
Uppsala Master's Thesis in Computer Science
Examensarbete DV3
September 29, 2005

A System for Predicting Protein Function
from Structure

Marta �uksza

Information Technology

Department of Computer Systems

The Linnaeus Centre for Bioinformatics

Uppsala University

BOX 337

S-752 05 UPPSALA

SWEDEN

Supervisors: Prof. Jan Komorowski, Dr. Torgeir R. Hvidsten
The Linnaeus Centre for Bioinformatics, Uppsala University

Examiner: Dr. David Ardell

The Linnaeus Centre for Bioinformatics, Uppsala University

Abstract

Predicting protein function is a great challenge in molecular biology. More and more
protein sequences are solved each year but the knowledge about their molecular role is still
insu�cient.

This thesis deals with the problem of predicting protein function from structure. Pre-
viously, Hvidsten et al [16] introduced a novel concept of popular multi-fragment local
substructures of protein (local descriptors of protein structure) that are used for protein
function prediction. In this thesis a software framework for computing, comparing and
clustering descriptors was developed. The whole method results in a protein function
classi�er.

The problem involved dealing with very huge amount data. Various data mining tech-
niques, such as clustering and learning classi�cation rules, were employed. The very heavy
computations were distributed and run on a computational grid.

A web based server was also developed, in order to facilitate applying the method to
unknown, user-submitted proteins.

Keywords: protein function prediction, protein structure, clustering algorithms, rough
set theory

iv

Acknowledgments

I would like to thank my supervisor Professor Jan Komorowski, I really appreciated the
time spent at the Linnaeus Centre for Bioinformatics. I would also like to thank to Dr.
Torgeir R. Hvidsten for guiding me in this project. I am very grateful to Dr. Witold
Rudnicki and Marcin Kieczak for their wise advices. My friends Ewa M¡kosa and Jakub
Jurkiewicz were always very helpful. Special thanks to my parents for their support.

Uppsala, September 29, 2005

MARTA �UKSZA

v

vi

CONTENTS

1 INTRODUCTION 1

1.1 Local descriptor based method . 1

1.2 Objectives . 3

1.3 Overview . 3

2 THEORETICAL BACKGROUND 4

2.1 Clustering . 4

2.1.1 Data representation . 4

2.1.2 Clustering algorithms . 5

2.2 Supervised learning . 7

2.2.1 Rough set theory . 7

2.2.2 Classi�er . 10

3 METHODS 12

3.1 Data . 12

3.1.1 Input data . 12

3.1.2 Protein functions . 13

3.2 Local descriptor method . 13

3.2.1 The concept of a local descriptor . 13

3.2.2 Grouping descriptors . 14

3.2.3 Dissimilarity function . 17

3.2.4 The local descriptor method summary . 18

3.3 Clustering the local descriptor data . 18

3.3.1 Hierarchical algorithm . 19

3.3.2 DBSCAN algorithm . 21

3.3.3 Asymmetric dissimilarity matrix . 23

3.4 Evaluating clustering quality . 24

vii

viii CONTENTS

3.4.1 Mutual information and entropy . 24

3.4.2 Method description . 25

3.5 Classi�er . 27

3.5.1 Predicting protein function . 27

4 IMPLEMENTATION 29

4.1 O�-line module . 29

4.1.1 Data representation . 29

4.1.2 Command line programs . 30

4.1.3 Database . 30

4.1.4 Least squares �tting . 31

4.1.5 Parallelizing the process . 31

4.2 On-line module . 33

4.2.1 Struts . 33

4.2.2 Request handling process . 34

5 RESULTS 35

5.1 Descriptor data . 35

5.2 Clustering . 36

5.2.1 Mutual information criterion . 36

5.3 Classi�er performance . 38

6 DISCUSSION 41

6.1 Future work . 41

APPENDIX 45

A Notation 47

B Diagrams 49

1 INTRODUCTION

Proteins are the main building block of the cell. They are also responsible for its biological
processes, for instance: gene regulating mechanisms, transportation of molecules, interac-
tion with other molecules, and catalytic reactions that would be kinetically unfavorable.

The central dogma of molecular biology, formulated by Francis Crick in 1958, states that the
genetic information contained in DNA is transcribed into RNA and subsequently translated
into a protein. Genes, the coding parts of DNA, determine the sequence of amino acids
that construct protein. The amino acids interact with each other and cause the protein to
fold. Therefore the shape of a protein is speci�ed by its amino acid sequence which itself is
speci�ed by genes. Moreover, the basic principle is that function follows structure, which
means that the molecular role of a protein is determined by its shape.

There are many approaches to predicting protein function. For instance, function can be
inferred from sequence - in this kind of approach the sequential similarity to other molecules
is searched or sequence derived protein features are used [18]. However structure is much
better evolutionary conserved than sequence and therefore it provides a better opportunity
to recognize homology that is otherwise undetectable by simple sequence comparison. Only
a small part of sequence, corresponding to the protein's active sites, needs to be conserved
for keeping a function stable. The very �rst two protein structures solved, myoglobin and
horse haemoglobin, were recognized as homologues, although their amino acid sequences
did not reveal any signi�cant similarity [5].

Sequence information is signi�cantly more available than structure. Human genome, nu-
merous microbial pathogens and model organism were sequenced while the structural in-
formation for the gene products is still insu�cient. The structural genomics projects chal-
lenge the lack of structural information. Their main focus is on creating a representative
set of solved protein structures to provide model structures for all the domains. Structures
can be determined both experimentally (X-ray crystallography or NMR spectroscopy) and
computationally.

Deriving function from structure is also the goal of structural genomics. Once a su�cient
structural knowledge is gained, prediction of a reasonable structure and potential function
for almost any protein will become possible. For instance, once a new protein structure
is solved a structure comparison can be performed utilizing the Protein Data Bank [4],
a database of known proteins. Two similar structures are very likely to have the same
molecular role. However, this approach requires similarity of the whole molecule structures.
The so-called fragment-based methods operating on small protein substructures are less
demanding. The latter can be employed when neither sequence nor structure of signi�cant
similarity can be found for the whole investigated molecule.

1.1 Local descriptor based method

Local descriptor of protein structure, concept introduced in [23], is a small protein substruc-
ture encompassing short continuous backbone segments that are close in 3-dimensional

1

2 Chapter 1 Introduction

space but not necessarily along the protein sequence.

The local descriptors are employed in the protein structure prediction problem [17, 23]
for identi�cation of sequence signals that can be associated with those conformations.
Hvidsten et al. [16] observe a correspondence between the presence of local descriptors
in structure and protein function. The correspondence however is nonlinear, which means
that usually a combination of local descriptors rather then one single descriptor can decide
about the function.

In this thesis we developed and implemented a full system for predicting protein function
based on the presence of some common descriptor conformations. The key idea of the
method is to identify the most common descriptor shapes (by organizing them into clusters
on a basis of their structural similarity) and then, using rough sets [27], associate those
with protein functions. Figure 1.1 presents the process proposed, the process steps are as
follows:

1. Calculating descriptors from the given set of proteins. All the structures are processed
which results in a database of descriptors;

2. Descriptors from the database are compared to each other taking into account their
3-dimensional conformations. On a basis of those comparisons for each descriptor a
group of similar descriptors is constructed;

3. On a basis of the grouping information, the descriptors are combined into non over-
lapping clusters of objects revealing more similarity to each other than to the objects
from the other clusters. This step results in a database of clusters and cluster repre-
sentative descriptors;

4. In the last process step a rule based classi�er is constructed for predicting protein
function on the grounds of the common conformations adopted by the protein. The
Gene Ontology [2] annotations are used as decision classes while learning the classi�er.
The rules obtained are of the IF-THEN form, associating the presence of particular
local descriptors with particular protein functions.

Figure 1.1. Local descriptors based protein function prediction

The method requires a large set of representative proteins to be processed, the subsequent
steps also require dealing with huge amount of data. The method presents a typical data
mining problem, where the knowledge is induced from data and various techniques are used
to �nd hidden associations and characteristics. Formally, data mining can be de�ned as
a nontrivial extraction of implicit, previously unknown and potentially useful information
from data [11]. The valuable information is relatively hard to detect, however interpretable,
and it is still true when new cases are observed. The well known data mining techniques
applied in this thesis are clustering and learning classi�cations rules. However the whole
method is a speci�c knowledge discovery process.

1.2 Objectives 3

1.2 Objectives

The implementation goal of this thesis was a software framework automating the local
descriptor method. This involves implementation of the steps of calculating, comparing
and clustering descriptors (steps 1, 2 and 3). In the last step, where the classi�er is
constructed, the Rosetta system [22] is used.

The main challenge was to design a system capable of processing huge datasets, taking
into account both the storage and the computational time. Some parts of the process had
to be parallelized and run on a computer grid, the results of all of the process stages had
to be stored in a database.

The other objective was to come up with a suitable clustering algorithm. Two algorithms
were proposed, a density based DBSCAN algorithm [10] and a hierarchical algorithm [15].
The classi�cation step depends strongly on the cluster assignments, therefore the algo-
rithms are compared accordingly to the classi�er performance. Furthermore, the cluster
assignments quality was evaluated using the mutual information criterion, proposed in [13].

To enable application of the method by a wide range of users, a web server with a web user
interface was developed. For each protein submitted, the rule based classi�er is applied
and the predicted function is returned.

1.3 Overview

The �rst part of the thesis presents a mathematical background of the problem. In Chapter
2 a review of clustering methods and an introduction to the rough set theory, used for
classi�cation, are given, covering notions needed for understanding of following chapters.
Chapter 3 provides a description of the data, algorithms and methods constituting the
process shown in Figure 1.1. In Chapter 4 the implementation aspects are discussed, such
as the system architecture, adoption of the grid resources and the web server realization.
Chapter 5 discusses the descriptor data and reports the results of clustering and classi�er
construction. Finally, the discussion summarizing the project is provided in Chapter 6.
Appendix chapter provides the notation abbreviations used in the thesis and diagrams
concerning the implementation aspects.

2 THEORETICAL BACKGROUND

This chapter provides an overview of the applied mathematical theory. Section 2.1 is an
overview of clustering algorithms that belong to the unsupervised learning methods in
machine learning. In Section 2.2 introduction to the rough set theory is given, which is a
supervised method for learning from training examples. The notion of a local descriptor,
Gene Ontology and other related concepts are described in following chapters.

2.1 Clustering

The goal of cluster analysis is to group data into subsets, so that objects within a cluster
are more closely related to each other than those that belong to di�erent clusters. As
side e�ects one can achieve selection of the representative objects within the "homogamic"
groups, discovery of new features or noise in the data. In this approach the cluster analysis
methods will be used to �nd the most common local descriptors shapes and to reduce the
space of all the descriptors to the set of the cluster-representative descriptors. Removing
the least frequent shapes would be also desirable.

2.1.1 Data representation

An object from a dataset D, which is to be clustered, can be described by a set of attributes
or by its relation (proximity) to other objects. The latter is the case of the local descriptor
data, for each pair of descriptors their similarity is assessed.

The dissimilarity matrices represent the data as an N × N matrix Diss, where N is the
number of objects from the dataset and dij matrix entry records dissimilarity between the
ith and the jth objects. The dissimilarity matrix is often, by many clustering algorithms,
assumed to be symmetric. If the original input data matrix does not satisfy this demand,
it might be substituted by a symmetric matrix (Diss+DissT)/2.

The other way of representing data is by dissimilarities based on attributes. Very often
data is represented as a matrix X of size N × M , where number of objects is N and
there are M attributes describing the object. Attributes can be regarded as functions
Ai : D → Vi, where D is a dataset to be clustered and Vi is a set of possible values for the
ith attribute. This kind of data representation can be easily transformed into dissimilarity
matrix representation, a dissimilarity functions for each attribute has to be de�ned and
then the whole dissimilarity is computed as a sum over these dissimilarities:

Diss(a, b) =
M∑
i=1

di(ai, bi),

where di : D × D → R. The common choice for attribute dissimilarities function is the
Euclidean distance.

4

2.1 Clustering 5

2.1.2 Clustering algorithms

There are three basic types of clustering algorithms: partitioning, hierarchical and density
based. In this section the brief characteristics for each type are covered, the algorithms
applied are discussed in detail in Chapter 3.

