

Fold recognition using local descriptors
of protein structure and Hidden

Markov Models

BY

MINYAN HONG

Molecular Biotechnology and Bioinformatics

Uppsala University, May 15th, 2007

Supervisor: Dr. Torgeir R. Hvidsten

Linnaeus Centre for Bioinformatics (LCB)

Abstract:
A detailed understanding of the molecular activity of proteins requires knowledge

of their three-dimensional structure. However, experimental methods for determining
protein structure, such as crystallography or NMR, are expensive and time consuming.
For this reason, experimental structures are only available for approximately 30
thousand of the 30 million protein sequences known today. Computational methods
for predicting the three-dimensional structure of proteins from sequence have come a
long way in the last ten years; however, they are still largely unreliable unless a close
sequence homologue of known structure exists. A local descriptor is a set of
continuous backbone fragments that are close in three dimensions. By clustering
structurally similar descriptors, we got a link between sequence and structure at the
local level. This master thesis used hidden Markov models (HMMs) to model the
sequence-structure relationship represented by similar local descriptors (i.e. descriptor
groups), and use this to predict protein fold from sequence (i.e. fold recognition). On a
set of sequences with no significant sequence similarity to the training set, 74.7% had
the correct fold as one of the top 5 predictions, and 33.1% had the correct fold as the
top prediction. Moreover, the results showed that the actual amino acid information is
necessary for predicting protein structure, while the secondary structure can be used
as a complement (e.g., a rough alignment can be found by only using secondary
information, but to find the exact alignment we need the additional information of
amino acids).

 ii

Contents

Introduction...1

Data ...2

Methods...5

Hidden Markov Models ..5
Alignment ...8
Fold recognition ..9

Results & Discussion ..11

Alignment ...11
Fold recognition ..13

Conclusion & Future...15

Acknowledgements...15

References...16

 iii

Introduction

The unprecedented increase in the number of new protein sequences arising from
genomics and proteomics highlights directly the need for methods to rapidly and
reliably determine the molecular and cellular functions of these proteins (Zhang et al.
2003). Protein structure represents a powerful means of discovering function, because
structure is well conserved over evolutionary time, and it therefore provides the
opportunity to recognize homology that is undetectable by sequence comparison
(Steven E. Brenner, 2001).

Structural genomics is a broad initiative of various centers aiming to provide
complete coverage of the protein structure space (Iddo Friedberg, et al., 2007). It first
and foremost encompasses the technological and methodological advances enabling
high-throughput automated treatment of targets, but also target selection, structural
determination and analysis (Daniel J Rigden, 2006). Currently structural genomics is
a conjoined experimental and computational effort, which is expected to provide a
comprehensive repertoire of models of soluble globular protein domains (Steven E.
Brenner, 2001).

Because of the massive amounts of protein sequence data that are derived from
modern large-scale DNA sequencing efforts, experimental structural genomics using
X-ray crystallography or NMR techniques still are lagging far behind the output of
protein sequences [1]. Therefore, computational modeling seems to be the only way to
close this growing gap.

 A number of different computational approaches for protein structure prediction
have been developed over the last 30 years (Silvio Carlo Ermanno Tosatto, 2002). It
can be divided into three classes: homology modeling, fold recognition (protein
threading) and new fold prediction (ab initio).

Homology modeling, which is also known as comparative modeling, predicts the
three-dimensional structure of a given protein sequence (target) based primarily on its
alignment to one or more proteins of known structure (templates) (Marti-Renom et al.,
2000). This method become less reliable with decreasing sequence similarity between
the target and its template(s) (especially for sequence identity < 25%) (Hvidsten, et al.,
2003).

Protein threading is used when there is no clear sequence homology between the
target and any sequence in the database, but the fold of the target is represented in the
database. Therefore, the target sequence is threaded through the backbone structures
of a collection of template proteins (i.e. fold library) and a “goodness of fit” score is
calculated for each sequence-structure alignment.

 1

Ab initio methods predict the structure from sequence alone, without relying on
similarity at the fold level between the modeled sequence and any of the known
structures (Bonneau, et al., 2001). It assumes that the native structure corresponds to
the global free energy minimum accessible during the lifespan of the protein and
attempt to find this minimum by an exploration of many conceivable protein
conformations (András Fiser and Andrej Sali).

In the project, we used hidden Markov models (HMMs) to model the
sequence-structure relationship represented by similar local descriptors (i.e. descriptor
groups), and use this to predict protein fold from sequence (i.e. fold recognition).
Below are the main tasks in the project:

1) Assign local descriptors (substructures of proteins) to whole protein
sequences to see whether they can be aligned to the true positions (i.e.,
alignment).

2) Calculate the probability of a certain sequence being generated by the
HMMs, and then retrieve fold from these HMMs to see how the hidden
Markov models work in fold recognition.

3) Experiment with and evaluate different amino acid alphabets for estimating
parameters in the HMMs (using different substitution groups, chemical
properties, etc.) for both alignment and fold recognition.

Data

The Structural Classification of Proteins (SCOP) database is a largely manual
classification of protein structural domains based on similarities of their amino acid
sequences and three-dimensional structures. It provides a comprehensive ordering of
all proteins of known structure according to their evolutionary and structural
relationships (Lo Conte, et al., 2002). The classification includes different hierarchical
levels (Tim, et al., 1997): the first two levels, family and superfamily, describe near
and distant evolutionary relationships; the third, fold, describes geometrical
relationships.

