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Introduction 
 
Functional properties of large macromolecules, such as proteins, largely depend on their 
structural conformation. With the growing number of known and hypothetical amino-acid 
sequences from, among other sources, more than 100 sequenced prokaryotic and eukaryotic 
genomes, there also is a following challenge of determining respective protein function.[1] 
For many fields of science dealing with proteins, there thus is an interest in determining 3-
dimensional protein structure. 
 
To determine protein structure, there are both traditional structural biology methods, such as 
X-ray crystallography and NMR, and computational modelling methods. In Structural 
Genomics, an initiative by various research centres, both approaches are used in a systematic 
way to increase efficiency and decrease cost.[2,3] To further enhance the idea of Structural 
Genomics, there is a need of improved computational methods that take advantage of existing 
structural information. One newly proposed method to this end is a fragment based method 
that utilizes reoccurring local substructures called Local Descriptors to create a library of 3-
dimensional building blocks.[3] By using Hidden Markov Models (HMM’s) to model the 
relationship between amino-acid sequence and local 3D-structure coded by Local Descriptor 
Groups, the Local Descriptor Groups can be prioritized based on the probability of the 
corresponding HMM generating a set of local amino-acid sequence fragments.[4] 
 
In an attempt to explore the possibilities using Local Descriptors as a basis for structural 
building blocks in protein structure prediction, we have in this project created a search 
algorithm for searching among combinations of fragmented structural data, implemented it 
and tested it on data obtained using Local Descriptors and HMM’s. 
 
 
Background 
 
Traditionally, two classes of computational methods for protein structure prediction exist: de 
novo modelling and comparative homology modelling (CHM), with the difference that 
comparative homology modelling uses already known 3-dimensional template data from an 
alignment between a target and the template, and de novo modelling techniques does not. De 
novo modelling methods can in turn be divided into categories based on the use of statistical 
data from known structures to be used for various variables in the modelling process. Such 
“knowledge based” de novo methods are discerned from so called ab initio methods, which 
solely rely on physical models for interactions between parts in the protein modelling process. 
Within CHM there are currently two main directions: The first is where coordinates in one 
template, or averages of coordinates in a collection of templates, in some way are used for 



modelling the target structure. The other direction is where template data, such as distances 
and torsion angles, is used for setting up modelling restraints and using these to deduce 
structure. When alignments are made based on structure rather than sequence, this is generally 
called “fold recognition”, both when dealing with CHM-methods and “knowledge-based” de 
novo –methods.[13] 
 
Our method combines the two main directions in CHM, while we use both Local Descriptors 
and also modelling by satisfaction of spatial restraints using MODELLER (see Materials and 
Methods). Since our method uses statistically determined structural fragments as building 
blocks, it has some similarity to “knowledge based” de novo methods. To what category it 
should belong to is probably a matter of interpretation. Fragment based modelling techniques 
have become somewhat of a trend lately since they have been proved to produce relatively 
accurate models. The main difference between these and our approach is the use of Local 
Descriptors for identifying and storing the structural data. This provides us with fragmented 
building blocks which also are able to store interactions between parts of the protein not 
necessarily close in terms of sequence, something that other contemporary fragment based 
methods seem not to do. Other studies on methods based on assembly of fragments have been 
done with similar choices of implementation. Variants of genetic algorithms are frequently 
used among these for search, and MODELLER is a recurring choice for assembling structural 
fragments into molecular models. No earlier studies have been made on using the Local 
Descriptor concept for structure assembly.[3,13]  
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Figure 1.   Figure 2. 
 
Figure 1. An example of a Local Descriptor. A central amino acid has an environment consisting of five 
fragments. The structural information of this environment constitutes the amino acid’s Local Descriptor. 
Figure 2. The geometry of Local Descriptors form the same Local Descriptor Group superimposed on each 
other. 
 