Partitioning algorithms

Partitioning algorithms attempt to split a dataset into K (where K is an input parameter)
clusters so that the partition optimizes a given objective function. These algorithms usually
start with an initial partition, and then perform a series of iterative steps. At each step
the cluster assignments are changed so that the value of the objective function is improved.
The algorithm terminates when changing cluster assignments leads to no improvement and
the current assignment is returned as a solution.

The algorithm solving the more general case without the limit on the clusters number,
known as the minimum sum-of squares clustering, is NP-hard [7]. Hence the algorithms
that are commonly used are heuristic, i.e. they search for the optimal value of the objective
function but they do not guarantee to �nd a globally optimal solution.

K-means algorithm is one of the most popular partitioning algorithms. For each of the
K clusters a centroid point - a gravity centre is computed. Next the algorithm tries to
assign points to clusters so that the mean square distance of points to the assigned centroid
cluster is minimized. This is repeated until the changing of centroids does not change the
cluster assignments or the given stop condition is satis�ed. In each such step the distances
between each of K centres and the dataset points are computed, therefore it requires
O(K ∗ n) operations. The number of iterations is nondeterministic. The centroid-based
algorithms are suitable only for data in metric spaces, such as Euclidean space, where it is
possible to compute a centroid point.

K-medoids algorithm works for data in similarity space, that is with an arbitrarily de�ned
dissimilarity matrix Diss. It tries to �nd clusters representative points (medoids) so that
the distances of points to their closest medoid are minimized:

c∗k = argminc∈Ck

∑
c′∈Ck

Diss(c, c′)

where ck is a medoid for cluster Ck. Searching the new cluster medoid requires O(|Ck|2)
operations, whereas the corresponding operation in K-means was of linear cost. If all the
clusters are of similar size, then we can estimate one iteration cost as O(K ∗ (NK)2) =
O(N2

K) which is O(N2) for big datasets or small K. Therefore the K-medoids algorithm
is much more computationally intensive than K-means. The well known approximate
realizations of the K-medoid algorithm are PAM (Partition around medoids) [20], CLARA
(Clustering Large Applications) [20] and CLARANS (Clustering Large Applications based
on Randomized Search) [26].

Partitioning algorithms results are nondeterministic: they depend strongly on the choice
of the initial partition and the parameter K. A drawback of both the centroid and medoid-
based approaches is that they are not suitable for data in which points in a given cluster
are closer to the center of another cluster than to the center of their own cluster. Such

6 Chapter 2 Theoretical background

situation might appear when sizes of clusters vary much or when cluster shapes are not
convex.

Hierarchical algorithms

Hierarchical algorithms decompose a dataset D of N objects into several levels of nested
clusters that can be represented by a dendrogram, a binary tree where the parent is a cluster
constructed by merging its two daughter clusters. In order to get the cluster assignments,
the tree is cut at a speci�ed level, and the obtained subtrees represent the clusters. There
are two basic strategies for hierarchical clustering: agglomerative (bottom-up) and divisive
(top-down).

Agglomerative algorithms start at the bottom, with singleton clusters for each data point.
In the consecutive, iterative steps, the selected pair of the two closest clusters is merged into
one cluster at the next level. Let C1 and C2 be two clusters. The dissimilarity between
them is computed from the pairwise objects dissimilarities belonging to those clusters.
De�ne a dissimilarity function for clusters DissClust : P (D) × P (D) → R ∪ {∞}, where
P (D) is a set of all subsets of D. The clusters dissimilarities are computed from the set of
pairwise dissimilarities. There are three commonly used measures for evaluating clusters
dissimilarities [15]:

• single linkage DissClust(C1, C2) = minc1∈C1,c2∈C2(Diss(c1, c2))

• complete linkage DissClust(C1, C2) = maxc1∈C1,c2∈C2(Diss(c1, c2))

• average linkage DissClust(C1, C2) = avgc1∈C1,c2∈C2(Diss(c1, c2))
= 1

|C1||C2|
∑

c1∈C1

∑
c2∈C2

Diss(c1, c2)

If we de�ne a cluster diameter [15] as DC = maxc1∈C,c2∈CDiss(c1, c2), then we might
expect to get very large diameters in case of the single linkage. This feature will allow
clusters to be elongated and not necessarily spherical. To the contrary, the diameter will
be quite small for complete linkage, where clusters are always convex. In contrast to the
partitioning algorithms, hierarchical clustering is deterministic. For given settings it always
results in the same solution.

Divisive algorithms start at the top, with one cluster containing all the points. At each level
one of the existing clusters is split into two daughter clusters. A partitioning algorithm
can be used to split the parent cluster, for instance K-means or K-medoids algorithm with
the K parameter set to 2. There are many ways of choosing the cluster to be split, for
instance the cluster with the biggest diameter, or the one that has the largest pairwise
members dissimilarity.

Density-based algorithms

Density-based clustering algorithms apply a local cluster criterion. Clusters are regarded
as regions in the data space in which the objects are dense, and which are separated by
regions of low object density, called noise. Clusters can have an arbitrary shape and the

2.2 Supervised learning 7

objects inside a cluster region may be arbitrarily distributed. The most popular density-
based algorithm is probably DBSCAN [10]. Other known algorithms are: GDBSCAN
(Generalized Density-Based Spatial Clustering of Applications with Noise) [30], OPTICS
(Ordering Points To Identify the Clustering Structure) [1], and LOF (Local Outlier Factors)
[6].

2.2 Supervised learning

Supervised learning [15] belongs to the �elds of arti�cial intelligence, data mining and
statistics. In the typical learning problem an outcome measurement, often called a decision
attribute is given. The aim is to develop a model, a classi�er, that will allow for predicting
the outcome on a basis of a set of features. The term "supervised" corresponds to the
presence of the decision attribute, which guides the process of learning. The decision
attribute can be either quantitative (when the measurements can be compared to each
other) or qualitative, like the Gene Ontology annotations in this setting. To construct a
predictive model, a training set is used in which both the features and the decision attribute
are provided. In the local descriptor problem, objects are proteins, features correspond to
the possession of certain local descriptor, and the outcome corresponds to the protein
function. There are various supervised learning algorithms known, such as the Nearest
Neighbor method, linear regression, Bayesian methods [12] or decision trees [11, 15]. Here,
a rough set approach is applied, which is discussed in more detail in the following section.

2.2.1 Rough set theory

Rough set theory, introduced by Zdzisªaw Pawlak [27], is an extension of set theory used
to approximate sets that cannot be precisely described using the knowledge available. In
here, the notion of training data is formalized.

De�nition 2.2.1. [27] An information system is a pair A = (U,A), where U (universe)
is a non-empty, �nite set of examples, and A = 〈a1, ..., an〉 is a non-empty, �nite set of
attributes. Each attribute a is a partial function of a form a : U → Va, where Va is a value
set of a, containing all the possible values of attribute a. Each object u from the universe
U is a vector 〈a1(u), ..., an(u)〉.

The observations, i.e objects from the set U , correspond to the observed con�gurations of
feature values, and they approximate the reality description. The description reveals the
hypothetical laws which we would want to formalize having incomplete information.

De�nition 2.2.2. A decision table is an information system A = (U,A∪{d}),where d /∈ A
is a distinguished decision attribute. The elements of A are called conditions.

An example of a decision table (U,A ∪ {function}) is shown in Table 2.2.1. In here, the
attributes set is A = {1pjza_#132, 1jmxb_#56, 1ij5a_#72, 1bo9a_#12, 1qqva_#34 }.
The attributes correspond to representative descriptors (see Section 3.2.1 for an explanation
of the descriptor naming convention). The decision attribute is function. The observations
correspond to proteins, the value set for each of the attributes is {0, 1}, where 1 stands for
the presence of the speci�c descriptor in the protein and 0 stands for its absence.

8 Chapter 2 Theoretical background

Table 2.1. Decision table
1pjza#132 1jmxb#56 1ij5a#72 1bo9a#12 1qqva#34 function

1n9l 1 1 0 0 0 GO:0005524

1a33 1 1 0 1 0 GO:0005524

1b45 1 1 0 0 0 GO:0005524

1zme 1 1 0 1 0 GO:0008270

1afe 0 0 0 0 0 GO:0008270

1bkc 1 0 0 0 1 GO:0004222

1fk2 1 0 0 1 1 GO:0004222

1hk1 1 0 0 0 1 GO:0004222

1ufk 0 1 1 1 1 GO:0004222

1ufk 0 1 1 1 1 GO:0008757

2tps 0 1 1 0 1 GO:0016765

De�nition 2.2.3. Let A = (U,A∪{d}) be a decision system. Every vd ∈ Vd partitions the
universe U in |Vd| classes X1, ..., Xk. Each class Xj , (j ∈ {1, ..., |Vdi

|}) is called a decision
class.

Reducts

Some objects in a decision table may have the same values for the conditional attributes
and belong to di�erent decision classes. For example, proteins 1a33 and 1zme from Table
2.2.1 cannot be discerned based on the conditional attributes. These two proteins have
similar structures but di�erent functions. If a protein has more than one function known,
there is an object in a decision table for each protein-annotation pair. Those objects refer
to the same protein, therefore they have the same attribute values while belonging to
di�erent decision classes.

De�nition 2.2.4. Let A = (U,A) be an information system and let B ⊆ A. A B-
indiscernibility relation is an equivalence relation

INDA(B) = {(u, u′) : U × U : ∀a ∈ B, a(u) = a(u′)}

Relation INDA(B) is symmetric, re�exive and transitive hence it is an equivalence relation.
The equivalence classes obtained from INDA(B) are denoted [x]B, x ∈ U , i.e. the B-
indiscernibility relation groups the observations having the same values for the attributes
from the set B. In other words, all the observations belonging to the same equivalence
class with respect to B are indiscernible with respect to attributes from B.

De�nition 2.2.5. Let A = (U,A) be an information system and let B ⊆ A. Set B de�nes
set A if

INDA(B) = INDA(A) (2.1)

B is a reduct when (2.1) is satis�ed for B but it is not satis�ed for any subset of B.

For example the set {1pjza#132, 1jmxb#56, 1bo9a#12} is a reduct because:

INDA({1pjza#132, 1jmxb#56, 1bo9a#12}) = INDA(A)

2.2 Supervised learning 9

Decision rules

Based on reducts, the decision rules can be constructed. All the following de�nitions lead
to the formal de�nition of a decision rule.

De�nition 2.2.6. Let A = (U,A ∪ {d}) be a decision table. An atomic descriptor is a
pair (a, v) where a ∈ A and v ∈ Va.

De�nition 2.2.7. Let A = (U,A) be an information system and B ⊆ A. Language τB is
the smallest family containing all the descriptors (b, v), b ∈ B, v ∈ Vb, closed with respect
to conjunction, i.e.:

If α ∈ τB, β ∈ τB then α ∧ β ∈ τB.

Analogically, language ξB is the smallest family containing all the descriptors (b, v), b ∈ B,
v ∈ Vb, closed with respect to alternative, i.e.:

If α ∈ ξB, β ∈ ξB then α ∨ β ∈ ξB.

De�nition 2.2.8. [32] For each formula α ∈ τB there corresponds a support ‖α‖A ⊆ U ,
de�ned recursively:

• if α is an atomic descriptor (b, v): ‖α‖A = {u ∈ U : b(u) = v}

• if α is a formula β ∧ γ: ‖α‖A = ‖β‖A ∩ ‖γ‖A

Analogically, for each formula α ∈ ξB there corresponds a support ‖α‖A ⊆ U , also de�ned
recursively:

• if α is an atomic descriptor (a, v): ‖α‖A = {u ∈ U : b(u) = v}

• if α is a formula β ∨ γ: ‖α‖A = ‖β‖A ∪ ‖γ‖A

De�nition 2.2.9. Let A = (U,A ∪ {d}) be a decision table, τA be the language closed
with regards to conjunction, and ξ{d} language closed with regards to alternative, both
de�ned in 2.2.7. A decision rule for the decision table is an expression of the form ϕ⇒ ψ,
where ϕ ∈ τA, ψ ∈ ξ{d}. ϕ is the rule antecedent and ψ is the rule consequent.