A local descriptor (Figure1. a) of protein structure encompasses short segments of a
protein chain that are located around a selected amino acid residue (Kryshtafovych et
al., 2003). A detailed description of descriptor construction can be found in (Hvidsten
et al., 2003). Each descriptor is assigned an identification tag which reflects
information about the domain of its belonging (according to the ASTRAL
nomenclature (Brenner et al., 2000)) as well as the number of the central residue

 2

(Hvidsten et al., 2003) (e.g. 1e43a2#231 is the descriptor from protein 1e43, chain a,
domain 2 with origin at residue number 231). A set of structurally similar descriptors
are clustered together to be a group (Figure1. b). In general, a decision on the
similarity of descriptors is made by comparing the following parameters: number and
length of segments, shape of individual segments, number of geometrically similar
segments and the overall fit quality in terms of the RMSD score of their superposition
(Hvidsten et al., 2003).

a. Local descriptor: structure b. Descriptor group: structure

c. Descriptor group: sequence

DESCRIPTOR FRAGMENT 1 FRAGMENT 2 FRAGMENT 3 FRAGMENT 4 FRAGMENT 5

1qama_#37 35-40 FEIGSG 56-60 TAIEI 83-7 KDILQ 96-102 YKIFGNI 108-16 TDIIRKIVF

1g38a_#46 44-9 LEPACA 68-72 VGVEI 88-92 ADFLL 100-6 DLILGNP 144-52 GAFLEKAVR

1g55a_#9 7-12 LELYSG 31-5 AAIDV 55-9 KTIEG 71-7 DMILMSP 100-4 ----LHILD

1hdoa_#9 7-12 AIFGAT 31-5 TVLVR 53-7 GDVLQ 69-75 DAVIVLL 88-96 SEGARNIVA

1booa_#272 270-5 VDIFGG 291-5 ISFEM 33-7 GDSLE 48-54 SLVMTSP 77-85 LSFAKVVNK

1i9ga_#106 104-8 LEAGA- 128-32 ISYEQ 160-4 SDLAD 175-9 --AVLDM 183-91 WEVLDAVSR

1eg2a_#249 247-51 LDFFA- 268-72 ICTDA 45-9 CDCLD 60-4 QLIIC-- 86-94 KRWLAEAER

1ek6a_#8 6-11 LVTGGA 30-4 VVIDN 65-9 MDILD 83-9 MAVIHFA 109-17 LTGTIQLLE

1bxka_#7 5-10 LITGGA 30-4 VVVDK 58-62 VDICD 78-82 --VMHLA 102-10 IVGTYTLLE

1qrra_#7 5-10 MVIGGD 29-33 CIVDN 74-8 GDICD 92-8 DSVVHFG 121-9 VIGTLNVLF

… … … … … … … … … … …

Figure1. a) An example of a local descriptor of protein structure consisting of five
fragments. b) Descriptors in other proteins that are structurally similar to the
descriptor in a). c) The sequence alignment resulting from the structure alignment in
a). Each row is one local descriptor named as ‘protein domain name’#’central amino
acid’.

 3

The data we used in the project is divided into two parts: one is the TRAIN set,
which contains all non-overlapping groups from a representative set of all known
protein structures in PDB (i.e. ASTRAL version 1.63). All sequences in TRAIN have
less than 40% sequence identity to each other. Another is the TEST set, which
contains descriptors from sequences in a later version of ASTRAL (1.67) that
structurally match the TRAIN groups. All sequences in TEST have no significant
sequence similarity to sequences in TRAIN (i.e. E-value < 0.05 using BLAST [2]).
Moreover, all protein domains in one group (both TRAIN and TEST) come from the
same fold. For DATASET1, each protein sequence is composed by 21 amino acids (20
standard amino acids and 1 non-standard amino acid). For both DATASET2 and
DATASET3, the secondary structure (H: helix, E: strand, C: coil) are combined with
the previous 21 amino acids information, thus we have 61 (20*3+1) symbols for
coding a protein sequence. For the TRAIN set, DSSP ([5], Kabsch et al., 1983) was
used to obtain the secondary structure from PDB, while for the TEST set, PSIPRED
([6], Jones DT. 1999) was used to predict the secondary structure from sequence.

To more easily read the sequence into MATLAB, the amino acids are coded as
integers, see below:

Without secondary structure:

A 1; C 2; D 3; E 4; F 5; G 6; H 7; I 8; K 9; L 10; M 11; N

12; P 13; Q 14; R 15; S 16; T 17; V 18; W 19; Y 20; X 21;

With secondary structure:

A-H 1; A-C 2; A-E 3; C-H 4; C-C 5; C-E 6; D-H 7; D-C 8; D-E

9; E-H 10; E-C 11; E-E 12; F-H 13; F-C 14; F-E 15; G-H 16;

G-C 17; G-E 18; H-H 19; H-C 20; H-E 21; I-H 22; I-C 23; I-E

24; K-H 25; K-C 26; K-E 27; L-H 28; L-C 29; L-E 30; M-H 31;

