
Introduction to molecular biology and 
bioinformatics-methods for functional genomics 

Taken from: Hvidsten T. R. 2004. Predicting function of genes and proteins from sequence, 
structure and expression data. Acta Universitatis Upsaliensis. Comprehensive Summaries of Uppsala 
Dissertations from the Faculty of Science and Technology 999. 63 pp. Uppsala. ISBN 91-554-6014-3. 

1.1 Introduction to molecular biology 
Living organisms are governed by a set of inherited instructions encoded by the 
four letter alphabet A, G, C and T. The “letters” take physical shape in terms of 
four different nucleotides constituting the basic repeating unit of deoxyribonucleic 
acid (DNA) molecules. Each nucleotide consists of a 5-carbon sugar with a 
nitrogen base covalently attached1 to carbon atom 1’ and a phosphate group 
covalently attached to carbon atom 3’ or 5’. A DNA molecule is a repeating 
chain of nucleotides where each phosphate group links carbon atom 3’ of the 
sugar in one nucleotide to carbon atom 5’ of the sugar in the neighboring 
nucleotide. There are four types of nitrogen bases determining the four 
different nucleotides in DNA (adenine (A), guanine (G), cytosine (C) and 
thymine (T)), and hence each DNA molecule represents a unique sequence of 
these four chemical “letters”. DNA molecules are furthermore structurally 
organized in duplexes consisting of two helical DNA molecules coiled around a 
common axis forming a double helix. The two strands of the double helix have 
opposite directions for linking 3’ carbon atoms to 5’ carbon atoms (i.e. they are 
anti-parallel) and are held together by hydrogen bonds2 between opposite bases 
in the two strands. An important property of the double helix is that hydrogen 
bonds only occur between two specific pairs of bases. A only binds to T and C 
only to G. This means that the two strands are complementary with respect to the 
sequence they encode, conveniently facilitating important processes such as 
replication and transcription (see below). In eukaryotes3, the DNA molecules 
(the genome) are systematically packed into a number of chromosomes residing 
in the nuclei of each cell (in animal cells a small fraction of the DNA is located 

                                                 
1 Covalent bonds occur when two atoms share a common pair of electrons and are the type of 

bindings that hold atoms together in molecules. 
2 Polar molecules may have a weak, negative charge at one region and a weak, positive charge 

elsewhere. Hence, when such molecules are close, the charged region of one molecule may 
attract the oppositely charged region of a neighboring molecule. These attractions are called 
hydrogen bonds.  

3 Eukaryotes refer to animals or plants consisting of cells with a membrane-enclosed nucleus and 
organelles. Organelles are any structure found in the viscous content of the cell (i.e. the 
cytoplasm). 



in mitochondria4). The actual number and content of the chromosomes varies 
from species to species. 

The central dogma of molecular biology states that the genetic information hard-wired 
in the DNA is transcribed into portable messenger ribonucleic acid (mRNA) 
molecules that are subsequently translated into proteins (see Figure 1). Except for 
uracil (U) replacing thymine (T) in the mRNA sequence, a mRNA molecule is 
an exact copy of a segment of one DNA strand, and carries the information 
necessary to synthesize one or a small number of proteins. While the DNA may 
be viewed as a storage device for genetic instructions, proteins actually execute 
these instructions as enzymes, receptors, storage proteins, transport proteins, 
transcription factors, signaling molecules, hormones, etc. Exceptions are some 
RNAs that are not translated into proteins and that perform functions directly 
(tRNA, rRNA and snRNA are examples of functional RNAs that will be 
discussed later) 

The RNA-encoding segments of the DNA are called genes5. Transcription of 
genes into RNAs is performed by RNA polymerase enzymes using one of the 
DNA strands as a template. The double-stranded DNA is unwound during 
transcription so that the strand acting as a template for the RNA synthesis can 
form a hybrid with the new, growing RNA. The transcribed RNA is 
consequently a single strand sequence complementary to the template strand 
and identical to the DNA strand not acting as a template (except that U 
replaces T). 

