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Abstract

Proteochemometrics is a novel technology for the analysis of interaction of series of receptors
with series of ligands. In this study, two different proteochemometric approaches, rough sets
and partial least squares (PLS), have been utilized to model the interaction of Carbonic
anhydrases (CA I, CA II, CA V) and their ligands. Both approaches analyzed the dataset
which correlated the experimentally determined binding affinity (pKi value) with the
specific positions of CAs amino acid sequence and ligands. The CAs and ligands are
described by vectors of numerical descriptors which are associated with their
physico-chemical properties. Rough sets generate If-Then rules using Boolean reasoning.
Different partitions of the dataset were evaluated in order to find an optimal partition into
rough set decision classes. The performance of the rough set classifier was assessed by 10
fold cross validation (CV) and we reported accuracy mean, Area Under Curve (AUC) mean and
Standard deviation (SD). The results show that a highly valid model was obtained with
accuracy mean of 0.87 (SD=0.06) and an AUC mean of 0.92 (SD=0.05). PLS regression is a recent
technique that generalizes and combines features from principal component analysis (PCA)
and multiple linear regression (MLR). It is particularly useful when we need to predict a set
of response variables (e.g. pKi) from a very large set of predictor variables (e.g. descriptors of
the CAs and ligands).The goal of the PLS regression is to predict pKi from descriptors of the CAs
and ligands and to describe their common structure. PLS also could rank all the attributes and
cross terms from most influential to least influential for binding affinity. The PLS model
yielded a significant PLS component, the R2 and Q2 being 0.759, and 0.722 respectively.
Rough sets and PLS have different strength to construct a valid model, and they could be
complementary in some respects, thus we might achieve a more objective and valid
prediction result when combination of the two approaches.

1 Introduction

1.1 Motivation

Carbonic anhydrases (CAs) are wide-spread zinc enzymes, present in mammals in at least 14
different isoforms. Some of these isozymes are cytosolic (CA I, CAII, CA III, CA VII), others
are membrane-bound (CA IV, CA IX, CA XII and CA XIV), CAV is mitochondrial and CA VI
is secreted in the saliva. Three acatalytic forms are also known (CARP VIII, CARP X and
CARP XI). These enzymes catalyze a very simple physiological reaction, the interconversion



between carbon dioxide and the bicarbonate ion. They are important targets for the design of
inhibitors with clinical applications. Therefore, understanding the CAs-ligands interaction
might greatly help the design of potent inhibitors.

1.2 Proteochemometric approach

In proteochemometrics, one analyses the experimentally determined interaction strength of
series of biopolymer-molecular. It is based on quantitative descriptions derived from
structure and physico-chemical properties of interacting moleculars, which are correlated to
interaction affinity using mathematical modeling [1]. Various linear and nonlinear
correlation methods can be used.

PLS is the prime choice for a linear approach, which has already modeled peptide interaction
with chimeric and wild-type melanocortin GPCRs successfully [2]. When using linear
modeling, these descriptions reveal the contribution of linear combination of properties to
the interaction. However in reality, complexes nonlinear processes govern interactions, thus
cross terms are calculated for investigating the contribution of the nonlinear combination of
descriptors.

Nonlinear methods have been used to only a limited extent. Rough set theory [3, 4],
developed in Poland in the early 1980s, is a relatively new and promising machine learning
technique for data mining and knowledge discovery from databases. Rough set is a Boolean
method, which is suited to investigate nonlinear phenomena.

In this study, we applied both the linear method PLS and the rule-based nonlinear method
rough sets to model the CAs-ligands interactions.

2 Materials and methods

2.1 Datasets

2.1.1 Interaction Data

Data for 191 CAs interaction with their corresponding ligands were obtained from
(http://kibank.iis.u-tokyo.ac.jp/) [5]. The CAs represented three CA families (CA I, CA I, CA
V), and included 54, 91, 46 subtypes respectively.




2.1.2 Descriptor of CAs and ligands

2.1.2.1 Mutiple sequences alignment

Amino acid sequences were retrieved from the ENZYME  database
(http://www.expasy.org/enzyme/), and aligned according to the conserved amino acid
positions (http://bioinformatics.albany.edu/~cemc/). From the result in alignment (see
supplementary data for detail), 8 non-conserved residues were selected, at position 63, 66, 68,
92,132, 133, 205, 209 (Table 1).