M-C 32; M-E 33; N-H 34; N-C 35; N-E 36; P-H 37; P-C 38; P-E

39; Q-H 40; Q-C 41; Q-E 42; R-H 43; R-C 44; R-E 45; S-H 46;

S-C 47; S-E 48; T-H 49; T-C 50; T-E 51; V-H 52; V-C 53; V-E

54; W-H 55; W-C 56; W-E 57; Y-H 58; Y-C 59; Y-E 60;

For example, a sequence from ‘1a0fa2#64_sequencesTRAIN’,

‘MKLYIYDHCPYCLKARMIFGLKNIPVELHVLLNDDAETPTRMVGQKQVPILQKDDS
RYMPESMDIVHYVDKLDGK’ ‘11 9 10 20 8 20 3 7 2 13 20 2 10 9 1
15 11 8 5 6 10 9 12 8 13 18 4 10 7 18 10 10 12 3 3 1 4 17 13

17 15 11 18 6 14 9 14 18 13 8 10 14 9 3 3 16 15 20 11 13 4

16 11 3 8 18 7 20 18 3 9 10 3 6 9’ (after coded, without secondary structure
information) ‘32 27 30 60 24 59 8 20 5 37 58 4 28 25 1 43 31
22 13 16 28 25 35 23 38 53 12 30 21 54 29 29 35 8 8 2 10 49

 4

37 49 43 31 52 17 41 26 41 53 38 24 30 42 27 8 8 47 45 60 33

39 11 46 31 7 22 52 19 58 52 7 25 28 8 17 26’ (with secondary structure).

Both DATASET1 and DATASET2 have 361 TRAIN groups that belong to 138
different SCOP folds. The corresponding TEST set has 105 groups containing 167
unique sequences with 46 different folds, but DATASET2 introduces secondary
structure information. DATASET3 has 1802 TRAIN groups containing 2553 unique
sequences with 77 different folds. All folds have at least 5 groups. The corresponding
TEST set consists of 399 unique sequences with 53 folds. These sequences match 947
TRAIN groups (i.e. there are 947 TEST groups).

For example; group ‘1aisa1#66_TEST’ in the TEST set corresponds to group
‘1aisa1#66_TRAIN’ in the TRAIN set, i.e. ‘1aisa1#66_TEST’ contains all descriptors
from domains in the TEST set that structurally match the descriptor 1aisa1#66.

Methods

Hidden Markov Models

A basic Markov model of a process is a model where each state corresponds to an
observable event and the state transition probabilities depend only on the current and
predecessor state (Smith et al., 2002). A hidden Markov model (HMM) is a doubly
embedded stochastic process with an underlying stochastic process that is not
observable (i.e., hidden), but can only be observed through another set of stochastic
processes that produce the sequence of observation (Rabiner, 1989).

Hidden Markov models (HMMs) now provide a coherent theory for profile
methods. They are a class of probabilistic models that are generally applicable to time
series or linear sequences (Sean R. Eddy., 1998). HMMs have been most widely
applied to recognizing words in digitized sequences of the acoustics of human speech
(Rabiner, 1989). They were introduced into computational biology in the late 1980s
(Churchill, 1989), and for use as profile models in mid-1990s (Krogh et al., 1994).

Now, HMM has many applications in bioinformatics and genomics, like prediction
of protein-coding regions in genome sequences, modeling families of related DNA or
protein sequences, prediction of secondary structure elements from protein primary
sequences, etc.

In a regular Markov model, the state is directly visible to the observer, and
therefore the state transition probabilities are the only parameters. In a hidden Markov
model, the state is not directly visible, but variables influenced by the state are visible.

 5

Each state has a probability distribution over the possible output tokens. Therefore the
sequence of tokens generated by an HMM gives some information about the sequence
of states. Figure2 shows the rough architecture of a HMM that we are using in our
project.

Figure2. Rough architecture of the hidden Markov model (HMM) used in the project.
Rectangles and circles in shade (i.e. F and G) are hidden states; D: observable outputs;
a: transition probabilities; b: output/emission probabilities.

In order to build a HMM, we need to at least know its two parameters ‘transitions
probabilities’ and ‘emissions probabilities’. In our data, the sequences and descriptors
of each TRAIN group are known already, so the two parameters for HMM can be
estimated from them (i.e. use descriptor information to estimate ‘transition
probability’, use sequence and descriptor information together to estimate ‘emission
probability’).

For example, the descriptor in the sequence ‘1b8aa1#23’ in group
‘1a0i_1#247_domainsTRAIN’ has three segments [or fragment]: ‘20 26 37 44 69 76’.
Their correspond positions are shown in bold in the sequence: ‘11 20 15 17 7 20
16 16 4 8 17 4 4 10 12 6 14 9 18 9 18 1 6 19 18 19 4 18 9 3

10 6 6 8 9 5 10 19 8 15 3 15 3 6 8 18 14 8 17 1 13 9 9 9 18

3 13 4 10 5 9 10 8 13 9 10 15 16 4 3 18 18 1 18 4 6 18 18 12

5 17 13 9 1 9 10 6 5 4 8 10 13 4 9 8 18 18 10 12 15 1 4 17’.
In the project, all amino acids that don’t construct descriptors are considered as gaps,
so if coded back to amino acids, it is
‘--…--KVAGWVW--…--LWIRDRDG--…--EDVVAVEG--…--’. In the HMM we
used in the project, we call each amino acid position in the descriptor, plus the
insertion in between segments, a state. The probability of moving from one state to