Protein data from ASTRAL 1.63 with less than 40% sequence identity was used as training 
data. Local Descriptors were created and HMM’s were trained using this training data.[5] 
 
The Geobacillus stearothermophilus Carboxylesterase protein, with the PDB callsign 1tqh, 
has been our test data for all tests.[6] 
 
Local Descriptors have been given names according to: 
 
{protein name}{chain}{domain}#{residue number} 
 
A descriptor centred at residue number 68, domain 1, chain a, in the protein 1ll7, would be 
given the name 1ll7a1#68. A descriptor with n fragments is generally stored in the following 
format: 
 
{name} {range 1}{sequence 1} {range 2}{sequence 2} … {range n}{sequence n} 
 
This, combined with the structural data from respective fragment, represent the Local 
Descriptor. Local Descriptors were ordered into Local Descriptor Groups based on similarity. 
Similarity is measured by comparing the parameters.[3,4] 
: 

 Length and number of segments, 
 Shape of segments, 
 Number of geometrically similar segments, 
 Fit quality by RMSD score after superpositioning descriptors 

 
Local Descriptor Groups were named by the central Local Descriptor in that group. As an 
example, the group characterized by 1hr6a1#61 could be stored like: 
 
GROUP: 1hr6a1#61 : 5 
1bccb1#66  51-60 IKAGSRYENS   64-68 GTSHL   98-102   VESTR   103-107  ENMAY   192-200  HDFVQNHFT   
1ezva1#69  54-63 FGSGAANENP   67-71 GVSNL   94-98      SNISR   99-103    DFQSY   193-201  ESFANNHFL  
1ezvb1#48  35-44 VHGGSRYATK   46-50 GVAHL   80-84      STLDR   85-89      EYITL   173-181  KDFADKVYT   
1hr6a1#61  46-55 IDAGSRFEGR   59-63 GCTHI   93-97      CTSSR   98-102    ENLMY   188-196  LDYRNKFYT  
1hr6b1#69  54-63 VDAGSRAENV   67-71 GTAHF   101-105  AYTSR   106-110  ENTVY   196-204  KDYITKNYK 

 
 
For the Hidden Markov Modelling, the amino-acid alphabet was converted into a modified 
variant (see Appendix 1). The test protein was used as query sequence for an alignment search 
in the library of HMM’s trained on the training data. This yielded a list of HMM’s, each 
corresponding to a Local Descriptor Group, sorted by score and E-value, and the alignments 
between the query sequence and HMM’s upon which the scores and E-values had been 
calculated. As HMM implementation we used HMMER [7] 
 
The scores resulting from the search are determined by: 
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where ( )HMMseqP |  is the probability of the query sequence given the HMM, 
and ( )nullseqP |  is the probability of the query sequence given the null-model. 
The null model is represented by a one-state HMM that treats all residues as 
independent and identically distributed.[7] 

 
E-values are the expected number of false positive hits with scores equal or above the 
currently calculated.[7] 
 
We chose a number of top-scoring Local Descriptor Groups for the search algorithm to 
combine. The structural data used for protein modelling was taken from the Local Descriptor 
that represented the group with its name (i.e. the central descriptor in terms of structure). 
 
 
 
Materials and Methods 
 
 
Fitness Calculation 
 
Since a genotype can undergo processes that will change its fitness in our algorithm, i.e. 
ageing, we have decided to represent fitness with two stored variables in each genotype. 
Calculated Fitness (Fc) is a constant unmodified value which only depend on the genotype’s 
gene configuration, and Modelled Fitness (Fm) is a value that might change through the 
artificial life of the genotype but is initially set equal to Fc for newly produced offspring. Both 
of these values are represented as floating point variables in the range between 0 and 1. To 
calculate Fc the application relies on an external program called MODELLER. MODELLER 
is a program used for homology modelling or comparative modelling of proteins by 
satisfaction of spatial restraints.[8-12] When a new genotype is created in the implementation 
of the search algorithm, a new MODELLER-process is initialized to create a protein model 
based on the structural information of the newly created genotype. In the modelling process, 
MODELLER evaluates the model and presents the evaluation in the form of a value called 
PDF-value. This is the value of the objective function that MODELLER minimizes in the 
modelling process.[8] The PDF-value is retrieved from the resulting PDB-file after the 
modelling is completed, and is used to determine the Fc of the new genotype (see Search 
Algorithm). 
 