Table 1 The amino acids at site 63, 66, 68, 92, 132, 133, 205, 209 of CA1, CAII, CAV

63 66 68 92 132 133 205 209
IHCB  Val(V) Ser(S) His(H) Phe(F) Leu(L) Ala(A) His(H) Tyr(Y)
1A42  Asn(N) Ala(A) Asn(N) Ile(I) Phe(F) Gly(G) Thr(T) Leu(L)
IDMY  Thr(T) Phe(F) GIn(Q) Lys(K) Tyr(Y) Lys(K) Thr(T) Ala(A)

2.1.2.2 Descriptor of CAs and ligands

Description of CAs. The non-conserved residues were subsequently coded using the three
z-scale descriptors (Table 2) derived by Sandberg et al.[6]. For example, the amino acid at site
63 should be described as [63_z1, 63_z2, 63_z3], for CA I, the residue at the 63rd site is “V”
(Val), so CATis described by [-2.69, -2.53, -1.29], thus the physicochemical differences in the
ligand-binding region of CAs were accordingly encoded by a total of 24 descriptors.
Therefore the composition of each CA in the dataset is described by a vector whose elements
contain 24 numerical values, as [63_z1, 63_z2, 63_z3, 66_z1, 66_z2, 66_z3, 68_z1, 68_z2, 68_z3,
92 71,92 22,92 2z3,132_z1, 132_2z2, 132_23, 133_z1, 133_z2, 133_z3, 205_z1, 205_z2, 205_z3,
209_z1,209_z2,209_z3].

Table 2 Descriptor scales for the coded amino acids
z1 ~ hydrophobicity/hydrophilicity

z2  side-chain bulk volume
z3  polarizability and charge



Amino acid z1 z2 z3
Phe (F) -4.92 1.3 0.45
Trp (W) —-4.75 3.66 0.85

Ile (I) —4.44 -1.68 -1.03
Leu (L) -4.19 -1.03 —0.98
Val (V) -2.69 -2.53 -1.29
Met (M) -2.49 -0.27 -0.41
Tyr (Y) -1.39 2.32 0.01
Pro (P) -1.22 0.88 2.23
Ala (A) 0.07 -1.73 0.09
Cys (©) 0.71 -0.97 4.13
Thr (T) 0.92 -2.09 -1.40
Ser (S) 1.96 -1.63 0.57
GIn (Q) 2.19 0.53 -1.14
Gly (G) 2.23 —5.36 0.3
His (H) 241 1.74 1.11
Lys (K) 2.84 1.41 -3.14
Arg (R) 2.88 2.52 -3.44
Glu (E) 3.08 0.039 -0.07
Asn (N) 3.22 1.45 0.84
Asp (D) 3.64 1.13 2.36

Description of ligands. Compounds were characterized by 34 descriptors, which were
calculated by the Dragon software (Talete S.r.l., Milano, Italy). The descriptors represented
different physicochemical properties as well as the numbers of functional groups and
structural fragments in the molecule (Table 3).

Table 3 The molecular descriptors annotation

Symbol | Definition

MW molecular weight

AMW average molecular weight

Sv sum of atomic van der Waals volumes (scaled on Carbon atom)
sum of atomic Sanderson electronegativities (scaled on Carbon

Se atom)

Sp sum of atomic polarizabilities (scaled on Carbon atom)

Ss sum of Kier-Hall electrotopological states

Mv mean atomic van der Waals volume (scaled on Carbon atom)

Me mean atomic Sanderson electronegativity (scaled on Carbon




atom)

Mp mean atomic polarizability (scaled on Carbon atom)
Ms mean electrotopological state

nAT number of atoms

nSK number of non-H atoms

nBT number of bonds

nBO number of non-H bonds

nBM number of multiple bonds

SCBO sum of conventional bond orders (H-depleted)
ARR aromatic ratio

nCIC number of rings

nCIR number of circuits

RBN number of rotatable bonds

RBF rotatable bond fraction

nDB number of double bonds

nAB number of aromatic bonds

nH number of Hydrogen atoms

nC number of Carbon atoms

nN number of Nitrogen atoms

nO number of Oxygen atoms

nS number of Sulfur atoms

nHDon | number of donor atoms for H-bonds (N and O)

nHAcc | number of acceptor atoms for H-bonds (N,O,F)

Hy hydrophilic factor

MLOGP | Moriguchi octanol-water partition coeff. (logP)
AMR Ghose-Crippen molar refractivity

PSA Fragment-based polar surface area

Consequently, the dataset contains 191 CAs-ligands complexes, which are described by a vector of 59
numerical values, where the first 24 values represent the CAs, the following 34 values represent the
ligand, and the last one is the pKi value.