For example the following rules can be obtained for reductB = {1pjza_#132, 1jmxb_#56,
1bo9a_#12}:

1pjza_#132(1) ∧ 1jmxb_#56(1) ∧ 1bo9a_#12(0) ⇒ function(GO:0005524)

1pjza_#132(1) ∧ 1jmxb_#56(1) ∧ 1bo9a_#12(1)⇒ function(GO:0005524) ∨ function(GO:0008270)

1pjza_#132(0) ∧ 1jmxb_#56(1) ∧ 1bo9a_#12(1)⇒ function(GO:0004222) ∨ function(GO:0008757)

1pjza_#132(0) ∧ 1jmxb_#56(1) ∧ 1bo9a_#12(0) ⇒ function(GO:0016765)

1pjza_#132(1) ∧ 1jmxb_#56(0) ⇒ function(GO:0004222)

There are several quantities to describe a decision rule in a decision table:

10 Chapter 2 Theoretical background

De�nition 2.2.10. A decision rule ϕ ⇒ ψ matches an object u ∈ U ⇔ u supports (see
De�nition 2.2.8) ϕ, i.e. u ∈ ‖ϕ‖A. The number of the objects matching a decision rule
ϕ⇒ ψ is denoted as MatchA(ϕ⇒ ψ), MatchA(ϕ⇒ ψ) = |‖ϕ‖A|

De�nition 2.2.11. The support of a decision rule ϕ ⇒ ψ, Supp(ϕ ⇒ ψ) is the number
of objects u ∈ U that support both the antecedent and the consequent of the rule, i.e.
|‖ϕ‖A ∩ ‖ψ‖A|, where ϕ ∈ τA and ψ ∈ ξ{d}.

De�nition 2.2.12. The coverage of a decision rule ϕ ⇒ ψ is the fraction of the number
of the objects that support the rule and the number of objects that support its consequent
ψ, i.e. Supp(ϕ⇒ψ)

|‖ψ‖A| , where ψ ∈ ξ{d}.

De�nition 2.2.13. The accuracy of a decision rule ϕ⇒ ψ is de�ned as

Accuracy(ϕ⇒ ψ) =
SupportA(ϕ⇒ ψ)
MatchA(ϕ⇒ ψ)

2.2.2 Classi�er

Finally, a classi�er can be formally de�ned as:

De�nition 2.2.14. A classi�er d̂ over an information system A = (U,A) is a function
d̂ : U → Vd that maps an object u ∈ U to the value of the decision attribute d from a
decision table AT = (UT , A ∪ {d}), where UT ⊆ U is a training dataset used for inducing
the rules. Value of d̂(u) is a prediction of a decision value for u.

Classi�er correctness

The intention is that the classi�er should perform well on unseen objects, not present in
the training set. A simple statistic for evaluating the classi�er quality is accuracy, the
ratio of the correctly classi�ed objects. Usually the classi�er accuracy is assessed from its
performance on a test set, that the classi�er was not trained on. In case of small datasets
cross-validation is commonly used. The dataset is divided into K disjunctive parts (folds)
of equal size. There are K iterations performed, in the ith step the ith fold is used as a
test set, and the other objects are used for training the classi�er. The accuracy is assessed
as a mean accuracy over the K iteration steps.

If we are interested in how well the classi�er predicts certain classes, other statistics have
to be used. The following values can be computed with regards to a particular decision
class:

• TP - true positives, the number of objects that were correctly classi�ed to the decision
class,

• TN - true negatives, the number of objects that do not belong to the decision class
and were not classi�ed to it,

• FP - false positives, the number of object that were incorrectly classi�ed to the
decision class,

2.2 Supervised learning 11

• FN - false negatives, the number of objects that do belong to the decision class but
were incorrectly classi�ed to some other class.

Sensitivity is the fraction of correctly classi�ed instances from the class, TP
TP+FN . Speci�city

is the fraction of the instances that did not belong to the class and were not classi�ed to
it, TN

TN+FP .

When applying a rule based classi�er an object may be matched by several rules which
cast votes for some classes. A threshold for the number of votes can be speci�ed in order to
assign the object to the class. Next, by plotting the (1− sensitivity) against specificity
for various values of the threshold we obtain the receiver operating characteristic (ROC),
a curve that measures the classi�er performance independent on the threshold value. The
area under curve (AUC) [14] can be used as a decision class prediction statistic. The closer
the AUC value to 1, the better the decision class is predicted. Value of 0.5 means that the
classi�er is performing no better than chance.

3 METHODS

3.1 Data

Let us provide a brief introduction to protein structure. Proteins are chains of amino acids
(also called residues). There is a number of known amino acids; in higher organisms, 20
amino acids, each of unique structure, constitute basic blocks building proteins. The amino
acids in proteins, apart from proline, consist of a carboxylic acid (−COOH) and an amino
(−NH2) functional group attached to the same tetrahedral carbon atom. This carbon
is called the α-carbon (later referred to as Cα). Distinct R-groups, that distinguish one
amino acid from another are attached to Cα. An exception is the glycine residue where
the R-group is a hydrogen. The fourth substitution on the tetrahedral α-carbon of amino
acids is hydrogen (Figure 3.1). A protein may consist of a few tens to approximately a
thousand amino acids, therefore there is a great diversity of possible protein sequences.
The linear chains fold into speci�c three-dimensional conformations, which are determined
by the sequence of amino acids.

Figure 3.1. Amino acid structure

A structural protein domain is an element of overall structure that is self-stabilizing and
often folds independently of the rest of the amino acid chain. Many domains are not unique
to one protein and can appear as parts of various proteins. Domains are often associated
and named with a protein function since these are the parts in protein responsible for its
function.

All the proteins of solved structure are kept in the Protein Data Bank (PDB) database.
The PDB �le format is a special format for representing protein structures as a sequence of
atoms and their coordinates. The Structural Classi�cation of Proteins (SCOP) [25] data-
base is a classi�cation of PDB database proteins based both on their sequential and struc-
tural similarities, along with functional and mechanistic information. The classi�cation
organizes the domains in a special hierarchy according to their evolutionary relationship.

3.1.1 Input data

All the analysis was performed on a subset of ASTRAL [8], version 1.67, protein domains
with less than 40% sequence identity to each other. The ASTRAL compendium provides
selected subsets of representative protein domains, without redundancy. The domains are
derived based on the SCOP database classi�cation. The whole ASTRAL set contained 6600
domains. Similarly to Kryshtafowych and Fidelis [23], only the descriptors of at least three

12

3.2 Local descriptor method 13

segments were taken into account. There were 1, 040, 860 such descriptors found for the
whole set. Due to the time limitations, the system was tested and analysis was performed
only on a subset of 657 protein domains and 148, 012 descriptors found in those domains.
To assure the proper distributions of Gene Ontology (see Section 3.1.2) annotations in the
subset, �rst there were 27 annotations chosen and subsequently the domains annotated by
those were taken.

3.1.2 Protein functions

The Gene Ontology (GO) is a project that aims at providing consistent descriptions of
genes and genes products. There are three distinct ontologies (structured vocabularies)
developed:

• molecular function - describes activities, such as catalytic or binding activities, at
the molecular level;

• biological process - accomplished by one or more ordered assemblies of molecular
functions;

• cellular component - refers to the part of the cell, i.e.: compartment, anatomical
structure or a gene product group, associated with the activity of the gene product
in question.

Each of the ontologies forms a directed acyclic graph (DAG), i.e. each vertex may have
several ancestors. Annotation of a gene product with a descendant attribute implies that
it holds all attributes of its ancestor.

The GO classes from the molecular function ontology were used to annotate the set of
domains. Each descriptor is associated with functions of its protein of origin. While
annotating the domains with their GO classes, the DAG form of the ontology had to be
taken into account in order to choose the functions from the proper graph level. The
functions taken should not be too speci�c nor too general. The algorithm and software
proposed by Hvidsten et al. [16] was applied.

3.2 Local descriptor method

The method for assembling and comparing descriptors from proteins was introduced by
Kryshtafowych and Fidelis [23]. In the following sections the de�nition of local descrip-
tor and some other corresponding concepts are covered. Subsequently, the algorithm for
comparing and grouping descriptors is brie�y presented. In this thesis a mathematical
formalization of all the concepts is introduced.

3.2.1 The concept of a local descriptor

As mentioned before, local descriptor is a small protein substructure that consists of short
continuous backbone segments that are close in 3-dimensional space but not necessarily

14 Chapter 3 Methods

along the protein sequence. The segments are centered around one protein residue and they
consist on average of 5-7 residues. When naming a descriptor, it is su�cient to provide
the protein/domain name and the residue number. An example of a descriptor centered
around the 83rd residue in protein 1A33 is presented in Figure 3.2.

Figure 3.2. Protein 1A33 with a local descriptor centered on residue 83 (1A33_#83),
the centre residue is distinguished.

The algorithm for calculating descriptors is as follows:

For a given residue r in a given protein a set of close residues is computed. Each residue
is represented as a point on a vector [Cα, Cβ] at the distance of 2.5 from Cα. In case of
glycine, which does not possess a Cβ atom, the Cα atom coordinates are taken. A pair of
residues is close when the Euclidean distance between them is less than 6.5. The choice of
the distance parameters was taken from [23].

Each of the close residues is added to the descriptor together with its four sequence neigh-
bors, two from each side. This �ve-residues-long chain is called an element. The overlapping
element sequences are joined to form segments.

De�nition 3.2.1. Formally a descriptor d is a tuple 〈rc, R,E, S〉 where:

• rc is a central residue

• Let N be a set of close structural neighbors of rc, rc ∈ N . R is a set of the closest
sequential neighbors (i.e. two residues from each side on the sequnce) of the residues
from the set R and the set N itself, i.e N ⊆ R.

• elements and segments of the descriptor are the ordered sets of residues from the set
R; E is the set of elements and S is the set of segments.

For a given structure a descriptor for each residue is computed.

3.2.2 Grouping descriptors

Let D be a set of descriptors calculated for the given set of proteins. The next step is
to extract the most common geometrical conformations. In order to accomplish this task,

3.2 Local descriptor method 15

all pairs of descriptors are compared and for each descriptor a set of similar descriptors
is assembled. Comparing pairs of descriptors from the whole database results in a set
of groups, one group for each descriptor. The process of assembling groups consists of
two stages: comparison of the descriptors which leads to the formation of the preliminary
groups and the so called cleaning of the groups. The most common conformations are
those of descriptors with the biggest groups.

Comparing descriptors

Root means square distance (RMSD) is a measure that is commonly used for evaluation of
protein structures similarity. The RMSD score is calculated from a sequence of coordinates
{ai} and {bi} for the two given molecules, both of length n:

RMSD =

√∑
(ai − bi)2
n

(3.1)

Before calculating the RMSD score, the molecules need to be superimposed in an optimal
way, in order for the resulting score to be minimized. Superimposing a�ects the coordinates
only in terms of rotation operations which does not a�ect the relative distances between
the atoms in the molecule. There were several superimposing algorithms proposed, like
Kabsch [19], McLachlan [24] or Kearsley [21].

Descriptors are compared using a similarity function

S : D×D→ {true, false} (3.2)

The function is described in detail in [23]. This thesis discusses only some of its key prop-
erties. The value of the function is computed based on the following descriptor properties:

• number of elements and segments,

• shapes of segments,

• RMSD scores between the descriptor elements and segments,

• overall RMSD score between the descriptors.

While comparing a pair of descriptors, the best alignment is also searched for. The elements
from the �rst descriptor are mapped to the elements of the second descriptor. By obtaining
the elements mapping, it can be derived which residues correspond to each other and the
alignment can be constructed. The alignment might incorporate some gaps, this is due
to the fact that not all of the elements from the �rst descriptor had to be mapped and
the descriptor sizes might di�er. The similarity function is not symmetric, i.e. given two
descriptors di, dj such that descriptor dj belongs to the group of descriptor di does not
imply that descriptor di belongs to the group of dj , and vice versa. This can be formally
denoted as:

S(di, dj) < S(dj , di),

Moreover, even if S(di, dj) = S(dj , di) = true, the resulting alignments are not necessarily
identical.