                                                 
4 Mitochondria are large organelles responsible for most of the energy production in eukaryotic 

cells. 
5 In contrast, classical Mendelian genetics refer to a gene as an inheritable trait. 
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Figure 1. The central dogma of molecular biology (diagrammatic). DNA is 
transcribed into mRNA that is translated into protein. In addition, DNA is replicated 
during cell division with the help of DNA polymerase. Transcription is catalyzed by 
the RNA polymerase. The mRNA is processed by the spliceosome, before translated 
into a chain of amino acids in the ribosome. tRNA helps the translation by 
transporting the right amino acids to the right positions as given by the mRNA 
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proteins and their interactions with each other and other molecules). A number 
of factors are important for the differential expression of a particular gene in 
different cells, including the rate of transcription, the rate of translation and the 
stability of the protein. However, the most important factor is the initiation of 
the actual transcription. In eukaryotes, the transcription is not initialized by the 
RNA polymerase, but by a number of regulatory proteins called transcription 
factors that bind to the DNA and both activate and guide the polymerase. The 
ability of these transcription factors to selectively recognize specific short 
sequence elements in DNA is therefore important for the regulation of gene 
expression (i.e. gene regulation). Many of these regulatory elements or binding 
sites are in a region called the promoter located upstream of the coding 
sequence (upstream and downstream refer to the sequences that flank a 
particular gene at the 5’ and 3’ ends, respectively). 

Most eukaryotic RNA transcripts go through a number of preprocessing steps 
including the removal of certain segments within the gene and the merging of 
the remaining segments (RNA splicing). This is due to the internal structure of 
the genes which consists of coding segments called exons separated by non-
coding regions called introns. Although both segments are transcribed, the 
introns are later removed by a large complex (the spliceosome) consisting of five 
types of small nuclear RNAs (snRNAs) and proteins.  Newer studies show that 
exons in complex organisms such as humans are spliced in different ways, 
forming different splicing variants and hence different protein products from 
the same gene [27]. 

The synthesis of proteins from mRNA takes place in ribosomes that function as 
structural frameworks for translation. Ribosomes are large RNA-protein 
complexes consisting of a number of ribosomal RNAs (rRNAs) and proteins. 
The basic building blocks for proteins are amino acids. There are 20 amino acids, 
all consisting of a α-carbon atom (Cα) bound to an amino (NH2) group, a 
carboxyl (COOH) group, a hydrogen (H) atom and one variable group 
determining the 20 different amino acids (the side chains). Proteins are simply 
linear, unbranched chains of amino acids where the amino group of one amino 
acid forms a peptide bond6 with the carboxyl group of the neighboring amino 
acid. The repeating chain without the variable side chains is called the main 
chain or the backbone of the protein molecule. Proteins are coded directly in the 
mRNA sequence in terms of successive groups of three nucleotides (codons). 
Since there are four different bases in RNA (and DNA) and three base 
positions in a codon, there are 43=64 possible combinations for coding 20 
                                                 
6 A peptide bond is a special chemical linage connecting amino acids into linear chains. It is 

formed by a condensation reaction between the amino group of one amino acid and the 
carboxyl group of the neighboring amino acid. 
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amino acids. Hence, each amino acid is specified on average by about three 
different codons (the genetic code is said to be degenerate). mRNAs are 
translated into an amino acid chain with the help of transport RNAs (tRNAs). 
There is one tRNA per amino acid, capable of binding and transporting this 
specific amino acid.  Each tRNA also includes a specific sequence (anticodon) 
that recognizes the relevant codon in the mRNA sequence so that the correct 
amino acid can be inserted into the growing amino acid chain. 

An important principle in molecular biology is that the amino acid sequence of 
a protein determines its three-dimensional shape (i.e. its structure) and 
furthermore that the structure of a protein determines its function. Since the 
amino acid sequence is encoded in the DNA, it follows that the mechanisms of 
evolution (i.e. mutation and crossover) contribute almost directly in changing 
protein function. To accommodate different three-dimensional conformations, 
the 20 amino acids vary in shape, charge, hydrophobicity and reactivity. For 
example, the hydrophobic amino acids tend to be buried inside the protein 
(where they are protected from the water surrounding the protein), while the 
hydrophilic amino acids tend to be at the surface of the protein. 

Protein structure is more complex than the double helix of DNA (see Figure 2 
for an example), and may be organized into four levels. The amino acid 
sequence itself is referred to as the primary structure. When stable, the protein 
main chain folds into either an α helix (i.e. a spiral structure), a β sheet (i.e. a 
planar structure of more than one β strand) or a coil (i.e. a random structure) 
(see Figure 2a). These confirmations constitute the secondary structure of proteins. 
Furthermore, the secondary structure elements (sheets and helices) tend to 
form simple motifs connected by short U-shaped turns or loops often located at 
the protein surface (e.g. the common hairpin β motif consisting of two 
neighboring β strands joined by a loop). Several motifs form compact globular 
domains referred to as the tertiary structure of proteins. While secondary structure 
is stabilized by hydrogen bonds between certain side chains, tertiary structure is 
mainly stabilized by hydrophobic interactions. Finally, some proteins consist of 
several amino acid chains (also called subunits) and their arrangements are 
referred to as the quaternary protein structure. As we have already seen with the 
spliceosome and the ribosome, proteins often function in large complexes 
involving several proteins and possibly other macromolecules. 