The information given to MODELLER to create a protein model is: 

• Amino acid sequence of the protein being modelled. 
• Structural information for (parts of) the amino-acid sequence. This data is retrieved 

from PDB-files with the coordinates stored in the Local Descriptor data structure. 
 
We have used MODELLER 9v2 in both test runs. 
 
 
 



Genetic Search Algorithm 
 
Genetic search algorithms, or shortly genetic algorithms (GA), are a general collection of 
search algorithms inspired by the natural evolutionary mechanisms based on genetics. A 
multitude of interpretations of what such mechanisms are, and what ideas among such 
mechanisms might prove useful, have resulted in equally different approaches to design of 
GAs. Generally, a GA somehow maps perturbations of variables, traditionally called genes (or 
something else that might illustrate some sort of connection to genetics or biological 
evolutionary theory, for example loci), to locations in search space. The choice of variables 
varies from simple bits, Boolean variables to floating point variables for example, all 
depending on preference and exactly what a gene is supposed to represent in the design. 
Different sets of perturbations can then be stored in entities, also these usually named 
according to genetic-evolutionary tradition. Search is performed by applying certain 
operations upon the entities holding the perturbation of genes and upon the perturbations of 
genes themselves, to change their representations of points in search space. These operations 
are often translated directly from genetic-evolutionary theories according to the design of the 
GA, and regularly includes concepts such as reproduction, death, fitness, point mutation, 
crossover, insertion, deletion et.c., or any other function applicable to the GA. While this 
design of a search algorithm by creating an evolutionary model can possibly be extended to 
unknown limits, one must examine the biological effects of the corresponding functions and 
their effects they have on the search to evaluate them. As an example it might be tempting to 
include population mechanics and the concept of species in a GA, but the use of this must be 
examined. This is not done in our project. 
 
Our search algorithm is a kind of GA that mimics natural evolution. The purpose is to 
optimize a set of Boolean variables, each representing a building block of stored structural 
data from a Local Descriptor Group, to create the best possible combination of structural data. 
A true Boolean variable means that the corresponding structural data is used, and a false 
variable means that it is not used. As the algorithm is a GA, we have chosen to call the 
Boolean variables – genes. A set of genes is stored in a data structure that we call a genotype. 
Currently the algorithm is written so that the number of genes in a genotype is determined in 
the beginning and remains constant throughout the whole search – no additional genes can be 
created, and also no genes can be deleted in a genotype. Each genotype stores two fitness-
values; one constant fitness value (Fc) that has been calculated based on the combination of 
genes (i.e. the genotype), and one variable modelled fitness value (Fm) depending on the 
evolutionary model that does not have to correspond to the Fc-value, but is initially set equal 
to Fc for all newly produced offspring (not the initial genotypes). At the beginning of each 
search, a set of initial genotypes are created based on the start-variables nrInitialGenotypes 
and initialFitness, which determines the number of initial genotypes and their corresponding 
initial Fm-fitness. The Fc is set to -1 to mark it as uncalculated. Each initial genotype will 
have the full set of possible genes with each gene having a starting value randomized with 
equal possibility for the value true and false (i.e. 0.5). 
 
Depending on the starting parameters iter and genIter, a number of iterations are performed, 
in which a number of actions are taken. Because of the bottleneck functionality (see 
explanation below and Implementation), there are two types of iterations. The iteration where 
all of the algorithm specific actions take place is the type of iteration that is represented by 
genIter – general iterations. The number of such general iterations is taken place for each 
iteration represented by iter, so the total number of general iterations will be iter * genIter. 
 