16 Chapter 3 Methods

Preliminary groups and cleaning of the groups

De�nition 3.2.2. Formally a preliminary group PGd of descriptor d is a tuple 〈dseed, Pd,Mδ〉
where:

• dseed = 〈rseed, Rseed, Eseed, Sseed〉 is the seed descriptor,

• Pd ⊆ D is a set of descriptors similar to the seed descriptor dseed

• Mδ is a set of injective, partial functions δ de�ned for each descriptor di ∈ Pd. Take
descriptor di = 〈rci, Ri, Ei, Si〉. Function δi represents a mapping of elements from
Ei to the elements of the seed descriptor dseed, i.e δi : Ei → Eseed.

The last step, the so called "cleaning" of the groups, involves rearrangements of the de-
scriptors within the groups. Take a preliminary group PGd = 〈dseed, Pd,Mδ〉. Having the
elements of dseed mapped in the previous step, one can observe that some parts of the
seed descriptor are rarely mapped and are uncommon for the other group members. This
indicates that they are probably too speci�c and should not belong to the representative
descriptor structure. These parts are therefore removed from the seed descriptor.

Subsequently, the member descriptors belonging to Pd are processed. All elements that
were not mapped or just lost their mappings are also being removed. Once processed, some
of the descriptor segments could have been shortened or even removed. All the descriptors
that have number of segments di�erent than the cleaned seed descriptor, are sieved out
from the group.

De�nition 3.2.3. A cleaned descriptor c is a tuple 〈d,Rcleaned, Ecleaned, Scleaned〉 where:

• d = 〈rc, R,E, S〉 is the original descriptor

• Rcleaned is the set of residues of the cleaned descriptor, Rcleaned ⊆ R

• Ecleaned is the set of the remaining elements, Ecleaned ⊆ E

• Scleaned is the set of the cleaned descriptor segments obtained by joining the overlap-
ping elements from Ecleaned.

Let C be a set of "cleaned" descriptors. Let us introduce an auxiliary notion of the cleaning
transformation

Clean : D×D→ C ∪ {nil}, (3.3)

where Clean(seed, d) is a cleaned descriptor from the set C. If the descriptor d does not
belong to the cleaned PGseed then nil is returned.

Since cleaning does not change alignments in any other way than by removing insigni�cant,
rarely present parts, the alignments of the remaining residues can be used for computing
the RMSD score. Similarly as in [23], only the Cα coordinates are taken into account when
computing the score. The RMSD score is normalized by the number n of corresponding
residues, the resulting measure RMSDadj for the cleaned descriptor c and an arbitrary
cleaned ci belonging to the cleaned group PGd is calculated as follows:

RMSDadj(c, ci) = 3 ∗ RMSD(c, ci)
lnn

(3.4)

3.2 Local descriptor method 17

Therefore a preliminary group processed using the Clean transformation can be formally
de�ned as:

De�nition 3.2.4. A cleaned group Gd for the descriptor d is a tuple 〈d, c, Pc,MRMSD〉
where:

• d ∈ D is the original descriptor

• c = 〈d,Rcleaned, Ecleaned, Scleaned〉 is the cleaned seed descriptor

• Pc is the set of the cleaned member descriptors, note that for all ci ∈ Pc where
ci = 〈di, Ri, Ei, Si〉, |Si| = |Scleaned|

• MRMSD is the set of RMSDadj scores for all ci ∈ Pc, MRMSD : C→ R

Both the cleaned seed descriptor and the cleaned member descriptors from Gd are the
substructures of the original descriptors and can be referred to only with association to the
group they belong to. It is worth mentioning, that the cleaned group members �nal shape
depends on other group members. Note that the cleaning transformation involves removing
unpopular elements from the group members, where the "unpopularity" is de�ned by some
constants. Adding a new descriptor might change the situation. Therefore, if we want to
add a new group member, we have to add it to the preliminary group and then repeat the
cleaning transformation.

3.2.3 Dissimilarity function

On a basis of RMSDadj a function Diss : D ×D → R ∪ {∞} measuring the descriptors
dissimilarity can be de�ned:

Diss(di, dj) =
{
RMSDadj(ci, cj) if cj ∈ Pc;
∞ otherwise.

(3.5)

where Gdi
= 〈di, ci, Pc,MRMSD〉 is the group for descriptor di, ci = Clean(di, di) and

cj = Clean(di, dj).

A metric on a set X is a function (called the distance function or simply distance) d :
X × X → R (where R is the set of real numbers). For all x, y, z in X, this function is
required to satisfy the following conditions:

1. d(x, y) ≥ 0 (non-negativity)

2. d(x, y) = 0⇔ x = y (identity of indiscernibleness)

3. d(x, y) = d(y, x) (symmetry)

4. d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality).

Diss is not a metric in a proper sense, the following conditions may not hold:

18 Chapter 3 Methods

• symmetry Diss(di, dj) does not always equals Diss(dj , di). For instance, if the
cleaned dj does not belong to Gdi

and the cleaned di belongs to Gdj
, than

Diss(di, dj) =∞ and Diss(dj , di) <∞.

• triangle inequality. As a counterexample consider the following situation:
Take dx, dy, dz ∈ D such that the cleaned dz does not belong to Gdx , whereas cleaned
dy ∈ Gdx and cleaned dz ∈ Gdy .

Then Diss(dx, dz) =∞ and Diss(dx, dy) +Diss(dy, dz) ≤ ∞
therefore

Diss(dx, dz) � Diss(dx, dy) +Diss(dy, dz)

The non-negativity and the identity of indiscernibleness conditions do hold.

3.2.4 The local descriptor method summary

The algorithm gets a set of proteins as input, which are processed in order to extract the
local descriptors. Once the descriptors are found, they are compared to each other, and for
each of them the so called preliminary group (Section 3.2.4 and De�nition 3.2.2) of similar
descriptors is gathered. Subsequently, the groups are cleaned (Section and De�nition 3.2.4)
and the within group RMSD distances are computed. The result of the whole algorithm
is an asymmetric dissimilarity function Diss (Section 3.2.3) returning a dissimilarity score
for an arbitrary pair of descriptors.

3.3 Clustering the local descriptor data

The goal of the clustering stage is to provide an information system for the prediction stage,
when the rule based classi�er is constructed. Each cluster corresponds to an attribute in
the decision table, the decision class values are the GO classes. The clustering is supposed
to result in a set of clusters, where cluster is a set of descriptors, represented by one of the
member descriptors.

De�nition 3.3.1. Formally, a clustering of the set of descriptors D is a partition of D
into n sets 〈(C1, rep1), . . . , (Cn, repn)〉 such that:

1.
⋃n
i=1C1 = D

2. for all 1 ≤ i, j ≤ n,Ci ∩ Cj = ∅

3. for each 1 ≤ i ≤ n, repi ∈ Ci is a representative member of the cluster.

Notice that the groups obtained from the previous step, apart from the disjunction crite-
rion, could also serve as clusters. Each group would be represented by its seed descriptor,
which together with its group members would constitute a cluster. The disjunction cri-
terion is not satis�ed since the groups may overlap, however this criterion is not really
crucial in this application. The major drawback that makes the clustering step necessary
is the very big number of groups. It is a basic principle in data mining that the bigger the

3.3 Clustering the local descriptor data 19

number of attributes, the harder the learning problem is. The so called ill-de�ned problems
are unsuitable for the majority of the supervised learning algorithms. This phenomenon is
often referred to as the curse of dimensionality [3]. By clustering, some redundant infor-
mation (for example joining groups that mostly overlap in one cluster) and noise in data
(very small groups of uncommon descriptors) can be removed.

When choosing the algorithms, big size of the dataset had to be taken into account. The
algorithms of high complexity could not be applied. On the other hand the dissimilarity
matrix appeared to be very sparse, i.e. the majority of records is ∞. Descriptors d1 ∈ D
and d2 ∈ D are "comparable" only if d1 ∈ Gd2 or d2 ∈ Gd1 . Otherwise dissimilarity of
these two is equal to ∞. However, the data is still too large to �t in to the main memory
and the whole clustering had to be implemented as a series of I/O, database operations.

Two clustering algorithms were applied, an agglomerative, single linkage hierarchical al-
gorithm and a density based, DBSCAN algorithm. Both algorithms require little prior
knowledge about the dataset to be clustered: one does not specify the number of clus-
ters in advance. This was a major drawback of the partitioning-like algorithms, due to
the large size of the dataset the number of clusters is very hard to estimate. Moreover,
the computation complexity of the K-medoids algorithm was prohibitive, especially that
the algorithm would have to be run numerous times in order to assess the appropriate
number of clusters. The K-means algorithm, of lower complexity, was not suitable for the
dissimilarity matrix data representation.

3.3.1 Hierarchical algorithm

The single linkage version of the hierarchical algorithm was implemented. The reason for
this choice was the dissimilarity matrix Diss sparsity. Consider the following situation.
Let C1 and C2 be clusters and assume that there exist descriptors d1 ∈ C1 and d2 ∈ C2

such that Diss(d1, d2) = ∞. Then, according to both the average and the complete
linkage version DistClust(C1, C2) = ∞. The probability of such situation is very high
since only 0.036% of the descriptor pairs have a dissimilarity de�ned to be less than ∞.
The computational cost of the single linkage version is lower than the one of the average
and complete linkage versions. It is only required that a single dissimilarity between two
objects c1 ∈ C1 and c2 ∈ C2 was small for two clusters C1 and C2 and hence it does not
have to go through the other cluster members.

Algorithm 1 presents the framework of the hierarchical descriptor clustering. The algo-
rithm stops when there are no cluster distances less than ∞. The dendrogram obtained
is a forest instead of a single tree because not all the pairwise dissimilarities are de�ned.
When merging the clusters, the new cluster representative descriptor is chosen among the
representative descriptors of the clusters being merged; the representative descriptor hav-
ing the bigger group of similar descriptors is taken. The new cluster is positioned one level
higher (closer to the root) than the cluster in the previous iteration step.

Termination

The stop condition is satis�ed: the while loop stops because at each iteration the size of
the set of clusters decreases: one cluster is added (created in step 11 and added in step 19)

20 Chapter 3 Methods

Algorithm 1 HierarchicalClustering(D,Diss)
Require: D set of descriptors, unclassi�ed to any clusters, dissimilarity matrix on de-

scriptors Diss
Ensure: A dendrogram of points representing clusters
1: clusters← ∅
2: for all descriptors di ∈ D do

3: Ci.representative = di;
4: Ci.level← 0;
5: add Ci to clusters;
6: end for

//DissClust is a matrix representing clusters dissimilarities
7: DissClust← Diss
8: level = 1;
9: while ∃C1, C2 ∈ clusters such that DissClust(C1, C2)) <∞ do

10: select clusters Ci and Cj such that DissClust(Ci, Cj) is minimal
11: merge clusters Ci and Cj into one cluster C

//set level C
12: C.level← level;
13: level← level + 1
14: if Ci.groupSize > Cj .groupSize then
15: C.representative = di
16: else

17: C.representative = dj
18: end if

19: add column and row to matrix DissClus for cluster C;
20: UpdateDissimilarities(DissClust, C,Ci, Cj);
21: remove from DissClust columns and rows corresponding to clusters Ci and Cj .
22: end while

Algorithm 2 UpdateDissimilarities(DissClust, C,Ci, Cj)
Require: DissClust dissimilarity matrix for clusters, cluster C resulting from merging

clusters Ci and Cj
Ensure: updated matrix DissClust
1: for all clusters Ck do
2: DissClust(Ck, C) = min(DissClust(Ck, Ci), DissClust(Ck, Cj));
3: DissClust(C,Ck) = DissClust(Ck, C)
4: end for

to the set but two are removed (step 19).

Complexity

The pairwise dissimilarities are kept in a database table that has an index on the distance
column (see Chapter 4 and Figure B.4), therefore extracting the closest descriptors can be
done in constant time, O(1). Let Ci and Cj be the merged clusters. The distances table
can be updated in O(n) time. For each cluster the distances to Ci, Cj are replaced with

3.3 Clustering the local descriptor data 21

the distance to the cluster to be merged. There are up to n− 1 merging steps, hence the
complexity of the algorithm is O(n2).

3.3.2 DBSCAN algorithm

DBSCAN algorithm (A Density-Based Algorithm for Discovering Clusters in Large Spatial
Databases with Noise) [10] was designed to deal with spatial data i.e. data related to space,
such as satellite images and protein structure data [10, 26]. The idea of the algorithm is
that for each clustered point an area within the speci�ed radius ε should contain at least
a minimum number of points, MinPts. In other words, the density of the neighborhood
of the point should be bigger than a certain threshold.