2.2 Approach to proteochemometrics

2.2.1 Rough sets model

First we introduce some basic definition and theory of rough sets [7]. The dataset is
represented as a table, where each row represents a case, an event, or simply an object. Each
column represents an attribute, a variable, an observation, or a property etc that can be
measured for each object. This table is called an information system. More formally, an



information system is a pair A = (U , A), where U is a non-empty finite set of objects called
the universe and A is a non-empty finite set of functions a:U —V,_, called attributes; for
each ae€ A the set V,is called the value set of a. If there is a known outcome of

classification, this a posteriori knowledge is expressed as one distinguished attribute called
the decision attribute. The process is called supervised learning. An information system of this
kind is called a decision system. Thus a decision system is any information system of the form
A =(U,AU{d}), where dgA is the decision attribute. The element of A is called
conditional attributes or simply conditions. The decision attribute may take several values
though binary outcomes are rather frequent. The output of the rough set algorithms is a set
of minimal decision rules of the form « — [ .Here « is a Boolean function
U — {true, false} built up of the logical connectives A and atom statements of the form
a()=v where ae AveV,, Similarly £:U — {true, false} is built up from logical

connectives Vv and atom statements of the form d(-) =V where VeV,.

The datasets created is section 2.1 are represented by decision table where the CAs-ligands
complexes are objects, the descriptors of the CAs and ligands are condition attributes, the
pKi value are the decision attribute. Decision attributes are common for binary outcomes,
however the original binding affinity values in the dataset are continuous numbers, therefore
we sorted the decision table by the median value of the binding affinity values. The objects
whose pKi value are larger than median value are assigned “high”, the remaining ones are
assigned “low”.

Using rough sets to model the receptor-ligand interaction usually start with randomly split
ing all the objects into two disjoint sets: A training set from which could induce minimal
IF-THEN rules, and a test set which is used to verify how good the rules are at classifying
new cases. However, the evaluation of the reliability of the performance using only one test
set may not be so accurate, because it might be affected by the size of the set. So 10-fold cross
validation (CV) are used to estimate the performance of the rules by computing the accuracy
mean and Area Under Curve (AUC) mean and standard deviations (SD). The AUC is the area
under the Receiver Operating Characteristics (ROC) curve and it is a measurement of the
discriminatory power of a classifier [8]. The ROC curve results from plotting sensitivity
against 1-specificity while letting the threshold value © vary. For a binary classifier an AUC
of 1.0 means that the discriminatory power is optimal while an AUC of 0.5 means that the
classifier does not perform better than a random classification of objects. All the calculations
were performed by the Rosetta software [9].

2.2.2 PLS model

PLS [10] is a multivariate analysis method that finds the relationship between a matrix of
predictor variables, X and a matrix of dependent variables, Y. (In our case, the Y
corresponded to pKi values.) The PLS analysis has the objective of approximating the X and
Y spaces and maximizing the correlation between them. A reduction of dimensionality is



accomplished by simultaneously projecting the X and Y matrices on lower dimensionality
hyper-planes that are termed PLS components.

Model Creation Prior to PLS, the data in the matrix X and Y should be first mean centered
and scaled to unit variance (divided by the standard deviation of the variable). The goodness
of fit between X and Y data of the PLS models was characterized by the fraction of explained
variation of Y (R?). The predictive ability was characterized by the fraction of the predicted
Y-variation (Q?), assessed by cross-validation, as previously described [11]. A model is
considered to be acceptable for biological data when R?>0.7 and Q?>>0.4 [12]. Moreover, Q?is
used to determine how many PLS components should be used for the description of the
model.