A general iteration is meant to represent some sort of timeframe in the artificial life of every 
genotype. The general iteration can be divided into the following actions: 
 

• Depending on the environmental model, the number of genotypes and each genotype’s 
individual Fm – decide which genotypes die before they can reproduce in this 
iteration. In this step the algorithm loops through all existing genotypes and decide if 
they die or not based on a survival probability. The formula for survival probability is: 
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where 

imF ,  is the Fm-value of the genotype i, L  is a limit value determined by 
the starting parameter popSizeBefore (and also popSizeAfter if the bottleneck 
functionality is used) and N  is the number of genotypes in this iteration before 
any has been removed from the cause of dying – to make this number equal for 
all genotypes. The limit popSizeBefore is used in the first general iteration 
(genIter) in each normal iteration, and if genIter >1, popSizeAfter is used as 
limit for all general iterations after the first one. 
 

This probability helps to control the population size by making the survival probability 
proportional to both the Fm and half the population size limit, as well as keeping it 
inverted proportional to the number of genotypes. Genotypes that are decided to die 
are removed from the genotype storage. 
 

• Depending on the parameters for reproduction – decide which genotypes are 
reproducing and with which genotype. Also create the genotypes of the resulting 
offspring and add them to a specific storage. Here the algorithm loops through all 
genotypes and, depending on the probability of reproduction which is the same for all 
genotypes, performs the reproduction steps. The probability of reproduction is decided 
by the pOffspring starting parameter. A genotype with a higher Fc would generally 
live longer than a genotype with lower Fc and thus have higher chance of producing 
offspring, but at each general iteration the probability of reproduction is equal for all 
genotypes. When a genotype is reproducing, it does so in combination with a 
randomly chosen currently existing genotype. A genotype can reproduce with itself. 
The offspring of the two genotypes is created and given genes from either one of the 
two parents. The probability to receive a gene from one of the parents is 0.5. For each 
gene that is created in the offspring in this way, there also is a chance of point 
mutation depending on the variable set by pMutation. If a mutation occurs, there is an 
equal chance for a gene of mutating into true and false, which is 0.5. Genotypes of 
offspring are stored separately until the end of the iteration. 

 
• Alter all genotypes’ Fm with respect to the ageing model. In our search  algorithm, 

ageing is an alteration of the genotypes’ Fm depending on their artificial life. A 
genotype incurs a penalty in Fm for every iteration. This penalty is decided by the 
parameter ageingDecayFactor and should be positive to be a penalty. The resulting 
Fm of every genotype is: 
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where 

jimF
,,  is the Fm of genotype i at iteration j and a  is the decay factor. Note 

that when a genotype is produced through reproduction, its Fm is set equal to its 
recently calculated Fc (see the next step). 

 
• Determine fitness for the newly created offspring and add them to the general pool of 

genotypes. Last in the general iteration, all created offspring have both their types of 
fitness determined. First is the Fc value calculated from the combination of genes in 
the genotype. Second is the Fm set equal to the calculated fitness as an initial value. 
To determine Fc for a genotype, a 3-dimensional protein model is built based on the 
structural information stored in the respective genotype’s genes with a true value. The 
quality of this model is represented by a function value, the pdf-function, which is 
calculated in the building process (more on this under Fitness Calculation). 
Depending on this function value and how this number is valued, Fc is calculated by: 
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where calculatedφ  is the calculated pdf-function, and normalφ  is a variable to control 
how to value calculatedφ , and is determined by the normalpdf start variable. 
 

• Add all offspring to the same storage as the other genotypes. 
 
After each general iteration, a comparison is made between the best genotype in the set of 
genotypes and a stored globally best genotype. If the best genotype in the set is better than the 
globally best, it will replace the former as the globally best genotype. Here the calculated 
fitness is used for comparison, since it is the unmodified fitness directly depending upon the 
genetic configuration of the genotype. 
 
 
 
Implementation 

 
Our GA was implemented in the programming language Java using JDK 1.5.0_10. 
 
A couple of useful features, apart from the search algorithm itself, were also implemented into 
the program: 
 

• Configuration-file – Most important parameters for the search algorithm and the 
program itself can be altered through a configuration-file, which is read at the startup 
of the program. 

• HMMER-output file reading function – a function to read a type of output-file from 
the program HMMER, and also the type of file where Local Descriptor Group data is 
stored, and puts everything in an internal data structure.  