 6

the other state is the transition probability. In Figure2, the bottom line is called the
main states. They model the fragments (i.e., local descriptors) of a sequence in our
project. The transition probability are always ‘one’ both between main states (e.g., in
fragment 20-26 KVAGWVW in the example sequence, the probability of moving from
K V, or V A, … is ONE) and from main state to the next insert state. The upper
line are called insert states, which are used to model the remaining part of a protein
sequence (i.e., all continued gaps are considered as one insert state). The transition
probabilities of moving between main states and insert states depend on the number of
continued gaps (e.g., if an insert state has 5 continued gaps, the transition probability
is 0.2 (1/5) from this insert state to the next state (i.e., first amino acid in the next
main state), 0.8 for staying in this insert state (i.e., 0.2 for moving from one gap to the
next gap within the insert state, 4 times moves)). The transition probabilities of
moving from one amino acid to the forward nonadjacent amino acids or to any
previous amino acids are zero. Each state has a probability of emitting certain output
symbols (i.e., emission probability: the probability of a certain amino acid being
emitted from a certain state), and these output symbols are calculated from fragments
(e.g. 20-26 KVAGWVW, etc.) or gaps of a modeled protein sequence in our project. So,
for the first insert state of the example sequence ‘1b8aa1#23’: ‘11 20 15 17 7 20
16 16 4 8 17 4 4 10 12 6 14 9 18: MYRTHYSSEITEELNGQKV’, the emission
probabilities of each appeared amino acids are [M: 1/19, Y: 2/19, ..., E: 3/19, …, V:
1/19], and for those amino acids that haven’t appeared here (e.g., A, C, D, etc.), the
emission probabilities are zeros. All probabilities mentioned so far are for one
descriptor only. For a descriptor group, the probabilities (either transition or emission)
will be added over all descriptors, and then averaged. For example, the emission
probability of L in the first position in the first segment of sequences in Figure1 is 0.6
(10 descriptors of which 6 have L in the first position).

Because the probabilities for either transitions or emissions may be zero in some
cases, we use ‘PSEUDOCOUNT’ in the project to avoid error. PSEUDOCOUNT is
used here to get a positive number when having zero probabilities for transitions or
emissions. In principle, this pseudo count indicates that there is some situation that is
emitting this symbol or moving from a state x to another state y, even though this is
not observed in the data. Thus this value should be 1 or larger than 1 (i.e. an integer)
in theory. But in terms of mathematics, we can give any positive values to
'pseudocount'. This is needed to avoid 'divided by zero' mistakes. Also, it is used to
incorporate prior knowledge into the model. Small pseudocount means that we
estimate the parameters based mostly on the data, while higher pseudocount means
that we place more confidence in our prior knowledge. Our experience from this
project is that the smaller the value, the more reliable the HMM is. For DATASET1
and DATASET2, we used PSEUDOCOUNT ‘0.01’, while for DATASET3, we used
the value '0.0001'. Thus, in the above example, the zero probabilities will be changed

 7

to a very small positive number (e.g., 0.00003, etc), and the original non-zero
probabilities (e.g. 0.2: 1/5) will be changed a bit too.

Statistics Toolbox extends MATLAB to support a wide range of common statistical
tasks [4]. It provides five functions for the analysis of hidden Markov models,
including the generation of random data (hmmgenerate), maximum likelihood
estimation of model parameters (hmmtrain and hmmestimate), calculation of most
probable state sequences (hmmviterbi), and calculation of posterior state probabilities
(hmmdecode).

In project, first we built HMMs for all TRAIN groups respectively (i.e., for each
group in TRAIN set, where the protein sequences and the true paths of these
respective sequences are known, we used ‘hmmestimate’ to estimate the transition and
emission probabilities). Then, the function ‘hmmviterbi’, which uses the Viterbi
algorithm, was used (in the alignment part) to compute the most likely sequence of
states that the HMM would generate. Finally, in fold recognition, we used
‘hmmdecode’ to return the logarithm of the probability of the sequence. Because the
actual probability of a sequence goes towards 0 rapidly as the length of the sequence
increases, the probability of a sufficiently long sequence is less than the smallest
positive number a computer can represent. Consequently, ‘hmmdecode’ returns the
logarithm of the probability instead.

Alignment

For alignment, we use the generated HMM (from one TRAIN group) and one
sequence from the corresponding group (either TRAIN group itself or TEST group) to
estimate the hidden path (i.e. the descriptor situation). Then we align this estimated
path to the true path to get a match degree. For example, a path corresponds to the
sequence of states in the HMM that generate a descriptor. In the above example with
sequence ‘1b8aa1#23’, the descriptor is ‘20 26 37 44 69 76’:
‘--…--KVAGWVW--…--LWIRDRDG--…--EDVVAVEG--…--’, so the
corresponding path of this sequence is ‘1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 4 5 6 7
8 9 9 9 9 9 9 9 9 9 9 10 11 12 13 14 15 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18
18 18 18 18 18 18 18 18 18 18 18 19 20 21 22 23 24 25 26 27 27 27 …’. Each insert
state (i.e., continued gaps) corresponds to one number, and each state in the main state
corresponds to a unique continued number.