Cross term Ligand-receptor recognition can evidently only partially be explained by linear
combinations of ligand and receptor descriptors. E.g., if the ligands by virtue of some feature
(property) interact with non-varied receptor residues, a simple assumption would be that the
binding affinity relates linearly with the intensity of this given property. In reality, however,
binding is governed by complex processes that depend on the complementarity of the
properties of the interacting entities. In proteochemometrics this may be accounted for by
computation of ligand-CAs cross-terms. Cross-terms were here formed by multiplying the
ordinary descriptors. In this way one additional descriptor block was obtained comprising
1653 descriptors. Thus the total number of descriptors obtained, became 1712.

Coefficients The significance of X variables was assessed by the PLS regression coefficients.
As the predictor variables are projected onto the Y by means of the PLS regression equation,
a regression coefficient is a measure of the relevance of a chemical property descriptor for
explaining the variation in the activity under study. In order to obtain a normalised measure
for the significance of a primary term, the absolute value of its regression coefficient was
multiplied by the standard deviation of the corresponding descriptor in the data set. All the
calculations were performed by using SIMCA 10.0 software (Umetrics, Umea, Sweden).

3 Results

3.1 Rough sets model

3.1.1 Model evaluation

As referred in section 2.2.1, performances of the decision rules are measured by parameter
accuracy mean and AUC mean and Standard deviation (SD). The accuracy mean is the average
proportion of correctly predicted objects computed for the k block during CV. The AUC mean
is the average AUC for the models induced by the k blocks during CV. For the decision table
of CAs-ligands complexes, 10-fold CV resulted in an accuracy mean of 0.87 (S5D=0.06) and an
AUC mean of 0.92 (§5D=0.05). The result of CV shows high validity of the rough set model to
classify the objects using induced decision rules.

3.1.2 Interpretation of rules



A set of decision rules were induced which correlated the minimal number of CAs and
ligands descriptors with “high” or “low” binding affinity and provided a large number of
patterns to determine the binding affinity of CAs and ligands. For instance, one decision rule
is “66_z3 ([*, 0.27]) ~ Me ([1.05, *) ) * nAT ([30, 39)) — pKi (high)” , associating “polarizability
and charge” of the residue at site 66 of CAs, “mean atomic Sanderson electronenagativity”
and “number of atom” of the ligands with the binding affinity (pKi), and the interval of these
3 descriptors value determing the strength of the binding.

There are several numerical factors associated with decision rules. Most of these are derived
from the support of a rule, which is the number of objects in the decision system that possess
both properties a and 8. The factor coverage, which is defined as coverage

(aof )=support(arp)/support(p), reflects the strength of a rule and gives a measure of how
well a describes the decision class(-es) given by (3. Thus, we select the rules of highest
coverage to explain the “high” and “low” binding affinity of CAs-ligands interaction. The
rules with highest coverage for “high” have the patterns:

CAs +Ss ([62.58, *)) + PSA ([113.38, *))

CAs +nCIR ([3, ¥)) or CAs + CAs + nCIR ([3, ¥))

CAs+nS ([3, ¥)) or CAs + CAs +nS ([3, *))

CAs + Ss ([62.58, *)) + nS([3, *))

CAs +nSK ([24, *)) + PSA ([113.38, *))

The rules with highest coverage of the rules for “low” have the patterns:

CAs + MW ([269.32, 362.35)) or CAs + CAs + MW ([269.32, 362.35))

CAs + Se ([%, 30.74)) + nSK ([*, 19))

CAs + Sp ([*, 30.74)) + nSK ([*, 19))

CAs + Sv ([%, 18.96)) + nSK ([*, 19))

CAs + MW ([*, 269.32)) + ARR ([0.151, *))

CAs are more likely to be 63-z1, z2, z3, 66-z1, z2, z3, 132-z1, z2, z3, 133-z1, z2, z3, 92-z2, z3.
Thus, the “high binding” decision rules might be associated with ligands descriptors Ss, PSA,
nCIR, nS, nSk Within a receptor, the “low binding” decision rules might be associated with
ligands descriptors MW, Se, nSk, Sp, Sv, ARR .

3.2 PLS model

Creation of the Proteochemometric Model

PLS modeling of the data set using only descriptors of CAs and ligands resulted in a model
explaining R2=(0.755 of the variance of ligands affinities and having a predictive ability of
Q2=0.724 (Fig 1). Ligand-CAs cross-terms were then included, allowing us to account for the
nonlinearity of the ligand and CAs-affinity profiles. This resulted in a further improved
model was obtained with R2=0.810 at Q2=0.737 (Fig 2).
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Fig 1 Correlation of calculated versus observed pKi values derived from PLS modelling of
protein-ligand interactions without cross terms.
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Fig 2 Correlation of calculated versus observed pKi values (i.e., 3log(Ki)) derived from PLS
modeling of protein- ligand interactions without cross terms with cross terms.