• Ability to store both Local Descriptor information and current search algorithm 
information to file – this is to make it possible to pause the search algorithm and 
continue the search at a later time and on another machine. 

• Log file – after each iteration the program writes a vector with information about the 
state of the search algorithm for the current iteration. 



 
 
Since there has been a rather iterative and experimental design process where new 
implementation solutions have been introduced on top of old ones, there are a couple of 
implementation artefacts such as the bottleneck functionality. While the bottleneck 
functionality fully works, it functions badly together with the Log file functionality, which 
only writes to the Log file for each larger iteration – the type of iteration controlled by iter 
(see Search Algorithm above). 
 
 
 
Hardware 
 
All search tests were run on an AMD Thurion 64 Mobile Techology ML-32 with the 
following capacity: 
 
792 MHz Processor 
896 MB RAM 
 
 
Time Approximation 
 
To approximate running times, we measured the time it took for MODELLER to complete a 
model using an arbitrary set of genes. From this, a time value per gene was obtained and the 
following crude formula was used to approximate the running times: 

2
mtIGmp
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where t is the time in seconds per true gene to calculate the arbitrary model, I is the number of 
iterations, G is the number of genes in each genotype, m is the mean number of genotypes 
during the run, and pm is the offspring probability for each genotype. While we have not 
bothered with calculating the real mean number of true genes in an offspring, the estimate of 
half the number of genes was used, with the resulting division by two in the formula. 
 
 
Results 
 
We have performed two test runs of the implemented genetic search algorithm. The first run 
was more of a tryout run to discover bugs and to test new features that was gradually 
implemented. No significant changes were made to the search algorithm part during this time. 
The resulting data from this first run can still be interesting and is thus also presented here. 
 
Run times are only approximated values since the real run time was not measured. (see 
Materials and Methods). 
 
Data from the 212 best Local Descriptor Groups with regards to HMM-alignment scores were 
used in both runs. We have chosen to initially examine a selection of the 212 genes and their 
development throughout the search. These genes are called Selected Genes and it is those that 
are plotted under respective run below. The Selected Genes are: 
 



1m33a_#202 
1wht.1#A155 
1auoa_#112 
1m33a_#29 
1jfra_#133 

1llfa_#215 
1hlga_#99 
1ispa_#102 
1n1ma2#653 
1m33a_#210 

1l7aa_#188 
1jkma_#229 
1jkma_#232 
1ju3a2#268 
1k4ya_#347 

1iupa_#212 
1mtza_#273 
1ju3a2#254

 
 
 
Run 1 
 
Run-specific parameters 
(in the format they are set in the config-file) 
[genIter] 1; 
[normalpdf] 8000; 
[pOffspring] 0.05; 
[pMutation] 0.0005; 
[popSizeBefore] 300; 
[popSizeAfter] 300; 
[ageingDecayFactor] 0.015; 
[nrInitialGenotypes] 40; 
 
For Run 1 we let our program iterate for a total of 743 iterations and was ended intentionally 
to start Run 2 instead. The total run time for Run 1 was approximately 472548 seconds, or 
131.26 hours. Mean number of genotypes used for the approximation is 40. 
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Figure 3. Plot of fitness development against iterations for Run 1.  meanFitness is a mean value of all genotypes’ 
Fc during an iteration. maxFitness is the maximum Fc in the population and minFitness is the minimum. Data 
before iteration 25 is not shown in the plot since there still existed surviving  initial genotypes then with non-
representative fitness values (i.e. -1). The full plot can be seen in Appendix 2. 
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Figure 4. Plot of gene distribution against iterations for Run 1. Each curve shows in how many genotypes the 
gene can be found, in which the gene is TRUE. As comparison, the number of genotypes is also presented. The 
counting functionality was introduced at iteration 137, so genes before that iteration has not been counted for this 
run. 
 