After performing this procedure on all sequences in one group, an average match
degree for one group is obtained. This average match degree is considered as the
performance in the alignment part of the project. We used three kinds of match
degrees in this part, ‘Original’, ‘Replace’ and ‘DescOnly’.

 8

-- Original: Compare estimated-paths to their corresponding true-paths, and
calculate to what degree they match;

-- Replace: First, replace original paths. E.g., PATH1: ‘1 1 1 1 1 2 3 4 5 6 7 7 7 8 9
10 10…’ PATH2: ‘0 0 0 0 0 1 1 1 1 1 0 0 0 2 2 0 0…’. In PATH1, numbers ‘1’, ‘7’
and ‘10’ are for gaps, and the remaining numbers are descriptors. In PATH2, all gap
numbers are replaced by ‘0’, and the numbers in one segment are replaced by the
same number (i.e., ‘1’ for the first segment in a sequence, ‘2’ for the second segment,
and so on). Then we calculate the match degree for these replaced paths, including the
gaps;

-- DescOnly: Exclude gap matches for both ‘Original’ and ‘Replace’ (i.e. only
consider descriptors’ match) respectively. For example, for original, consider the true
path ‘1 1 1 1 2 3 4 5 6 7 7 8 9 10 11 11 12’ and the estimated path ‘1 1 1 2 3 4 5 6 7 7
7 7 8 9 10 11 12’. If we include gaps, then the match score is (3+2+1+1)/17; while if
we exclude gaps, the match score is 1/8. After replace, the true path and the estimated
path change to ‘0 0 0 0 1 1 1 1 1 0 0 2 2 2 0 0 3’ and ‘0 0 0 1 1 1 1 1 0 0 0 0 2 2 2 0 3’
respectively. Similarly, if we include gaps, then the match score is (3+4+2+2+1+1)/17;
while if we exclude gaps, the match score is (4+2+1)/8.

Fold recognition

In fold recognition, for each sequence in the TEST set, we match it to all HMMs
(i.e., 361 for DATASET1 & DATASET2 and 1802 for DATASET3). We use
‘hmmdecode’ to calculate the probability of this sequence being generated (or emitted)
by a certain HMM. Then we pick up the top 30 probabilities, and retrieve folds from
each of these top 30 groups. The probability of a sequence being generated by a
certain HMM is the product value of the probability that each elements in this
sequence is generated by this HMM (i.e., emit probability of that element).

In order to give small classes (folds) an opportunity, we normalize the scores of the
predicted folds in TOPS (i.e. top 30 here) in this way: if ‘TOPS = l+m+n+…’, we first
normalize them to l/L, m/M, n/N,…, then sort these normalized values and pick up the
top five predictions. Here, L, M, N mean 'how many times a certain group that belong
to this fold (L, M, N, respectively), appear in the data (i.e. 361 or 1802), and l, m, n,
mean 'how many times a certain fold appeared in the TOPS predictions.

 9

Below is an example for the sequence ‘1vhoa2’ in DATASET3.

1vhoa2 LOGPSEQS PREDICTED CORRECT
1iwga3#627_TRAIN -905.131 d.58 c.56
2pii__#74_TRAIN -914.771 d.58 c.56

1lfwa2#261_TRAIN -917.844 d.58 c.56
1kgsa2#51_TRAIN -919.414 c.23 c.56

4tmka_#203_TRAIN -923.941 c.37 c.56
1b00a_#19_TRAIN -927.042 c.23 c.56
1mb3a_#22_TRAIN -927.899 c.23 c.56
1psda3#397_TRAIN -929.686 d.58 c.56
1gega_#43_TRAIN -930.272 c.2 c.56
1loua_#27_TRAIN -930.885 d.58 c.56

1esc__#299_TRAIN -931.215 c.23 c.56
1a5t_2#44_TRAIN -931.29 c.37 c.56

1ho1a_#190_TRAIN -931.562 c.1 c.56
1f5na2#127_TRAIN -932.743 c.37 c.56
1nksa_#121_TRAIN -933.074 c.37 c.56
1m8pa3#430_TRAIN -936.872 c.37 c.56
1d8wa_#256_TRAIN -937.4 c.1 c.56
1qj4a_#33_TRAIN -938.456 c.69 c.56

1m4la_#300_TRAIN -938.63 c.56 c.56
1jfra_#223_TRAIN -939.066 c.69 c.56
7reqb1#110_TRAIN -940.967 c.1 c.56
1glqa2#55_TRAIN -941.341 c.47 c.56
1jf9a_#313_TRAIN -941.481 c.67 c.56
1k9sa_#86_TRAIN -941.541 c.56 c.56

1nbwa3#538_TRAIN -941.759 c.55 c.56
1kpga_#222_TRAIN -942.103 c.66 c.56
1a8q__#267_TRAIN -942.231 c.69 c.56
1kvka2#235_TRAIN -942.576 d.58 c.56
1gpma1#287_TRAIN -942.793 c.26 c.56
1ldda_#797_TRAIN -943.391 a.4 c.56

* LOGPSEQS is the ‘logarithm of probability of sequence’ that generated by a
certain HMM.