The algorithm is based on the notion of two points being density-reachable with regards
to parameters ε and MinPts. The ε-neighborhood of point p , Nε(p) is the area of radius
ε and centre in point p. Take two points, p and q. Point q is directly reachable from p if
q belongs to the ε-neighborhood (i.e. to the area of ε radius) of p. In turn the points are
density-reachable if there exists a path p1,..., pk, where p = p1 and q = pq such that pi+1

is directly reachable from pi.

Application to the local descriptor data is straightforward; the descriptor neighborhood is
included in its group of similar descriptors, and the distances are provided by the Diss
function. Algorithm 3 presents the DBSCAN algorithm adjusted to the descriptor data.
The algorithm stops when all the descriptors are assigned to some cluster, some of them
belong to the cluster noise of structurally uncommon descriptors. Algorithm 4 presents the
ExpandCluster function. Assume that the cleaned group of d is G = 〈d, c, Pc,MRMSD〉.
The neighborhood of radius ε of descriptor d is a set Nε = {di : ci = 〈di, Ri, Ei, Si〉 ∈
Pc ∧Diss(d, di) < ε}. The descriptor is said to be in the core [10] of its cluster when its
neighborhood size |Nε| is bigger the the parameter MinPts. Otherwise the descriptor is
situated on the boundary of the cluster. As a cluster representative descriptor chosen is
the core descriptor that has the biggest group of similar descriptors among all the cluster
members.

Algorithm 3 DBSCAN(D, Diss, ε,MinPts)
Require: D - set of descriptors unclassi�ed to any clusters, dissimilarity matrix Diss,

DBSCAN parameters Eps and MinPts
Ensure: Points assigned to clusters, noise cluster
1: clusterID = 1;
2: for all descriptors di ∈ D do

3: di.IsCorePoint← false;
4: end for

5: while exists unclassi�ed point di do
6: ExpandCluster(di, clusterID)
7: clusterID ← clusterID + 1;
8: end while

22 Chapter 3 Methods

Algorithm 4 ExpandCluster(di, clusterID)
1: seeds← GetCleanedGroupMembers(di, Eps);

//get all the di group members that are closer to di than the Eps parameter
2: if seeds.size() < MinPts then
3: AssignCluster(di, NOISE);
4: return false;
5: end if

6: AssignCluster(seeds, clusterID);
7: AssignCluster(di, clusterID);
8: di.IsCorePoint← true;
9: while seeds not empty do

10: currentD ← seeds.front()
11: result← GetCleanedGroupMembers(currentD,Eps);
12: if result.size() ≥MinPts then
13: currentD.IsCorePoint← true;
14: for all descriptors dk in result do
15: clID ← GetGroupCluster(dk);
16: if clID = UNCLASSIFIED or NOISE then

17: if clID = UNCLASSIFIED then

18: seeds.append(dk)
19: end if

20: AssignCluster(dk, clusterID);
21: end if

22: end for

23: end if

24: end while

25: seeds.delete()
26: return true;

Termination

The main loop iterates through the set of unclassi�ed descriptors, while processing the
descriptor it is always being assigned to some clusters (step 3 or 7 in the ExpandCluster
function, Algorithm 4). Therefore the stop condition is satis�ed.

Complexity

In the main loop only the unclassi�ed descriptors are processed by invoking theExpandCluster
function. The descriptor and all the descriptors density-reachable from it are being assigned
to the clusters (therefore they will not be processed in the main loop). For each of the de-
scriptors density-reachable from the processed descriptor the GetCleanedGroupMembers
function is invoked. The function returns the descriptor neighborhood Nε, which can
be done in logarithmic time, O(log(n)). Since the relation of being density-reachable is
asymmetric it might happen that for some point the GetCleanedGroupMembers func-
tion will be called more than once. However the algorithm authors [10] claim that the
ε-neighborhoods are expected to be much smaller then the whole dataset being clustered.
Hence, even though some descriptors might be processed several times, this fact is insignif-

3.3 Clustering the local descriptor data 23

icant when approximating the algorithm complexity, which is O(nlog(n)).

3.3.3 Asymmetric dissimilarity matrix

An interesting aspect was the asymmetric dissimilarity matrix (see Section 3.2.3). In case
of the DBSCAN algorithm this fact introduced indeterminacy, the clusters assignment
could rely on the order of processing. Consider the situation depicted in Figure 3.3. Here
the descriptors are represented by the small circles, the arrows indicate that the pointed
descriptor belongs to the ε-neighborhood of the pointing descriptor. Depending on the
starting point, a or b, we might end up with one or two clusters. If a is processed �rst,
cluster b is assigned to the cluster of a and it is not touched any more. If the algorithm
starts with b it adds all the neighbors of b to its cluster and then it proceeds to unclassi�ed
a. Descriptor b is already classi�ed therefore it will not be added to the cluster of a.

Figure 3.3. DBSCAN clusters indeterminacy caused by the dissimilarity matrix asym-
metry.

In the hierarchical algorithm case the asymmetry was also problematic. The pair-wise
cluster dissimilarities are computed on a basis of the descriptors dissimilarities, hence it
had to be stated how to deal with the asymmetry. The default algorithm performance was
to ignore it and take a pair of clusters that is closest in at least one direction.

Hastie et al. [15] suggest that since most clustering algorithms require the dissimilarity
matrix to be symmetric, the solution is to replace the original matrix Diss with the
matrix Diss+DissT

2 . Since in this case most matrix entries were ∞, then the recommended
transformation could lead to loss of information: imagine that Diss(d1, d2) = ∞ and
Diss(d2, d1) = d where d < ∞. The entry for dissimilarity between d1 and d2 in matrix
Diss+DissT

2 would be d+∞
2 =∞. Therefore the case in which both dissimilarities are in�nite

would not be distinguished from the described case. To prevent the loss of information,
the following steps were applied:

1. all the ∞ entries in Diss were replaced with constant MAX, that was bigger than
any other �nite entry,

2. matrix Diss was replaced with Diss+DissT

2 ,

3. the entries that were bigger than MAX were again replaced with ∞.

The algorithms were run for both the original Diss matrix and the symmetric one. See
Chapter 5 for the performance comparison.

24 Chapter 3 Methods

3.4 Evaluating clustering quality

Comparing, grouping and clustering descriptors takes into account only their structural
similarity. The information about the functions of proteins is disregarded during the whole
process. The assumption was that the clusters should inherently group descriptors belong-
ing to the proteins of similar functions.

Gibbons and Roth [13] dealt with a similar problem when clustering a microarray data.
They proposed a method, based on the mutual information concept, for measuring the
correlation between the cluster membership and the Gene Ontology annotations of the
clustered genes. However their method can be applied to any type of data that can be
represented as a decision table A = (U, {d}), with only the decision attribute. The objects
in U are clustered on the grounds of some other features, the decision attribute is not taken
into account. The method can help in stating whether there exist a correlation between
the cluster membership and the decision classes or in adjusting the clustering algorithm
parameters.

3.4.1 Mutual information and entropy

The mutual information is a measure for assessing the dependence of random variables.
First the concept of entropy, suggested by Claude E. Shannon [31] is provided.

Suppose we have a random variable X over the discrete set of events whose probabilities
of occurrence are p1, p2, . . ., pn where ∀i, pi > 0 and

∑n
i=1 pi = 1. We want to measure the

amount of information carried by the occurrence of a single random event. The alternative
way to look at it is to treat it as a measure for the rate of randomness in a random event.
The intuition while de�ning the entropy was as follows: The less probable the occurrence
of the event is, the more information it carries [32].

De�nition 3.4.1. Let X be a random variable and p be a probability density function,
i.e p(x) > 0 and

∑
x∈X p(x) = 1. The entropy of X is given by the formula:

H(X) =
∑
x∈X

p(x)log(
1

p(x)
) = −

∑
x∈X

p(x)log(p(x))

H takes on its maximum value when all the events probabilities are equal, i.e. ∀xi, xj ∈
X : p(xi) = p(xj).

The mutual information of two random variables is a quanti�es the independence of the
variables. Informally, mutual information measures the information of X that is shared by
Y . If X and Y are independent, then X contains no information about Y and vice versa,
so their mutual information is zero. If X and Y are identical then all information conveyed
by X is shared with Y . Any knowledge about X reveals nothing about Y therefore the
mutual information is equal to the entropy of X.

De�nition 3.4.2. Let X and Y be discrete random variables. Let p with p(x, y) =
Pr(X = x, Y = y) be the joint probability density function of X and Y , f with f(x) =
Pr(X = x) be the probability density function of X alone, and g with g(y) = Pr(Y = y)
be the probability density function of Y alone. The mutual information of X and Y is

3.4 Evaluating clustering quality 25

given by I(X,Y), de�ned as follows for the discrete case:

I(X,Y) =
∑
x,y

p(x, y)× log
p(x, y)
f(x) g(y)

.

If X and Y are independent then I(X,Y) = 0, since p(x, y) = f(x)g(y) and hence
log p(x,y)

f(x) g(y) = log 1 = 0

The mutual information can be equivalently expressed as:

I(X,Y) = H(X)−H(X|Y) = H(Y)−H(Y |X) = H(X) +H(Y)−H(X,Y) (3.6)

The mutual information is therefore symmetric (i.e. I(X,Y) = I(Y,X)). As H(X) >
H(X|Y), and nonnegative (i.e. I(X,Y) ≥ 0).

Assume that Yi, 1 ≤ i ≤ n are random variables. One can de�ne a multidimensional
mutual information between a random variable X and the set of n random variables Yi as
I(X,Y1, ..., Yn). If all the random variables Yi are pairwise independent, then [13]:

I(X,Y1, ..., Yn) =
n∑
i=1

I(X,Yi) = nH(X) +
n∑
i=1

H(Yi)−
n∑
i=1

H(X,Yi) (3.7)

3.4.2 Method description

Assume C is a random variable representing the clustering of k clusters: the ith event is
the ith cluster membership, the probability of the event can be computed as a fraction of
the ith cluster size to the whole space size. Similarly assume that Di is a random variable
representing the ith decision class. Here the probability space has two events: belonging
to the ith decision class and not belonging to the ith decision class. The probability pdi

of the decision class membership is again a fraction of the decision class size to the whole
space size. The probability of the contrary event is 1− pdi

.

Contingency table

A contingency table [29, 9] is a table showing the responses of subjects to one variable
as a function of another variable, i.e. rows are labeled by the values of one variable and
columns by the values of the other one. The entries, nonnegative integers, give the size of
the sets intersection, i.e. number of objects that have a certain combination of features.
For example the contingency table 3.1 shows possession of a protein function (decision
class membership) as a function of cluster membership. The probability of each of the
events can be computed from the table as a fraction of the corresponding table entry and
the whole space size.

26 Chapter 3 Methods

Table 3.1. Contingency table
di ¬di total

c1 6 5 11
c2 2 8 10
c3 1 10 11
c4 10 4 14

total 19 27 46

Mutual information

Descriptors are associated with functions of their host proteins, there might be more than
one function associated with a descriptor. Having this information the contingency tables
are constructed, one for each possible function (Table 3.1). The aim is to assess a mutual
information, I(C,D1, . . . , Dk) value re�ecting the association of the clustering C and all
the functions D1, ..., Dk. In here we assume that the variables D1, ..., Dk are pair-wisely
independent. Hence, the mutual information can be computed as in Equation 3.7:

I(C,D1, . . . , Dk) =
k∑
i=1

I(C,Di) = kH(C) +
k∑
i=1

H(Di)−
n∑
i=1

H(C,Di) (3.8)

Assume that clustering C results in n clusters. The contingency tables provide the probabil-
ity distribution, hence the entropies H(C,Di) can be computed. Let pj be the probability
of the cluster j members possessing the ith function, qj = 1 − pj is the probability of the
contrary event. Then the entropy H(C,Di) is computed as follows:

H(C,Di) = −
n∑
j=1

pjlog(pj) + qjlog(qj). (3.9)

Let pci be the probability of the ith cluster membership,
∑n

i=1 pci = 1. Then the H(C)
entropy is computed as

H(C) = −
n∑
i=1

pci log(pci). (3.10)

Finally, let ri be the probability of possessing the ith function. The formula for entropy
H(Di) is:

H(Di) = −(rilog(ri) + (1− ri)log(1− ri)). (3.11)

The higher the value of mutual information the more signi�cant is the correlation. This
measure can be used when comparing performance of clustering algorithms or to assess
how the obtained cluster membership di�ers from the random cluster assignment. In order
to do that, one has to perform a set of random cluster assignments and compute the
mutual information value for them. Having the distribution of the randomly obtained
mutual information values, the mean and standard deviation, Irandom and δrandom, can be
computed. A z-score [13] measures the distance of the clustering from the random one.
The formula is:

z =
Ireal − Irandom

δrandom
. (3.12)

3.5 Classi�er 27

The higher the z-score, the further from random is the clustering. The mutual information
is nonnegative therefore the z-score is positive if Ireal > Irandom. Note that if the clustering
obtains a negative z-score this means that its performance is worse than random.