 
 
 
Run 2 
 
Run-specific parameters 
(in the format they are set in the config-file) 
[genIter] 1; 
[normalpdf] 10000; 
[pOffspring] 0.1; 
[pMutation] 0.001; 
[popSizeBefore] 300; 
[popSizeAfter] 300; 
[ageingDecayFactor] 0.02; 
[nrInitialGenotypes] 40; 
 
For Run 2 we let the program iterate for a total of 266 iterations. This Run happened to be 
interrupted due to a power failure while writing to file and consequently aborted. The total run 
time for Run 2 was approximately 253764 seconds or 70.49 hours. Mean number of 
genotypes used for the approximation is 60. 
 



Run 2
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Figure 5. Plot of fitness development against iterations for Run 2. In the same way as for Run 1,  meanFitness is 
a mean valule of all genotypes’ Fc during an iteration. maxFitness is the maximum Fc in the population and 
minFitness is the minimum. Data before iteration 11 is not shown in the plot since there still existed surviving  
initial genotypes then with non-representative fitness values (i.e. -1). The full plot can be seen in Appendix 2. 
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Figure 6. Plot of gene distribution against iterations for Run 2. in the same way as for Run 1, each curve shows 



in how many genotypes the gene can be found, in which the gene is TRUE. As comparison, the number of 
genotypes is presented. 
 
 
 
 
Run 3 
 
Run-specific parameters 
(in the format they are set in the config-file) 
[genIter] 1; 
[normalpdf] 10000; 
[pOffspring] 0.2; 
[pMutation] 0.00001; 
[popSizeBefore] 200; 
[popSizeAfter] 200; 
[ageingDecayFactor] 0.001; 
[nrInitialGenotypes] 30; 
 
For Run 3 we let the program iterate for a total of 79 iterations. In Run 3 we wanted to try out 
a more greedy approach to the search and thus used a low ageingDecayFactor coupled with a 
high offspring probability and a low probability of mutation. The total run time for Run 3 was 
approximately 301464 seconds or 83.74 hours. Mean number of genotypes used for the 
approximation is 60. 
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 Figure 7. Plot of fitness development against iterations for Run 3. meanFitness is a mean valule of all 
genotypes’ Fc during an iteration. maxFitness is the maximum Fc in the population and minFitness is the 
minimum. Data before iteration 11 is not shown in the plot since there still existed surviving  initial genotypes 
then with non-representative fitness values (i.e. -1). 
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 Figure 8. Plot of gene distribution against iterations for Run 3. Each curve shows in how many genotypes the 
gene can be found, in which the gene is TRUE. As comparison, the number of genotypes is presented. 
 
 
 
Discussion 
 
This project has focussed on designing, developing, and implementing a genetic search 
algorithm for protein modelling. For the application to be tested in a satisfactory way, the 
need of other functionalities required that some effort had to be diverted towards finding 
implementation solutions to these as well. Over all it has been a good practice in application 
development and planning. Implementation decisions had to be made for general application 
architecture, data structures, file handling and process handling among other things. 
Sometimes decisions were made in a hasty fashion to be able to quickly test the search 
algorithm, and multiple solutions for practically the same tasks can also be found; everything 
which contributed to some insight in general development procedure. 
 
One of the first things that is to say about the results from this project is that the search 
algorithm has not been tested enough. What search algorithm parameters that yield the 
shortest search time to the optimal solution is an optimization problem in itself. Although we 
have not done it here, the search algorithm could be tested on a function that is quicker to 
evaluate to discern its capabilities, before applying it to the initial problem of protein 
modelling. 
 
The search space in both test runs where we have applied the search algorithm can be seen as 
a space composed of 212 room vectors. Each vector corresponds to a gene and can have two 
discreet values – either it’s used or not used in the modelling. This makes the search space 
both finite and discreet with 2212 coordinates in space, each coordinate with its own 
combination of genes and thus also a corresponding molecule with a PDF-value. 
 