 The predicted top 30 folds are: a.4 (1/19); c.1 (3/122); c.2 (1/113); c.23 (4/30); c.26
(1/26); c.37 (5/75); c.47 (1/26); c.55 (1/14); c.56 (2/15); c.66 (1/29); c.67 (1/73); c.69
(3/62); d.58 (6/28). (i.e., numbers in parenthesis are ‘how many times this fold has
been predicted in the top 30 predictions / how many groups in TRAIN set are from

 10

this fold). After normalization, the top 5 predicted folds are [①d.58; ②c.23 and c.56;
③c.55; ④c.37;].

Then we compare these 5 predicted folds to the known correct folds (i.e., ‘c.56’ in
this case) to see how good the HMMs perform for predicting folds. So, in this
example, the predicted fold with the most support for sequence ‘1vhoa2’ is ‘d.58’.
Thus this sequence is not correctly predicted. But as fold ‘c.56’ is still one of the top 5
predictions (②: c.23 and c.56), then it can still be a useful prediction and we call it a
“partially correct” prediction. Moreover, if the true fold ‘c.56’ is not in the top 5
predictions, we say that the prediction failed. GOOD prediction combines ‘correct
prediction’ and ‘partially correct prediction’. We predicted fold for all the test
sequences and used this procedure to see how many sequences/folds that were
predicted correctly.

In addition to using all amino acids, we also re-group (ENCODE) the protein
sequences by their physico-chemical properties. We then performed the above two
tasks ‘alignment’ and ‘fold recognition’ on the substituted data to obtain new results.

Below are four ENCODE ways

Encode 1
acid: D E
base: H K R
hydrophile: C G N Q S T Y
hydrophobe: A F I L M P V W

Encode 2
acid: D E
base: H K R
polar: N Q S T Y
nonpolar: A C F G I L M P V W

Encode 3
nonpolar: A F G I L M P V W
uncharged_polar: C N Q S T Y
charged_polar: D E H K R

Encode 4
group_1_H = Helix;
group_2_C = Coil;
group_3_E = Strand;

Results & Discussion

Alignment

As we met a problem during the alignment procedure for DATASET3, we only got
match degrees for DATASET1 and DATASET2 (Table 1 and Table 2).

NOTE: ‘Original (Ori)’ means the original match degree while ‘Replace (R)’ means
the match degree after replaced. ‘Ori_DescOnly’ and ‘R_DescOnly’ mean ‘DescOnly’
match degrees for ‘Original’ and ‘Replace’ respectively. (More detail in methods)

 11

Table 1

DATASET2
TRAIN SET DATASET1

Amino acids ENCODE1 ENCODE2 ENCODE3 ENCODE4

Original (Ori) 0.842632 0.872893 0.803288 0.801343 0.785341 0.685959

Ori_DescOnly 0.702089 0.742978 0.597293 0.596255 0.565784 0.307547

Replace (R) 0.939662 0.951630 0.922837 0.921677 0.915312 0.872533

R_DescOnly 0.757395 0.797810 0.695780 0.692126 0.670803 0.536554

Table 2

DATASET2
TEST SET DATASET1

Amino acids ENCODE1 ENCODE2 ENCODE3 ENCODE4

Original (Ori) 0.624255 0.643714 0.621845 0.616145 0.618381 0.570327

Ori_DescOnly 0.254307 0.284446 0.277078 0.282819 0.282375 0.178066

Replace (R) 0.829250 0.855373 0.848949 0.848675 0.849566 0.829764

R_DescOnly 0.412008 0.488955 0.470972 0.472235 0.477787 0.419941

The DescOnly match degrees for Original path may illustrate the performance of

the HMMs most accurately in the project.

After replace, results are raised in all cases. It’s because the replaced path can
consider state ‘0 0 1 1 1 0 0…’ and ‘0 1 1 1 0 0 0…’ to have 5 matches, while before
replace they were ‘1 1 2 3 4 5 5…’ and ‘1 2 3 4 5 5 5…’ respectively, and have only 3
matches. If such situation extends to long sequences, then the difference will become
larger.

The fact that the all values of ‘Original’ & ‘Replace’ are higher than the ‘DescOnly’
match degrees respectively is due to high contribution of gaps to the scores. After all,
most of the positions in a sequence are gaps.

After expanding the data by introducing secondary structure (i.e. DATASET1
versus DATASET2), we got more information about the protein sequences, and this
has resulted in increased match degrees in DATASET2 for all alignment scores.

After encoding the sequences in DATASET2, the precision of alignment is
decreased more or less. It is because after re-grouping protein sequences by their
physico-chemical properties, the detailed / accurate information we have for those
sequences is reduced, so results are not as good as before.

The good performance of the HMMs for aligning TRAIN set shows that the model
we used in the project is believable. Because of the low sequence similarity between
TEST and TRAIN set, and the fact that the HMMs are built from TRAIN set, values
for the TEST set are lower than for the TRAIN set in all cases. This also causes the

 12

difference between ‘DescOnly’ values to the values that include gaps (i.e., either
‘Original or ‘Replace’) in TEST set to be bigger than in TRAIN set.