3.5 Classi�er

Based on the clustering of the set of descriptors, the predictive model is constructed. Take
a clustering C = 〈(C1, rep1), . . . , (Cn, repn)〉)(see De�nition 3.3.1). Let Rep be a set of
the representative descriptors {rep1, . . . , repn}. The decision table used for training the
classi�er is A = (U,Rep ∪ {function}), where:

• U is a set of proteins,

• ∀repi ∈ Rep, Vrepi = {0, 1},

• Vfunction is a set of gene ontology annotations.

All the descriptors D where extracted from the proteins from U . The values of the features
are either 1 or 0, depending on whether the protein possess a descriptor that is present
in the cluster corresponding to the attribute. The decision attribute corresponds to the
function of the protein. There might be more than one GO annotation for certain protein,
in such situation there is a row added to the decision table for each of the annotations.

3.5.1 Predicting protein function

The classi�er can be applied to the unseen (not present in the training set) proteins. To
this end a protein has to be represented in a proper way, as a vector of features. Each of the
features corresponds to one of the clusters of common local descriptor conformations. Take
the decision table A = (U,Rep ∪ {function}) used as a training set during the classi�er
construction. To obtain the vector, Algorithm 5 is applied.

Set DI is a set of descriptors found in the investigated protein. In order to determine
whether the protein incorporates the common 3-dimensional conformations, the descriptors
from DI are compared to the cluster representative descriptors. Instead of the original
descriptors, the cleaned versions of the representative descriptors are used. The cleaned
descriptors have the most uncommon parts removed and are therefore less speci�c. If for a
certain representative descriptor a similar descriptor is found, then the protein gets value
1 for that feature, otherwise it gets 0.

The Compare function for stating whether two descriptors are similar is based on the
similarity function (3.2). First, the seed elements are compared and if the RMSD score
of those is small enough, other elements are being compared in order to �nd the best
matching and hence alignment. If the RMSD score for the whole molecules is less than
a certain threshold, the descriptors are assessed to be similar. As a threshold value the
average cluster diameter is taken.

Subsequently, a classi�er d̂ (De�nition 2.2.14) is applied to the protein and the prediction
is returned.

28 Chapter 3 Methods

Algorithm 5 ConstructFeatureV ector(A, p)
Require: a decision table A = (U,Rep ∪ {function}), an investigated protein p (pdb

format �le)
Ensure: a vector vec of features from Rep for protein p
1: DI ← set of descriptors found in p
2: for all descriptors repi ∈ Rep do
3: G← 〈repi, ci, Pc,MRMSD〉 //cleaned group of descriptor repi
4: vec[i] = 0
5: for all d ∈ DI do

6: b = Compare(ci, d) //compare the descriptors
7: if b = true then
8: vec[i] = 1 //descriptors were similar
9: break

10: end if

11: end for

12: end for

4 IMPLEMENTATION

The system consists of two, quite independent modules. The o�-line module is responsible
for construction of the classi�er, i.e. calculating, grouping and clustering descriptors and
the decision table preparation. The classi�er is applied in the on-line module, to predict
functions of unseen proteins.

4.1 O�-line module

4.1.1 Data representation

The system was implemented in the C++ programming language as a library of classes.
In general, the classes representing the data objects correspond to the de�nitions from
Chapter 3.2. A diagram of classes used for data representation is presented in Figure B.1.

A protein structure is represented by the Protein class. The Protein class object stores a
collection of atoms, keeping their sequence order. Atoms are represented by the Atom class
that stores atom coordinates. The Residue class stores its Cα and Cβ Atom objects, the
residue centre coordinates (see Section 3.2.1), residue name, number, etc. Glycine residue
is distinguished because it does not have Cβ atom, and it is represented by the GlyResidue
class deriving from the Residue class. For a given structure its descriptors are calculated by
invoking the Protein class method, calculateDescriptors(). Descriptors are represented
by the Descriptor class. A Descriptor class object contains a set of Residue class objects,
which are organized into Element class objects. The Element class has a central Residue
distinguished and an ordered vector of Residue objects. In this settings, the vector is
always of length 5, however this is regulated by a parameter. By invoking a Descriptor
class method, JoinElements(), a set of Segment class objects is calculated for a given
Descriptor object. A Descriptor object has also its seed Element object distinguished.

The DescriptorGroup class represents both the preliminary and the cleaned group. The
attributes that correspond to the preliminary group are: seed - a Descriptor class object
and descriptors - a set of preliminary group members, each represented by the Descriptor-
Wrapper class. The DescriptorWrapper class represents a descriptor in a group, it stores
the descriptor, the group seed descriptor and the mappings of the elements of those two.
By invoking a method Clean() the group cleaning is performed, where the cleanedSeed
object and the cleaned group members are computed. First, new DescriptorWrapper class
objects are constructed that have some elements removed, one for each descriptor member.
Second, on a basis of the elements mapping an alignment is constructed for each Descrip-
torWrapper class object. Third, the RMSD() method of the DescriptorWrapper class is
invoked to compute the cleaned descriptor and the cleaned seed dissimilarities. Finally,
the cleaned descriptors are put to the rmsdDistances map, where each Descriptor class
object is associated with its dissimilarity to the cleanedSeed object.

29

30 Chapter 4 Implementation

4.1.2 Command line programs

There are several independent applications responsible for each step of the process of the
classi�er preparation (see Figure 1.1):

• calculating descriptors from a given set of pdb format �les,

• comparing two sets of descriptors against each other,

• loading a database with the comparison results,

• cleaning the groups, loaded in a database,

• two implementations of clustering the descriptors in a database,

• preparation of an information system.

Those applications employ the C++ library classes, they are implemented as command
line programs.

Subsequently, the proteins from the information system are annotated with the Gene On-
tology classes. The software used in [16] is used for that purpose. As a result a decision
table is obtained. To construct a classi�er, the Rosetta system, implementing the rough
set based algorithm for inducing IF-THEN rules, is used.

4.1.3 Database

A MySQL relational database was used in the implementation. The database is used for
storing:

• information about the descriptors,

• preliminary groups,

• cleaned groups,

• cluster assignments.

A diagram of tables used for representation of descriptors is presented in Figure B.2. A
diagrams for representing the preliminary groups and the cleaned groups are shown in
Figure B.3 and B.4 respectively.

The Residue table stores all the information concerning a residue, such as its Cα and Cβ
atoms coordinates, the residue centre coordinates, residue type and number in a structure.
The Element table stores identi�ers of the element seed residues. The Residue_Element_M
table is responsible for mapping residues to elements. The Descriptor table stores a name,
size, number of segments of a descriptor, identi�ers of the seed element and of the seed
residue. Elements are matched to descriptors by the Descriptor_Element_M table.

4.1 O�-line module 31

The GroupP table represents a preliminary group and stores an identi�er of its seed descrip-
tor. Descriptors are joined to their preliminary groups by the GroupP_Descriptor_M ta-
ble. The Element_Element_M table stores element mappings for each preliminary group.
One entry corresponds to one element element of the member descriptor descriptor_fk
that is mapped to some element seedElement from the seed descriptor of the preliminary
group, group_fk. The Count_Map table counts how many times the element element_fk
from the seed descriptor of the preliminary group group_fk was mapped by some elements
of the group members.

The information about the cleaned descriptors has to be stored in a separate table CDe-
scriptor. A cleaned descriptor is identi�ed by its descriptor of origin (from the Descriptor
table) and its cleaned group (from the GroupD table). Table CDescriptor_Element_M
de�nes which elements constitute which cleaned descriptors. The Group_Descriptor_M
table stores an entry for each group_fk cleaned group member descriptor_fk, together with
the dissimilarity value rmsd.

A C++ API, MySQL++ was used in the C++ code to connect to the database and submit
queries within the C++ programs. MySQL++ software is licensed under the GNU Lesser
General Public License (LGPL).

4.1.4 Least squares �tting

The Bioinformatics Template Library [28] is a C++ library that implements numerous
standard bioinformatics algorithms. The authors claim to provide an e�ective standard
for the design of reusable software components for biocomputing. The library is licensed
under LGPL.

The BTL library implements the Kearsley algorithm [21] for superimposing two 3-dimensional
structures in order to �nd the best �t and compute the RMSD score. The algorithm was
used in the descriptors grouping process.

4.1.5 Parallelizing the process

Comparing descriptors is very time consuming. Each comparison is supposed to result in
the best elements superposition in terms of minimizing the RMSD score. The algorithm
implemented uses some heuristics [23] in order not to check all possible variants (average
number of elements in a descriptor is 8, 5 which leads to ≈ 14, 000 variants, [23] computed
from the Γ function), however it still involves checking around 100 superpositions which
themselves involve solving constrained least-squares procedure of high time-complexity.

The comparison problem is yet very scalable. All pairs of descriptors need to be compared,
but the comparisons are independent and do not a�ect each other. Hence the problem is
very suitable for distributed systems. A computer grid, Swegrid (http://www.swegrid.se),
was used to run the comparisons. Swegrid is a Swedish national computational resource,
consisting of 600 computers in six clusters. It is designed mainly for through-put computa-
tion, that is to quickly process large numbers of loosely coupled non-parallel computations.

32 Chapter 4 Implementation

Preparing the grid tasks

The comparison problem is non-parallel, i.e. it can be divided into many subtasks that
do not need to communicate with each other. Hence the most proper way of running the
comparison on a grid was to run several independent tasks, and afterwards to join the
separate results.

Assume that the dataset of descriptors is of size n. There are n2 comparisons to perform.
The straightforward approach would be to run n2 tasks, one for each comparison. Doing
so, the maximal parallelization is assured, nevertheless it is not optimal due to the amount
of time spent on being assigned to one of the cluster nodes and the data transfer. The
other solution could be to de�ne n tasks, in which one of the descriptors is being compared
to all the others. This is in turn not doable: due to the size of the descriptor dataset all
the descriptors cannot be loaded to the main memory at the same time.

The solution adopted in here was to divide the set of descriptors into k parts of more or
less equal size. Then for each pair of the subsets a task was de�ned.

Take the set D of all the descriptors and two arbitrary subsets, D1 and D2, where D1 ⊆ D
andD2 ⊆ D. One task involves comparing all the descriptors from the setD1 against all the
descriptors from the setD2. Note that as mentioned in Section 3.2.4, the similarity function
for comparing two descriptors is asymmetric. This implies that comparing descriptors from
the set D1 against the descriptors from the set D2 has to be done both ways. The program
was implemented so that it both returns the groups for the set D1 and D2. Hence the
number of tasks is the number of pairs in the k-elements set and the identities,

(
k
2

)
+k.

The k parameter is chosen so that all the descriptors from the set D1 ∪D2 can be kept in
main memory.

Figure 4.1. grid tasks

The most appropriate way of providing task input is through text �les, which is faster
than connecting to the database through network during the program execution. A special
�le format for describing descriptors and preliminary groups was developed. The whole
process was as follows:

1. create �les describing the descriptors, usually one �le per protein domain

2. divide the �les into k parts

4.2 On-line module 33

3. de�ne and submit
(
k
2

)
+k tasks

4. load the output tasks �les describing the groups

5. load the database with the tasks results.