Search time is a big uncertainty in the evaluation of the search algorithm since it’s difficult to 
visualize the search landscape and thus how difficult it is for a search algorithm to navigate 
through this landscape. Because of the high time requirement for each iteration, which is a 
result of the relatively high time requirement to calculate a molecule’s PDF-value, it seems 
very probable that only a small part of the search space has been examined during our tests. 
Depending on the topology of the search landscape, more time might be needed for the search 
algorithm to run, to evaluate the performance of the algorithm on this particular search 
landscape. An estimation of our application’s time dependency is: 
 
( ) ( )( )( )gltTgtitgliT MODELLER ,,,, +Ο=  

 
where i is the number of iterations, l is the length of the amino-acid query sequence, g is the 
number of genes and t is the number of genotypes. ( )glTMODELLER ,  is the time dependency of 
MODELLER which is unknown to us. In practice this seems to be the main time consuming 
contribution of the complete application, for larger l,g and t, or at least during our tests. 
 
From the obtained results, a possible interpretation would be that our genetic search algorithm 
is indeed working towards better solutions in terms of measured PDF-score. The algorithm’s 
behaviour seems to be sensitive to changes in its search parameters and there is a following 
challenge to find suitable parameter combinations. 
 
The ability to thoroughly examine a specific place in the search space has of course to be 
compared to the ability of moving between different interesting locations. This judgement has 
to be made based on an estimation of the search landscape, if possible. Our approach to this 
was rather intuitive, and the first test was supposed to be a tryout of some more or less 
arbitrary search variables to improve this in the second run. It would seem like our algorithm 
might have had problems during our tests with spending too much time at already explored 
places in the search space, i.e. getting stuck in local minima. This seemed to be a problem 
especially during the first run with a somewhat lower mean number of genotypes compared to 
the second run. If examining the graphs from both runs, an explanation for this might be the 
difficulty the algorithm had to recover from gene fixation. Mean fitness increases, but after a 
while it seems to converge towards a limit. Maximum fitness can be seen to converge towards 
mean fitness and only a few genes escape from fixation by the means of mutation. If 
examining the differences between the first run and the second run, it seems like the increased 
normalpdf and pOffpring parameters’ effect on the mean number of genotypes in the second 
run, increased the number on non-fixated genes during the test and made it less likely for the 
algorithm to get stuck through the effects of gene fixation. The doubled probability of 
mutation in the second run compared to the first might also have contributed to this. That the 
mean fitness does not seem to increase in the second run is probably because of this decreased 
sensitivity of the search algorithm. Which parameter settings are too sensitive or too 
insensitive is hard to tell. In our case when a combination of Local Descriptor information is 
already known to be able to be used in modelling a molecule with a somewhat good PDF-
value (see the discussion below), it would be interesting to see if the search algorithm could 
find a similar result. However, from both tests, a conclusion can be made that a search with a 
parameter setting that is too sensitive to local minima, might linger around solutions that are 
far from as good as already known combinations, as happened in Run 1. If on the other hand a 
parameter setting that is less sensitive is used, as in the second run, the run time might grow 
too large for the search to be of interest. Run 3 was made as a reaction on the comparisons 
between Run 1 and 2. The idea was to test how the algorithm would behave with greedy 
parameter settings – low ageingDecayFactor, high probability of producing offspring and low 



mutation probability. In run 3 the mean fitness development is very similar to that of Run 1, 
but is made in shorter time and in a fewer number of iterations. Max fitness does not seem to 
converge towards mean fitness in the same way as Run 1, which might be explained by that 
only few genes have reached fixation in the relatively few number of iterations of Run 3 
compared to Run 1. This hints that a similar of even better result might have been obtained 
with a lower probability of offspring to not waste offspring with calculated Fc on large 
population growth between iterations. If one considers the actual search time, the increased 
probability of producing offspring may not have made the algorithm “greedier” in terms of 
gene fixation, rather the opposite. This is further strengthened by the comparison between the 
distributions of Selected Genes between Run 1 and Run 3, where in Run 1 a low probability 
of producing offspring was used compared to Run 3. 
 
To say something about the building block capabilities of Local Descriptor Groups might still 
be early considering the results of this project. Before the test runs of the search algorithm 
were performed, we made MODELLER model our test protein using the same amino acid 
sequence as in the test runs, but also providing the already known structure. This produced a 
molecule with a PDF-value of 1326. The known structure of 1tqh does not include the 5 first 
amino acid residues, which we have included in the provided amino acid sequence. Hopefully 
this part does not have a too large impact on the PDF-score, but still needs to be taken into 
account when the PDF-value is considered. As comparison, we let MODELLER generate a 
model using the information in the set of Local Descriptors called “selected” in the Results-
part, which were known to align well to the 1tqh -protein. The result was a molecule with a 
PDF-value of around 5312. 
 