The better ‘Replace’ values during aligning TEST sequences infers that the HMMs
can find the rough position for substructures (i.e. overlapping can be detected) of low
sequence similarity (compare to training set for the HMMs), but not exact position.

Results after ENCODE4 clearly drop compared with other performance. This may
be because in ENCODE4, only secondary structure information has been used but no
amino acids information. A natural interpretation is that amino acid information is
important for deciding the placement of local descriptors (i.e., alignment).

Moreover, values from ENCODE4 (only secondary structure used) are much lower
than values from DATASET1 (no secondary structure used). This indicates that for
predicting the alignment of local descriptors to a protein sequence, the amino acid
sequence is more important than the secondary structure information. The exception is
to the task of only finding the rough position of the sub-structures (i.e., after replace).
This is intuitive: we can find the rough alignment by only using secondary
information (e.g. assigning a helical fragment to a helical part of the protein), but to
find the exact alignment we need the additional information of amino acids.

Fold recognition

Table 3 compares results for DATASET1, DATASET2 and DATASET3. Table 4
shows results for DATASET3 and its ENCODE results.

In both tables, the upper three rows are results for sequences. Correct means that
for a certain sequence, its predicted folds is the same as its true fold. Good refers to
those cases where the prediction is either ‘correct’ or ‘partially correct’ (see detail in
‘Methods’). The bottom three lines are for folds. Correct here means that for a certain
fold, at least one of the sequences that belongs to this fold has been predicted
correctly (correspondingly for ‘partially correct’). “Good” contains both “correct” and
“partially correct”.

Table 3

 DATASET1 DATASET2 DATASET3
Uni_Seqs: 167 167 399
Correct: 28 (0.168) 51 (0.305) 132 (0.331)
Good: 58 (0.347) 84 (0.503) 298 (0.747)

Uni_folds: 46 46 53
Correct: 16 (0.348) 26 (0.565) 30 (0.566)
Good: 22 (0.478) 31 (0.674) 41 (0.774)

 13

Table 4

DATASET3

Amino acids ENCODE1 ENCODE2 ENCODE3 ENCODE4
Uni_Seqs: 399 399 399 399 399
Correct: 132 (0.331) 113 (0.283) 112 (0.281) 99 (0.248) 47 (0.118)
Good: 298 (0.747) 254 (0.637) 249 (0.624) 243 (0.609) 162 (0.406)

Uni_folds: 53 53 53 53 53
Correct: 30 (0.566) 25 (0.472) 26 (0.491) 25 (0.472) 12 (0.226)
Good: 41 (0.774) 44 (0.830) 44 (0.830) 44 (0.830) 35 (0.660)

For DATASET1 the HMM has 16.8% chance of predicting the fold of a sequence
correctly, while 34.7% to predict the correct fold as one of the top five predictions.
Values for folds show that 16 of the 46 unique folds (34.8%) have at least one
sequence that can be predicted correctly, while 47.8% of the 46 unique folds can be
predicted good.

In DATASET2, these predicted values improved to 30.5% (vs. 16.8%), 50.3% (vs.
34.7%), 56.5% (vs. 34.8%) and 67.4% (vs. 47.8%), respectively. As was the case for
alignment, such clear improvement is caused by introducing secondary structure into
DATASET2. Thus we got more information of the protein sequences, and results
increased in all cases.

 In DATASET3, results are similar to DATASET2 for ‘correct prediction’ of both
sequences and folds, whilst the values for ‘good prediction’ in both cases show an
increase (i.e., 74.7% vs. 50.3% for sequences and 77.4% vs. 67.4% for folds,
respectively). This may be because DATASET3 have more groups that make the
method more robust, or because the smaller PSEUDOCOUNT value used (i.e., 0.0001
instead of 0.01).

Moreover, it seems 'ENCODE' doesn't improve fold recognition so much, and only
results in better prediction in 'GOOD_pred' for fold (which means that more folds can
be predicted after using substitution by amino acids' physico-chemical properties).
However, less can be predicted exactly after ENCODE.

As was the case for alignment, ENCODE4 shows a poorer prediction than other
encode ways. From this we may infer that only using secondary structure and no
amino acid information doesn’t work well. Again, much worse results from
ENCODE4 than from before encoding (i.e., both using amino acids and secondary
structure) in DATASET3 point out that amino acid information is necessary for fold
recognition.

 Furthermore, as mentioned before, the results for folds mean that at least one of the

 14

sequences that belong to this fold has been predicted correctly. Hence it is easier for
folds to get higher scores than for sequences. However, the main reason for including
fold-scores is to show that the sequences we predict correctly do not only come from
one or a few folds, but that we in fact can handle many different folds.

Conclusion & Future

Generally, introducing secondary structure to the protein sequences brings more
detailed information of the proteins, which has resulted in improved results for both
alignment and fold recognition. The ENCODE ways seem not to help to predict either
positions of local descriptors or folds of proteins. It infers that we were not able to
show that the physical-chemical properties relate more to the protein’s structure than
using the amino acids themselves. Furthermore, the poorer ENCODE4 (using only
secondary structure but no amino acids’ information) results show that the amino
acids are necessary for predicting protein structure, while the secondary structure can
be used as a complement.