Note that the parallelization concerns only the preliminary grouping. The problem of group
cleaning is relatively less demanding. Whereas the preliminary grouping complexity is
O(n2), the subsequent step requires O(n log(n)) operations. Each of the preliminary groups
has to be processed, gathering a preliminary group members can be done in logarithmic
time. The problem of group cleaning is also well scalable, each preliminary group can be
processed independently. However, contrary to the preliminary grouping case, here the
data cannot be partitioned. Each of the preliminary groups can have members from the
whole descriptor space, which cannot be kept in main memory at the same time. Hence
the information concerning the preliminary groups has to be stored in a database which
allows for loading the selected descriptors during the program execution. This makes the
distributing of the group cleaning step more problematic, the reasonable solution would
require grid resources with a common disk space.

4.2 On-line module

The online module has a client-server architecture with a web browser user interface. It
was implemented using the Java struts technology and the Tomcat servlets container.

4.2.1 Struts

The Model-View-Controller design pattern is a software architectural approach for user-
interactive applications. The application architecture is organized into three separate mod-
ules: the model with data representation, the view � user interface that enables the inter-
action and the controller module, which connects the remaining two modules. This kind
of architecture facilitates interchange of user interface and model implementation.

Struts is a framework for the use of web-based server-side applications. It employs tech-
nology of Java beans, servlets and Java server pages (JSP). It implements the MVC design
pattern in the following way:

• the model and the system's state is implemented by business logic beans, i.e. java
classes,

• the view is de�ned by means of Java server pages that generate html code for the
client browser,

• the controller is implemented by servlets that receive requests (from the client browser),
and dispatches control to the appropriate business control logic. Dispatching is per-
formed on the grounds of a con�guration �le that de�nes how to map requests (URIs)
to business logic beans that handle them, or to further Java server pages.

34 Chapter 4 Implementation

Figure 4.2. Web server

4.2.2 Request handling process

The process of handling a user request is as follows. The user submits their pdb �le using
the web browser interface (Figure 4.2). Apart from submitting the �le, they have to provide
their email address to which the results will be sent. Having submitted the �le, they get a
conformation that the task has started.

The servlet responsible for handling requests starts a new thread that will process the
submitted �le. The new thread �rst invokes a C++ program for extracting the descriptors
and and assigning them to the existing clusters. The representative descriptors are written
in a �le, the program loads them and compares them to the descriptors found in the
protein. The program results in a feature representation of the proteins, i.e. a vector of 1s
and 0s. The vector is written to a text �le that can be read by the Rosetta system that is
run next. The resulting Rosetta �les are sent to the user by email. An exemplary �le with
prediction result looks as follows:

PREDICTIONS

protein prediction

1P6X GO:0004674(5);GO:0004024(15);GO:0005524(20);

5 RESULTS

5.1 Descriptor data

All the analysis was performed on a representative subset of 657 proteins. There were
148, 012 descriptors of at least 3 segments found. The mean size of a descriptor was ∼ 27
residues. Figure 5.1 illustrates the number of segments distribution, showing that the
number of descriptors decreases exponentially with the increase of the number of segments.

Grouping of the descriptors resulted in 146, 682 nonempty preliminary groups. The average
group size was 64, the biggest group of descriptor d1f60b_#53 from protein 1f60 contained
3990 descriptors. As one can expect, the descriptors of smaller size gather more group
members, than the more speci�c, bigger descriptors. The most common conformation of
descriptor d1f60b#53 consists of 3 segments and only 17 residues.

After the cleaning transformation 120, 835 nonempty groups remained. The most popular
group has 2831 members, the average group size is 39.5, therefore approximately 30%
of preliminary group members were sieved out. The cleaned descriptors are smaller, on
average a seed descriptor has 20 residues. The average RMSDadj score (see Equation 3.4)
is 1.263 with the standard deviation of 0.606.

Figure 5.1. Left: Number of descriptors versus number of segments in descriptors.
Middle: Number of segments of the preliminary group seed descriptor versus number of
preliminary groups. Right: Number of segments of the preliminary group seed descriptor
versus the mean size of preliminary group.

Figure 5.2. Statistics for the cleaned groups. Left: Number of segments versus number
of cleaned descriptors. Right: Number of segments of the cleaned group seed descriptor
versus the mean size of group.

35

36 Chapter 5 Results

5.2 Clustering

The descriptors were clustered using the two algorithms described. The hierarchical algo-
rithm does not require any parameters, however the clusters depend on the level on which
the dendrogram is cut.

The DBSCAN algorithm performance depends on the neighborhood radius ε and the min-
imum number of neighbors parameter MinPts. The authors [10] propose the following
heuristic for choosing the ε parameter. For a given natural number k a distance from each
point to its k-nearest point is computed. The points are sorted decreasingly according to
those distances and plotted on a graph. The ε parameter should be set to the value of the
k-distance of the point where the �rst "valley" starts, i.e. the points constitute a constant
line (see Figure 5.3). The authors also suggest to set the k parameter value to 4. In various
tests they performed the estmates obtained for the higher values of k did not signi�cantly
di�er from the ones obtained for k = 4.

Figure 5.3. Setting the appropriate ε parameter value in DBSCAN algorithm. Left:
ε = 4.22 for the asymmetric dissimilarity matrix; Right: ε = 2.22 for the symmetric
dissimilarity matrix.

In [23] the groups of similar descriptors that assembled less than 7 members were disre-
garded. To gain a similar e�ect, theMinPts parameter was set to 7 which leads to clusters
of size at least 7. The ε values were 4.22 and 2.22 for the asymmetric and symmetric dis-
similarities respectively.

5.2.1 Mutual information criterion

First, using the z-score �gure of merit (Equation (3.12)) it was checked, whether the
mutual information returned by the clusterings was signi�cantly di�erent than in random
clustering. When computing the z-scores, it was assumed that the random clusters should
have uniform sizes, which leads to maximization of the HC entropy (3.10).

To examine whether the mutual information was an appropriate measure, the following
test [13] was performed on data obtained from clustering descriptors with the DBSCAN
algorithm, asymmetric dissimilarity matrix and parameters ε = 4.22,MinPts = 7. The
original clustering combined 111, 545 descriptors into 3962 clusters, the remaining 35, 337
were assigned to the noise cluster. Beginning with the original clustering, two descriptors
were repeatedly chosen at random and their cluster assignments were swapped. After each
such swap the mutual information value was recomputed. In this fashion, the sizes of the
clusters were constant, but the degree of correlation was slowly destroyed. The result,

5.2 Clustering 37

shown in Figure 5.4, shows that adding noise to clusters decreases the mutual information.

Figure 5.4. Number of cluster assignments swaps plotted versus the mutual information
of the clustering.

The z-scores obtained by the algorithm indicate that the results are far from random clus-
tering when the association with the Gene Ontology annotations is taken into account. The
diagram in Figure 5.5 reports the z-scores obtained by the hierarchical algorithm plotted
versus the number of clusters. Both the results for asymmetric and symmetric dissimi-
larities are presented. The z-scores obtained by the symmetric dissimilarities are slightly
better. The DBSCAN algorithm resulted in signi�cantly smaller number of clusters in both
cases. All the small clusters were added to the noise cluster. The z-scores obtained were
650.473 and 727.156 respectively for the asymmetric and symmetric dissimilarities. The
asymmetric case resulted in 3962 clusters, where 23, 87% of the data was assigned to the
noise cluster, these descriptors were disregarded when computing the mutual information.
The symmetric case resulted in 921 clusters with 22, 5% of the data in the noise cluster.

Figure 5.5. Number of clusters plotted versus z-score for the hierarchical algorithm;
red - symmetric dissimilarity matrix, blue - asymmetric dissimilarity matrix.

Both algorithms obtained z-scores far from random. However it is hard to assess the ap-
propriate parameters for training a classi�er based on those results. In case of hierarchical
clustering the z-scores obtained for a large number of clusters were higher then those for
the smaller number of clusters. On the other hand the learning algorithms are known to
lose accuracy for a large number of attributes, which might cause over-�tting.

38 Chapter 5 Results

5.3 Classi�er performance

The classi�er was trained on the decision tables provided by the clustering. 10-folds cross-
validation was performed with ROC analysis returning the AUC value. The mean AUC
values are compared in Table 5.1. Figure 5.6 compares the hierarchical algorithm per-
formance plotted versus the number of clusters. The mean AUC values are reported for
di�erent algorithms and parameters settings.

Table 5.1. Classi�ers
algorithm symmetric parameters AUC

DBSCAN no ε = 4.22,MinPts = 7 0.749421

Hier. alg no 20397 clusters 0.666366

Hier. alg no 31882 clusters 0.716299

Hier. alg no 36882 clusters 0.741971

Hier. alg no 46882 clusters 0.728894

Hier. alg no 61882 clusters 0.651937

Hier. alg no 71882 clusters 0.60108

DBSCAN yes ε = 2.22,MinPts = 7 0.630853

Hier. alg yes 20397 clusters 0.659613

Hier. alg yes 31882 clusters 0.716299

Hier. alg yes 36882 clusters 0.738066

Hier. alg yes 46882 clusters 0.698626

Hier. alg yes 61882 clusters 0.560662

Hier. alg yes 71882 clusters 0.549193

Hier. alg yes 96882 clusters 0.503305

Figure 5.6. Number of clusters plotted versus mean AUC values for the hierarchical
algorithm; red - symmetric dissimilarity matrix, blue - asymmetric dissimilarity matrix.

The highest AUC values were obtained for the unchanged, asymmetric dissimilarity matrix.
The DBSCAN algorithm obtained AUC of 0.749421 whereas the hierarchical algorithm
gained 0.741971. The DBSCAN algorithm gained very poor AUC value of 0.630853 for
the symmetric dissimilarity matrix. This poor performance was probably caused by the
uneven cluster sizes distribution. The majority of the descriptors, 94, 004 out of 146, 682
were assigned to the same cluster.

In order to assess the signi�cance of the results, p-values were computed, i.e. the probabil-
ities of the results obtained occurring by chance when the normal distribution of AUC is
assumed. To this end the GO annotations from the original decision table were randomly

5.3 Classi�er performance 39

shu�ed. The classi�er was trained on this data a number of times in order to obtain a
distribution of the AUC values.

Table 5.2 lists the AUC values obtained for each of the GO classes by the best classi�ers.
There are several classes that are very well predicted gaining AUC higher than 0.9. Assum-
ing that the p-value smaller then 0.05 is signi�cant, the results imply that the AUC value
higher than 0.6 would not be obtained in a random model. For the DBSCAN algorithm
the threshold was 0.6351, 0.642 for the asymmetric hierarchical algorithm and 0.6028 for
the symmetric hierarchical algorithm.

Table 5.2. AUC values for GO classes obtained by the best clusterings. For each class
reported is also the p-value for the AUC obtained.

GO DBSCAN Hier.alg. asymm Hier.alg. symm Number

AUC p-val AUC p-val AUC p-val of proteins

GO:0008757 0.9166 0 0.8502 0 0.8495 0 50

GO:0004024 0.8834 0 0.9212 0 0.9702 0 19

GO:0004295 0.8822 0 0.7979 0 0.8754 0 62

GO:0020037 0.8762 0 0.897 0 0.8409 0 52

GO:0004263 0.8738 0 0.7851 0 0.8752 0 51

GO:0016765 0.8576 0 0.8295 0 0.7811 0 25

GO:0008135 0.829 0.0019 0.7797 0.0002 0.8106 0.0004 11

GO:0004674 0.802 0 0.7197 0 0.7082 0 64

GO:0005525 0.7955 0 0.7798 0 0.7845 0 77

GO:0017111 0.7821 0.0005 0.6447 0.0045 0.6224 0.0162 20

GO:0003964 0.7786 0.0068 0.8673 0 0.7763 0.001 10

GO:0004523 0.7786 0.0064 0.8673 0 0.7763 0.002 10

GO:0005125 0.7715 0.0015 0.642 0.0187 0.6084 0.0564 15

GO:0003779 0.7703 0 0.7782 0 0.7456 0 35

GO:0004896 0.7534 0.0159 0.7869 0 0.7894 0.0002 10

GO:0005509 0.7516 0 0.7216 0 0.7335 0 128

GO:0008083 0.7388 0.001 0.7278 0 0.7266 0 33

GO:0005524 0.7329 0 0.6991 0 0.7053 0 84

GO:0004842 0.7234 0.0004 0.6997 0 0.6489 0.0005 33

GO:0004867 0.7214 0.0057 0.5963 0.1189 0.6547 0.0424 11

GO:0004713 0.7117 0.0174 0.6075 0.0622 0.6828 0.0082 14

GO:0008270 0.6637 0 0.7315 0 0.671 0 171

GO:0003723 0.6392 0.0456 0.7279 0.0001 0.6781 0.0035 23

GO:0004222 0.6351 0.0352 0.7455 0.0001 0.7105 0.0012 21

GO:0003809 0.5895 0.2166 0.4925 0.4728 0.5729 0.1539 12

GO:0003700 0.4953 0.4813 0.7312 0.0002 0.6028 0.0485 20

GO:0004620 0.4814 0.4813 0.6053 0.0779 0.7269 0.0038 12

The classi�ers were based on a number of IF-THEN rules. Below are presented some
examples of the rules obtained:

• IF 1�6a_#63 AND 1e4ua_#38 THEN function(GO:0005509)

Support = 20

• IF 1�6a_#58AND 1�6a_#63THEN function(GO:0005509)OR function(GO:0005524)

Support = 20

• IF 1dl5a1#169 THEN function(GO:0008757) OR function(GO:0004024) OR func-
tion(GO:0008270) OR function(GO:0003723)

40 Chapter 5 Results

Support = 45

The rules obtained were relatively short, the antecedent parts have up to two atomic
descriptors, however the consequent parts often consist of more then one descriptor.