Interpretation of the Model

Analysis of ligands Properties of Importance for CAs Binding.

To analyze the influence of different properties of the ligands on their overall affinities to
CAs, we used the PLS regression equation of the model. The PLS coefficients for ligands
descriptors are shown in Fig. 3. As can be seen, the regression coefficients for nS, PSA, nDB,
nN, nCIR, nO, AMW, nCIC, MW, Mp attained the largest positive values.

MLOGP, ARR, nHDon, Hy gave the largest negative impact. The nAB, RBF also correlated
negatively to the affinity, whereas the remaining descriptors of the ligands correlated

positively. And only minor positive correlation to the affinity was associated to the nC and
nBM.

CoeffiCS[3)(pKI

Fig3 PLS coefficients of the descriptors of enzyme and ligand derived from the final
proteochemometric model.

The sign and magnitude of the PLS coefficient of the descriptor of the compounds reflects
the impact of the underlying property of the ligands to the affinity to the receptor series.



However, depending on the actual descriptor value for a particular ligand, the contribution
of the described property to the binding would for some ligands be positive, whereas for
others it would be negative. Therefore, to reveal the contribution of the properties of
particular compounds to their interaction activity, we multiplied each coefficient with the
actual descriptor value for each given compound as follows:

ApKE; = coeff) % (x — &)
Using this approach, we found that the overall high affinity of liangds 1 (in the first row of
the dataset) is associated with high numbers of nCIR, nHDon. Nevertheless, the largest
negative influence is afforded by the MW, PSA. Thus, the model suggests that the high
average affinity of the structure is not caused by MW and PSA, though PSA has largest
coefficient value.

Contribution of CAs residues for Ligands Affinity.

To analyze the influence of different residues of the CAs on their overall affinities to ligands,
we also used the PLS coefficients in Fig 3. The CAs descriptors had overall less impaction on
the CAs-ligands interaction affinity. Descriptors 63-z1, 63-z2, 63-z3, 68-z1, 132-z2, 132-z3,
133-z1 achieved largest positive coefficients, 66-z3, 92-z2, 205-z1, z2, z3, 209-z1, z2, z3
obtained the largest negative coefficients. The remaining had little influence and can be
neglected.

In general, the results of rough set are agree with those of PLS. The binding affinity are
mostly associated with Descriptors 63-z1, z2, z3, 66-z3, 92-z2,132-z1, z2, z3, 205-z1, z2 z3 and
209-z1, z2, z3 for CAs and nS, PSA, nDB, nN, nCIR, nO, AMW, nCIC, MW, Mp, MLOGP,
ARR, nHDon, Hy for ligands.

4 Discussion

In this study, we applied a novel technique of proteochemometrics to analysis the
interactions between CA I, CA II, CA V and ligands. First, we described the problem
mathematically, it seemed that the different parts of the CAs and the ligands contributed to
the binding through their biochemical properties. Thus the CAs and ligands were encoded
by a serial of quantitative descriptors. The next step was to find a relation between the
formed chemical descriptors and the binding data. Two different models, rough sets and
PLS, were selected to fulfill the talk. The present study shows that both rough sets and PLS
modeling served the purpose quite well. The two approaches are to some respect
complementary and may be used in combination to receive a better understanding of
receptor-ligand interaction

Rough sets is a rule-based methods, in this case, rough sets model is of high quality with
accuracy mean= 0.87 (SD=0.06) and an AUC mean=0.92 (SD=0.05). The output of rough sets are
a series of minimal IF-THEN rules induced from dataset, which facilitate to understand and
exploit the binding.

PLS model for the binding data gave a good validated model (i.e., the model displayed in



Fig. 1). The R2 parameter of this model was 0.755, indicating that the binding affinity could
be explained by the 58 combined descriptors for the CAs and ligands. Moreover, the validity
of the model is shown by cross-validation, which is quantified by Q2 measure. As mentioned
in Section 2, this parameter gives an estimate of the predictive power of the model. A value
above 0.4 is generally considered to be good; in our case it was 0.724.

