in the top 30 predictions / how many groups in TRAIN set are from 
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this fold). After normalization, the top 5 predicted folds are [①d.58; ②c.23 and c.56; 
③c.55; ④c.37;]. 

Then we compare these 5 predicted folds to the known correct folds (i.e., ‘c.56’ in 
this case) to see how good the HMMs perform for predicting folds. So, in this 
example, the predicted fold with the most support for sequence ‘1vhoa2’ is ‘d.58’. 
Thus this sequence is not correctly predicted. But as fold ‘c.56’ is still one of the top 5 
predictions (②: c.23 and c.56), then it can still be a useful prediction and we call it a 
“partially correct” prediction. Moreover, if the true fold ‘c.56’ is not in the top 5 
predictions, we say that the prediction failed. GOOD prediction combines ‘correct 
prediction’ and ‘partially correct prediction’. We predicted fold for all the test 
sequences and used this procedure to see how many sequences/folds that were 
predicted correctly. 

In addition to using all amino acids, we also re-group (ENCODE) the protein 
sequences by their physico-chemical properties. We then performed the above two 
tasks ‘alignment’ and ‘fold recognition’ on the substituted data to obtain new results.  

Below are four ENCODE ways 

Encode 1 
acid: D E 
base: H K R 
hydrophile: C G N Q S T Y 
hydrophobe: A F I L M P V W 

Encode 2 
acid: D E 
base: H K R 
polar: N Q S T Y 
nonpolar: A C F G I L M P V W

Encode 3 
nonpolar: A F G I L M P V W 
uncharged_polar: C N Q S T Y
charged_polar: D E H K R 

Encode 4 
group_1_H = Helix; 
group_2_C = Coil; 
group_3_E = Strand; 

 

 

Results & Discussion 

Alignment 

As we met a problem during the alignment procedure for DATASET3, we only got 
match degrees for DATASET1 and DATASET2 (Table 1 and Table 2). 

NOTE: ‘Original (Ori)’ means the original match degree while ‘Replace (R)’ means 
the match degree after replaced. ‘Ori_DescOnly’ and ‘R_DescOnly’ mean ‘DescOnly’ 
match degrees for ‘Original’ and ‘Replace’ respectively. (More detail in methods) 
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Table 1 

DATASET2 
TRAIN SET DATASET1 

Amino acids ENCODE1 ENCODE2 ENCODE3 ENCODE4

Original (Ori) 0.842632 0.872893 0.803288 0.801343 0.785341 0.685959 

Ori_DescOnly 0.702089 0.742978 0.597293 0.596255 0.565784 0.307547 

Replace (R) 0.939662 0.951630 0.922837 0.921677 0.915312 0.872533 

R_DescOnly 0.757395 0.797810 0.695780 0.692126 0.670803 0.536554 

 
Table 2 

DATASET2 
TEST SET DATASET1 

Amino acids ENCODE1 ENCODE2 ENCODE3 ENCODE4

Original (Ori) 0.624255 0.643714 0.621845 0.616145 0.618381 0.570327 

Ori_DescOnly 0.254307 0.284446 0.277078 0.282819 0.282375 0.178066 

Replace (R) 0.829250 0.855373 0.848949 0.848675 0.849566 0.829764 

R_DescOnly 0.412008 0.488955 0.470972 0.472235 0.477787 0.419941 

 
The DescOnly match degrees for Original path may illustrate the performance of 

the HMMs most accurately in the project. 

After replace, results are raised in all cases. It’s because the replaced path can 
consider state ‘0 0 1 1 1 0 0…’ and ‘0 1 1 1 0 0 0…’ to have 5 matches, while before 
replace they were ‘1 1 2 3 4 5 5…’ and ‘1 2 3 4 5 5 5…’ respectively, and have only 3 
matches. If such situation extends to long sequences, then the difference will become 
larger. 

The fact that the all values of ‘Original’ & ‘Replace’ are higher than the ‘DescOnly’ 
match degrees respectively is due to high contribution of gaps to the scores. After all, 
most of the positions in a sequence are gaps. 

After expanding the data by introducing secondary structure (i.e. DATASET1 
versus DATASET2), we got more information about the protein sequences, and this 
has resulted in increased match degrees in DATASET2 for all alignment scores. 

After encoding the sequences in DATASET2, the precision of alignment is 
decreased more or less. It is because after re-grouping protein sequences by their 
physico-chemical properties, the detailed / accurate information we have for those 
sequences is reduced, so results are not as good as before. 

The good performance of the HMMs for aligning TRAIN set shows that the model 
we used in the project is believable. Because of the low sequence similarity between 
TEST and TRAIN set, and the fact that the HMMs are built from TRAIN set, values 
for the TEST set are lower than for the TRAIN set in all cases. This also causes the 
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difference between ‘DescOnly’ values to the values that include gaps (i.e., either 
‘Original or ‘Replace’) in TEST set to be bigger than in TRAIN set. 

The better ‘Replace’ values during aligning TEST sequences infers that the HMMs 
can find the rough position for substructures (i.e. overlapping can be detected) of low 
sequence similarity (compare to training set for the HMMs), but not exact position. 

Results after ENCODE4 clearly drop compared with other performance. This may 
be because in ENCODE4, only secondary structure information has been used but no 
amino acids information. A natural interpretation is that amino acid information is 
important for deciding the placement of local descriptors (i.e., alignment). 