 
Figure 9. The modelled 1tqh –protein using known structural data with a PDF-score of ~1326. What is seen as a 
tail sticking out of the molecule is an unmodelled part of the protein that the known structural information didn’t 
cover. 
 



 
Figure 10. The modelled 1tqh –protein using structural data from the selected Local Descriptors. PDF-score is 
~5312. 
 
The resulting best molecule from Run 1 had a PDF-value of ~7343 and the best from Run 2 a 
value of ~7909. The best molecule from Run 3 had a PDF-value of ~7454 and is by far the 
most compact molecule among all results. When observing these values, one needs to 
consider that it is not at all certain that our search algorithm is able to produce results with 
PDF-values on level with the model of the known structure. What might be expected of our 
search algorithm are values equal or better than the score of the model made from our selected 
genes, which is a model created upon a combination of genes that really exists within the 
search space. 
 

 
Figure 11.The best resulting molecule from Run 1. PDF-score is ~5312. 
 



 
Figure 12. The best resulting molecule from Run 3. PDF-score is ~7454. 
 
What has been concluded during this test is that our modelling method with building blocks 
from Local Descriptors and HMM’s can be used during these specific circumstances to 
generate these specific results. If the method is useful in a more general way is difficult to say 
from our tests. One can speculate that for the method to give interesting results, a greater 
number of Local Descriptor Groups might have to be used for the search. Also improvements 
might have to be made to the search algorithm, both to make it take advantage of more 
structure combinations by, for example, using each backbone fragment of a Local Descriptor 
as an individual building block, and to make it more time efficient in general. A discussion 
might have to be made about how to create a model from the fragmented structural data in the 
Local Descriptors and if the structural restraints –method that MODELLER uses really takes 
advantage of the long range interaction information within. In general, further examination of 
different modelling techniques and improvements to this part of the method is needed. Since 
the structural restraints evaluation sometimes seem to value “uncompact” models, it would 
further be interesting to try and complement our method with some sort of energy 
measurement. An interesting question is also if results obtained by our method can be helpful 
as starting points in further modelling, for example with molecular dynamics or other ab initio 
-methods. 
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Appendix 1 – Amino-Acid Alphabet 
 
2:nd letter explanation 
H: Helix 
C: Coil 
E: Other 
 
 
P H -> A 
P C -> B 
P E -> C 
Q H -> J 
Q C -> K 
Q E -> L 
A H -> A 
A C -> B 
A E -> C 
R H -> G 
R C -> H 
R E -> I 
S H -> J 
S C -> K 
S E -> L 
C H -> A 
C C -> B 
C E -> C 
T H -> J 
T C -> K 
T E -> L 
D H -> D 
D C -> E 
D E -> F 
E H -> D 
E C -> E 
E E -> F 
V H -> A 
V C -> B 
V E -> C 
F H -> A 
F C -> B 
F E -> C 
W H -> A 
W C -> B 
W E -> C 
G H -> A 
G C -> B 
G E -> C 
H H -> G 
H C -> H 
H E -> I 
Y H -> J 
Y C -> K 
Y E -> L 
I H -> A 
I C -> B 
I E -> C 
K H -> G 
K C -> H 
K E -> I 
L H -> A 
L C -> B 



L E -> C 
M H -> A 
M C -> B 
M E -> C 
N H -> J 
N C -> K 
N E -> L 
 

 
 



Appendix 2 – Additional Figures 
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Figure 7. Complete plot of fitness development against iterations for Run 1. This plot also includes the first 24 
iterations. See Figure 1. 
 

Run 2
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 Figure 8. Complete plot of fitness development against iterations for Run 2. This plot also includes the first 10 
iterations. See Figure 2. 