Despite the fact that this is already a rather good model, the possibility that parts of CAs and
ligands could induce interaction effects were not take into account. In order to improve the
model, cross terms were introduced to the model. Results of these cross-terms resulted in a
major improvement of the model with R=0.81 and Q2=0.737 (Fig. 2).

In order to interpret the model easily, we calculate the coefficients of each descriptors, which
represent a measure of the contribution of the descriptors to the model (Fig 3). Within CAs,
63-z1, 63-z2, 63-23, 68-z1, 132-z2, 132-z3, 133-z1 enhance the binding affinity largely, while
66-23, 92-z2, 205-z1, z2, z3, 209-z1, z2, z3 lessen the binding. For ligands descriptors are
shown in nS, PSA, nDB, nN, nCIR, nO, AMW, nCIC, MW, Mp associated the binding
positively, while MLOGP, ARR, nHDon, Hy have the contary effects.

PLS is a linear method which ranks all the attributes and cross terms from most influential to
least influential for binding affinity. The coefficients of the PLS model illustrate this clearly
(Fig 3). While rough sets modeling can deal with the nonlinear problem, and it does not
produce a ranking of attributes. Instead it selects minimal groups of essential attributes that
have the same classification power. In this case, decision rules focus on combination of
attributes important for binding. Being a linear model, PLS has to compute cross terms,
which represent the non-linear terms, but only two attributes can be combined in each cross
term, thus PLS could not describe the nonlinear issues very well. For rough sets, we need not
take account of cross terms, each decision rule is a combination of attributes without the
number restriction. Moreover, for the rough set approach, decision rules associate high and
low binding to certain attribute values while the PLS ranking is not relating to attribute
value. To sum up, rough sets provide an explicit model with a serial of classifer to determine
the binding, while PLS models are adept at predicting the contribution of descriptors to
binding affinity. These two model analysis the binding affinity from different angles, thus
combination of the two models will lead to better understand the CAs-ligands interactions.
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Key to read JOY format

solvent inaccessible UPPER CASE X
solvent accesible lower case X
alpha helix red X
beta strand blue X
3 — 10 helix maroon X
hydrogen bond to main chain amide bold X
hydrogen bond to main chain carbonyl underline X
disulphide bond cedilla ¢
positive phi italic X
Multiple Alignment

10 20 30 40
50
1A42 ( 4)
hwgYgkhnGpehWhkdfpiAkgerQSPVdIdthtAkydpslkpLsVsY
DMy  ( 25)
gtrgSPInlgwkdSvydpglLapLrVsY
IHCB ( 4)
dwgYddknGpegWsklypiAngnnQSPVdIktsetkhdtsLkplsvsY

bb 333 bb bbb

60 70 80 90
100
1A42 ( 52)

—dgAtS1rI1NnGhaFnVeFddsqdkAvLkgGplLdgtYrLiqFHFHWGs
My  ( 52)
—daasCryLwNt GyFFqVeFddscedS (T s gGPLgnhYrLkQFHFHWGa

14



IHCB ( 52)
—npaTAkeliNvghSFhVnFedndnrSvLkgGpfsdsYrLfqFHFHWGs
bbbbbb bbbbb bbb bbbbbbbbbb

110 120 130 140
150
1442 (100) 1dgqGSEHtY dkkkyAAELHLVHWNtk—y gd f gk AvqqpdGLAVLGIFLk
IDMY (100)  tdew(SEHAvdghtypAELHLVHWNs tkyenykkAsvgenGLAVIGVFLK
1HCB (100 ) tnehGSEHt v dgvkySAELHVAHWNSakysslaeAaskadGLAVIGVLMk
bb bbbbbbbb aaaa
bbbbbbbbb

160 170 180 190
200
1A42  (150) vg—sakpgl.gkVVdvLdsTktkgksadftnFdPrglLlPe———s1dYWTYp
DMy (150) lg—ahhqgal.gklL.VdvLpeVrhkdtgvaMgpFdPscl.Mpa——crdYwTYp
IHCB  (150) vg—eanpkLgkVLdaLgalktkgkrapftnfdPstLLPs———s1dFWTYp
b aaaaa 3333 bbb 3333
bbbbb

210 220 230 240
250
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