6 DISCUSSION

This thesis dealt with predicting protein function from structure. The method applied is
based on a local protein descriptor idea. It was previously successfully applied by Hvidsten
et al. [16], resulting in rule-based classi�ers of high predictive ability.

The main contribution of the project is a software framework which leads to construction
of a classi�er for predicting protein function from structure. This involves �nding local
descriptors in proteins, comparing, grouping and clustering the descriptors. The software
had to be designed to process very large amounts of data. A database was used for
storing all the information, descriptors and their preliminary and cleaned groups, clusters
of descriptors. I also managed to distribute the very time consuming process of comparing
descriptors. It appeared to be very scalable, and the Swegrid clusters of 600 computers
were used for computations.

The novel idea was to apply the clustering algorithms to the descriptor data. Many of
the existing clustering algorithms are not suitable for processing such a big amount of
data. Some algorithms need a number of clusters speci�ed in advance which is very hard
to determine in case of big datasets, especially when the data is given as pairwise dissim-
ilarities between the objects. Both the clustering algorithms proposed, the density based
DBSCAN algorithm and the single linkage version of the hierarchical algorithm were of
relatively small complexity. The DBSCAN algorithm was O(n log(n)), the hierarchical
algorithm was O(n2) which might be much in case of big n, but the hierarchical algorithm
has to be run only once as it does not require any parameters. Both algorithms resulted
in clusters correlated with protein functions. The clusters were used for the information
system construction.

The classi�ers trained on the decision tables provided showed to have discriminatory ability,
gaining mean AUC value higher then 0.74 with AUC higher than 0.9 for some classes. This
proves that the method based the local protein substructures provides a powerful means of
predicting protein function. The classi�ers constructed were of a legible IF-THEN form,
resulting in easily interpretable rules.

The classi�er is made available through a web based server developed. Using an internet
browser users can submit their proteins of interest and receive functions predicted by the
classi�er.

6.1 Future work

Applying the method to the whole set. The analysis in this thesis was performed
only on a subset of ASTRAL version 1.67 domains. To assess the real classi�ers evaluation
the process should be repeated on the whole set. This task might be harder as it will
involve more decision classes and the clustering algorithm will probably result in more
clusters. On the other hand the number of objects will be about 10 times bigger (657
versus 6600 domains) so the size of the training set will increase.

Moreover, this process will be more computationally intensive. The comparison prob-

41

42 Chapter 6 Discussion

lem is O(n2), which means that adding new descriptors increases the time quadratically.
Fortunately this stage is distributed on a computer grid.

The group cleaning step was not distributed despite the fact that each of the preliminary
groups can be processed independently of the others. This was not necessary in case
of the subset of domains the analysis was performed on. However the time complexity of
O(n log(n)) starts to be prohibitive in case of the big dataset. The solution for distributing
this step on a computer grid should take into account the database usage.

According to the results obtained on a subset of proteins, the best AUC values gained by
the hierarchical algorithm and the DBSCAN algorithm were comparable, both of about
0.74. However the hierarchical algorithm appeared to be more stable to the asymmetry of
dissimilarities. The di�erences of the AUC values were very small there, with asymmetric
matrix performing a bit better. Hence only this clustering method could be applied to the
whole dataset.

Further development of the web server. The main focus in this thesis was on the
o�-line module of the system. So far, the web server provides the basic functionality for
submitting protein structures and receiving prediction results by e-mail. The architecture
of the on-line module is very �exible and easy to extend. The possible extensions may
include:

• possibility for the user to specify to what chains of protein they want to apply the
method,

• displaying the protein with full report concerning the parts of proteins matched by
the representative descriptors,

• user account storage

Applying the method to other decision attributes. The whole process of preparing
an information system, i.e. �nding, comparing and clustering descriptors does not take the
Gene Ontology classes into account. The proteins are annotated with the classes at the very
last step. Hence any other type of information that can be associated with the structure
could be used as a decision attribute.

Bibliography

[1] Ankerst, M., Breunig, M. M., Kriegel, H.-P., and Sander, J. OPTICS:
Ordering points to identify the clustering structure.

[2] Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., H, H. B., Cherry,
J. M., Davis, A. P., Dolinski, K., Eppig, S. S. J. T., Harris, M. A., Hill,
D., Issel-Tarver, L., Kasarskis, A., Lewis, S., Matese, J. C., Richardson,
J., Ringwald, M., Rubin, G., and Sherlock, G. Gene ontology: tool for the
uni�cation of biology. the gene ontology consortium. Nature Genetics 25 (2000), 25�
29.

[3] Bellman, R. E. Adaptive Control Processes. Princeton University Press, 1961.

[4] Berman, H., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T., Weissig, H.,
Shindyalov, I., and Bourne, P. The protein data bank. Nucleic Acids Research
28 (2000), 235�242.

[5] Brenner, S. E. A tour of structural genomics. Nature 2 (2001), 801�808.

[6] Breunig, M. M., Kriegel, H.-P., Ng, R., and Sander, J. LOF: Identifying
density-based local outliers. In Proc. ACM SIGMOD Int. Conf. on Management of
Data (SIGMOD 2000) (Dallas, 2000), TX, Ed., pp. 93�104.

[7] Brucker, P. On the complexity of clustering problems. Lecture Notes in Economics
and Mathematical Systems 157 (1978), 45�54.

[8] Chandonia, J., Nigel, G., Walker, S., Conte, L., Koehl, P., Levitt, M.,
and Brenner, S. E. The ASTRAL compendium in 2004. Nucleic Acids Research
32 (2004), 189�192.

[9] Cover, T., and Thomas, J. Elements of information theory. D.L. Schilling, Wiley-
Interscience,New York, 1991.

[10] Ester, M., Kriegel, H.-P., Sander, J., and Xu, X. A density-based algo-
rithm for discovering clusters in large spatial databases with noise. In Second Inter-
national Conference on Knowledge Discovery and Data Mining (Portland, Oregon,
1996), E. Simoudis, J. Han, and U. Fayyad, Eds., AAAI Press, pp. 226�231.

[11] Frawley, W. J., Piatetsky-Shapiro, G., and Matheus, C. J. Knowledge
discovery in databases - an overview. AI Magazine 13 (1992), 57�70.

[12] Friedman, N., Geiger, D., and Goldszmidt, M. Bayesian network classi�ers.
Machine Learning 29, 2-3 (1997), 131�163.

[13] Gibbons, F. D., and Roth, F. P. Judging the quality of gene expression-based
clustering methods using gene annotation. Genome Research 12, 10 (2002), 1574�1581.

[14] Hanley, J., and McNeil, B. The meaning and use of the area under a receiver
operating characteristic (ROC) curve. Radiology 143 (1982), 29�36.

43

44 BIBLIOGRAPHY

[15] Hastie, T., Tibshirani, R., and Friedman, J. The elements of statistical learning:
data mining, inference, and prediction: with 200 full-color illustrations. Springer-
Verlag Inc, 2001.

[16] Hvidsten, T. R. Predicting Function of Genes and Proteins from Sequence, Structure
and Expression Data. PhD thesis, Uppsala University, 2004.

[17] Hvidsten, T. R., Kryshtafovych, A., Komorowski, J., and Fidelis, K. A
novel approach to fold recognition using sequence-derived properties from sets of struc-
turally similar local fragments of proteins. Bioinformatics 19 (2003), 81�91.

[18] Jensen, L. J., Gupta, R., Staerfeldt, H. H., and Brunak, S. Prediction of
human protein function according to gene ontology categories. Bioinformatics 19, 5
(2003), 635�642.

[19] Kabsch, W. Acta Crystallographica A32 (1976), 922�923.

[20] Kaufman, L., and Rousseeuw, P. Finding Groups in Data: an Introduction to
Cluster Analysis. John Wiley and Sons, 1990.

[21] Kearsley, S. K. On the orthogonal transformation used for structural comparisons.
Acta Crystallographica A45 (1989), 208�210.

[22] Komorowski, J., Øhrn, A., and Skowron, A. Handbook of Data Mining and
Knowledge Discovery. Willi Klösgen and Jan M. Zytkow, 1975.

[23] Kryshtafovych, A., and Fidelis, K. Local descriptors of protein structure. I.
general approach and classi�cation of local 3d regions in proteins.

[24] McLachlan, A. D. Acta Crystallogr A28 (1972), 656.

[25] Murzin, A., Brenner, S., Hubbard, T., and Chothia, C. SCOP: a structural
classi�cation of proteins database for the investigation of sequences and structures. J
Mol Biol 247(4) (1995), 536�540.

[26] Ng, R. T., and Han, J. E�cient and e�ective clustering methods for spatial data
mining. In 20th International Conference on Very Large Data Bases, September 12�
15, 1994, Santiago, Chile proceedings (Los Altos, CA 94022, USA, 1994), J. Bocca,
M. Jarke, and C. Zaniolo, Eds., Morgan Kaufmann Publishers, pp. 144�155.

[27] Pawlak, Z. Rough sets. International Journal of Computer and Information Sciences
11 (1982), 341�356.

[28] Pitt, W. R., Williams, M. A., Steven, M., Sweeney, B., Bleasby, A. J.,
and Moss, D. S. The bioinformatics template library: generic components for bio-
computing. Bioinformatics 17, 8 (2001), 729�737.

[29] Press, W., Flannery, B., Teukolsky, S., and Vetterling, W. Numerical
recipes 1st ed. Cambridge University Press, Cambridge,UK., 1986.

[30] Sander, J., Ester, M., Kriegel, H.-P., and Xu, X. Density-based clustering in
spatial databases: The algorithm GDBSCAN and its applications. Data Mining and
Knowledge Discovery, an Int. Journal Kluwer Academic Publishers.

BIBLIOGRAPHY 45

[31] Shannon, C. E. A mathematical theory of communication. Bell System Technical
Journal, 27 (1948), 379�423,623�656.

[32] �l¦zak, D. Przybli»one redukty decyzyjne. PhD thesis, Warsaw University, 2001.

46 BIBLIOGRAPHY

Appendix A

Notation

AUC area under ROC curve
Cα α carbon atom
Cβ β carbon atom
C set of cleaned descriptors
D set of descriptors
Diss function measuring dissimilarity of two descriptors
DissClust function measuring dissimilarity of two clusters
GO Gene Ontology
H(X) entropy of random variable X
I(X,Y) mutual information of random variables X and Y
RMSD root mean square distance
RMSDadj RMSD score for two descriptors normalized by the number of residues
ROC Receiver Operating Characteristic

47

48 Appendix A

Appendix B

Diagrams

Figure B.1. Diagram of classes for data storage

49

50 Appendix B

Figure B.2. Diagram of tables for representing descriptors.

Figure B.3. Diagram of tables for storing preliminary groups information.

51

Figure B.4. Diagram of tables for storing cleaned groups information.

Figure B.5. An invocation diagram illustrating the request handling process of the
web server.