Moreover, values from ENCODE4 (only secondary structure used) are much lower 
than values from DATASET1 (no secondary structure used). This indicates that for 
predicting the alignment of local descriptors to a protein sequence, the amino acid 
sequence is more important than the secondary structure information. The exception is 
to the task of only finding the rough position of the sub-structures (i.e., after replace). 
This is intuitive: we can find the rough alignment by only using secondary 
information (e.g. assigning a helical fragment to a helical part of the protein), but to 
find the exact alignment we need the additional information of amino acids. 
 
Fold recognition 

Table 3 compares results for DATASET1, DATASET2 and DATASET3. Table 4 
shows results for DATASET3 and its ENCODE results. 

In both tables, the upper three rows are results for sequences. Correct means that 
for a certain sequence, its predicted folds is the same as its true fold. Good refers to 
those cases where the prediction is either ‘correct’ or ‘partially correct’ (see detail in 
‘Methods’). The bottom three lines are for folds. Correct here means that for a certain 
fold, at least one of the sequences that belongs to this fold has been predicted 
correctly (correspondingly for ‘partially correct’). “Good” contains both “correct” and 
“partially correct”. 

Table 3 

 DATASET1 DATASET2 DATASET3 
Uni_Seqs: 167 167 399 
Correct: 28 (0.168) 51 (0.305) 132 (0.331) 
Good: 58 (0.347) 84 (0.503) 298 (0.747) 

Uni_folds: 46 46 53 
Correct: 16 (0.348) 26 (0.565) 30 (0.566) 
Good: 22 (0.478) 31 (0.674) 41 (0.774) 
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Table 4 

DATASET3 
 

Amino acids ENCODE1 ENCODE2 ENCODE3 ENCODE4
Uni_Seqs: 399 399 399 399 399 
Correct: 132 (0.331) 113 (0.283) 112 (0.281) 99 (0.248) 47 (0.118) 
Good: 298 (0.747) 254 (0.637) 249 (0.624) 243 (0.609) 162 (0.406)

Uni_folds: 53 53 53 53 53 
Correct: 30 (0.566) 25 (0.472) 26 (0.491) 25 (0.472) 12 (0.226) 
Good: 41 (0.774) 44 (0.830) 44 (0.830) 44 (0.830) 35 (0.660) 

 

For DATASET1 the HMM has 16.8% chance of predicting the fold of a sequence 
correctly, while 34.7% to predict the correct fold as one of the top five predictions. 
Values for folds show that 16 of the 46 unique folds (34.8%) have at least one 
sequence that can be predicted correctly, while 47.8% of the 46 unique folds can be 
predicted good. 

In DATASET2, these predicted values improved to 30.5% (vs. 16.8%), 50.3% (vs. 
34.7%), 56.5% (vs. 34.8%) and 67.4% (vs. 47.8%), respectively. As was the case for 
alignment, such clear improvement is caused by introducing secondary structure into 
DATASET2. Thus we got more information of the protein sequences, and results 
increased in all cases. 

  In DATASET3, results are similar to DATASET2 for ‘correct prediction’ of both 
sequences and folds, whilst the values for ‘good prediction’ in both cases show an 
increase (i.e., 74.7% vs. 50.3% for sequences and 77.4% vs. 67.4% for folds, 
respectively). This may be because DATASET3 have more groups that make the 
method more robust, or because the smaller PSEUDOCOUNT value used (i.e., 0.0001 
instead of 0.01). 

Moreover, it seems 'ENCODE' doesn't improve fold recognition so much, and only 
results in better prediction in 'GOOD_pred' for fold (which means that more folds can 
be predicted after using substitution by amino acids' physico-chemical properties). 
However, less can be predicted exactly after ENCODE. 

As was the case for alignment, ENCODE4 shows a poorer prediction than other 
encode ways. From this we may infer that only using secondary structure and no 
amino acid information doesn’t work well. Again, much worse results from 
ENCODE4 than from before encoding (i.e., both using amino acids and secondary 
structure) in DATASET3 point out that amino acid information is necessary for fold 
recognition. 

  Furthermore, as mentioned before, the results for folds mean that at least one of the 
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sequences that belong to this fold has been predicted correctly. Hence it is easier for 
folds to get higher scores than for sequences. However, the main reason for including 
fold-scores is to show that the sequences we predict correctly do not only come from 
one or a few folds, but that we in fact can handle many different folds. 

 

 

Conclusion & Future 

Generally, introducing secondary structure to the protein sequences brings more 
detailed information of the proteins, which has resulted in improved results for both 
alignment and fold recognition. The ENCODE ways seem not to help to predict either 
positions of local descriptors or folds of proteins. It infers that we were not able to 
show that the physical-chemical properties relate more to the protein’s structure than 
using the amino acids themselves. Furthermore, the poorer ENCODE4 (using only 
secondary structure but no amino acids’ information) results show that the amino 
acids are necessary for predicting protein structure, while the secondary structure can 
be used as a complement. 

Allowing for sequence fragments of different length in the same descriptor group 
will greatly increase the size of the dataset we use and thus make the application more 
interesting in practice. Furthermore, BLAST can be used to build a profile from the 
sequence of interest (target) and similar sequences in the sequence databases. 
Predicting the structure of this profile rather than the single sequence may greatly 
increase the performance of the fold recognition procedure. 
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