Allowing for sequence fragments of different length in the same descriptor group
will greatly increase the size of the dataset we use and thus make the application more
interesting in practice. Furthermore, BLAST can be used to build a profile from the
sequence of interest (target) and similar sequences in the sequence databases.
Predicting the structure of this profile rather than the single sequence may greatly
increase the performance of the fold recognition procedure.

Acknowledgements

 I would like to thank my supervisor Torgeir R. Hvidsten for introducing me to the
research area of structural genomics and for helping me so patiently during the whole
project.

 15

References

András Fiser and Andrej Sali, Comparative protein structure modeling, Pels Family
Center for Biochemistry and Structural Biology The Rockefeller University.

Bonneau R, Baker D. 2001. Ab initio protein structure prediction: progress and
prospects. Annu Rev Biophys Biomol Struct 30:173-189.

Brenner, S.E., Koehl, P. and Levitt, M. (2000) The astral compendium for sequence
and structure analysis. Nucleic Acids Research., Vol. 28, No. 1 , 254–256.

Churchill, G.A. (1989) Stochastic models for heterogeneous DNA sequences. Bull.
Math. Biol., 51, 79-84.

Daniel J Rigden, (2006). Understanding the cell in terms of structure and function:
insights from structural genomics. Current Opinion in Biotechnology, Volume 17,
Issue 5, 457-464.

Hvidsten, T. R., Kryshtafovych, A., Komorowski, J. and Fidelis, K. (2003). A
novel approach to fold recognition using sequence-derived properties from sets of
structurally similar local fragments of proteins. Bioinformatics. 19, II81-II91.

Iddo Friedberg, Adam Godzi, (2007). Functional Differentiation of Proteins:
Implications for Structural Genomics. Structure, Volume 15, Issue 4, 405-415

Jones DT. (1999) Protein secondary structure prediction based on position-specific
scoring matrices. J. Mol. Biol. 292: 195-202.

Kabsch W, Sander C. (1983) Dictionary of protein secondary structure: pattern
recognition of hydrogen-bonded and geometrical features. Biopolymers, 22(12):
2577-637.

Krogh, A., Brown, M., Mian, I.S., Sjolander, K. and Haussler, D. (1994) Hidden
Markov models in computational biology: Applications to protein modeling. J. Mol.
Biol., 235, 1501-1531.

Kryshtafovych, A., Hvidsten, T. R., Komorowski, J. and Fidelis, K. (2003). Fold
Recognition Using Sequence Fingerprints of Protein Local Substructures. In IEEE
Computer Society Bioinformatics Conference, pp. 517-518. IEEE Computer Society,.

Lo Conte L, Brenner SE, Hubbard TJP, Chothia C, Murzin AG (2002). SCOP
database in 2002: refinements accommodate structural genomics. Nucleic. Acid
Research., Vol. 30, No.1, 264-267.

Marti-Renom MA, Stuart AC, Fiser A, Sanchez R, Melo F, Sali A. (2000).
Comparative protein structure modeling of genes and genomes. Annu Rev Biophys
Biomol Struct 29:291-325.

Rabiner, L. R. (1989). A tutorial on hidden Markov models and selected
applications in speech recognition. Proc IEEE, 77 (2), 257-286

 16

Sean R. Eddy, (1998). Profile hidden Markov models. Bioinformatics Review, Vol.
14, 755-763.

Silvio Carlo Ermanno Tosatto, (2002). Protein Structure Prediction: Improving and
Automating Knowledge-based Approaches. PhD thesis, Fakultät für Mathematik und
Informatik, Universität Mannheim.

Smith, K. (2002) Hidden Markov Models in Bioinformatics with Application to
Gene Finding in Human DNA, Machine Learning Project Proposal., 308-761

Steven E. Brenner, (2001). A tour of structural genomics, Nat Rev Genet 2, pp.
801–809

Tim J. P. Hubbard1, Alexey G. Murzin1, Steven E. Brenner and Cyrus Chothia,
(1997). SCOP: a Structural Classification of Proteins database. Nucleic Acids
Research, Vol. 25, No. 1, 236–239

Zhang, C. and Kim, S. H. (2003). Overview of structural genomics: from structure
to function. Curr Opin Chem Biol. 7(1): 28-32.

[1] http://www.wikipedia.org

[2] http://www.osc.edu/research/bioinformatics/FAQ/evalue.shtml

[3] http://www.mathworks.com

[4] http://www.mathworks.com/access/helpdesk/help/toolbox/stats/

[5] http://www.rcsb.org/pdb/home/home.do

[6] http://swift.cmbi.ru.nl/gv/dssp

[7] http://bioinf.cs.ucl.ac.uk/psipred

 17

http://www.wikipedia.org/
http://www.osc.edu/research/bioinformatics/FAQ/evalue.shtml
http://www.mathworks.com/
http://www.rcsb.org/pdb/home/home.do
http://swift.cmbi.ru.nl/gv/dssp
http://bioinf.cs.ucl.ac.uk/psipred

	Introduction
	Data
	Methods
	Hidden Markov Models
	Alignment
	Fold recognition

	Results & Discussion
	Alignment
	Fold recognition

	Conclusion & Future
	Acknowledgements
	References