1.2
Biol
into
redu
sing
inde
biol
ope
thes
pub
Hae
geno
inst
(see
data
stud
geno
gene
[23]
of g
func
und
has 
tech
com
Figure 2. An example protein structure. Helices are colored red, sheets yellow and 
coils grey. a) shows a cartoon of the protein backbone, while b) shows the protein as 
a solid molecule. The pictures were generated using Swiss-PdbViewer [20]. 

 

 Functional genomics  
ogy has traditionally focused on classifying living systems (hierarchically) 
 increasingly smaller parts, and on studying these parts separately. This 
ctionistic research approach has culminated in molecular biology, where 
le molecules in terms of genes and gene products have been studied 
pendently. This way of doing research has of course not been a result of 
ogists failing to realize the value of understanding the holistic molecular 
ration of biological systems, but rather a product of the sheer complexity of 
e systems and the lack of appropriate technology to probe them. With the 
lishing of the first complete genome sequence in 1995 (the bacteria 
mophilus influenzae Rd [18]), the premises have changed. A number of 
me sequencing projects are now providing researchers with the basic 

ructions for the operation of entire organisms at an ever increasing speed 
 http://www.genomesonline.org/, [7]). However, although DNA sequence 
 to some degree has facilitated a transition from molecular genetics (i.e. the 
y of single genes) to genomics (i.e. the study of all genes in a genome), 
mics is more likely to complement rather than replace traditional use of 
tics in understanding the detailed functioning of individual macromolecules 

. Genomics has also undergone a change from the mapping and sequencing 
enomes to the more complex task of determining gene function (i.e. the 
tion of the functional RNAs or proteins coded by the genes) and 
erstanding gene regulation at a genome-wide scale. This part of genomics 
been coined functional genomics, and has spanned a whole generation of 
nologies and databases to provide data and support for the statistical and 
putational analysis making this research possible.  
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Obviously, although sequence data provide us with the static map of an 
organism, it seems impossible to reach the goals of functional genomics using 
this information alone. Additional information, however, may be acquired using 
the opportunities that sequence data gives to identify genes and gene products 
and hence obtain data on the actual dynamic expression of the DNA code. One 
such example is technology for the genome-wide measurement of mRNA levels, 
providing valuable information on which genes are expressed, and thereby 
which gene products are active, in a potentially large range of biological 
contexts.  Another example is methods for obtaining structural data. As stated 
earlier, it is a fundamental biological principle that protein sequence determines 
structure and that protein structure determines function. However, solving the 
structure of a protein is a time-consuming task and the amount of structural 
information therefore lags far behind the vast amount of sequence information. 
Structural genomics, however, promises to close this gap by combining a 
systematic approach to solving protein structure experimentally with 
computational methods for protein structure prediction. The next section will 
give an introduction to bioinformatics and the use of computers in aiding 
functional genomics. However, this section will be complemented with a short 
introduction to DNA sequencing, the high-throughput gene expression 
measurement technology of microarrays and the two most important 
experimental methods for solving protein structure. The two latter methods 
provide additional, partly sequence-derived, data for functional genomics. 

1.2.1 DNA sequencing 
There are several different techniques for determining the nucleotide sequence 
of DNA segments (i.e. DNA sequencing). In one of the most used approaches, 
DNA polymerase (which in the organism amongst other functions performs 
replication) is allowed to copy single stranded DNA segments using both 
altered nucleotides (dideoxynucleotides) and ordinary nucleotides. The alteration of 
the four dideoxynucleotides, corresponding to the four ordinary nucleotides, 
has the effect that when added by the polymerase to the growing chain, no 
further nucleotides can be added to the 3’ end afterwards and hence the strand 
is terminated. Consequently, many fragments of different lengths are created, all 
with a dideoxynucleotide at the 3’ end. A gel solution containing the copied 
fragments may now be charged by a voltage so that the DNA fragments, which 
are slightly negative, start traveling towards the positive end of the gel. The 
speed at which the fragments travel depends on their length and the fragments 
may therefore be ordered accordingly. The four different dideoxynucleotides 
are labeled with four different fluorochromes that emit four different colors of 
light when absorbing radiation of specific wavelengths. The dideoxynucleotides 
at the 3’ end may therefore be scanned with a laser and determined from the 



resulting image. Furthermore, the nucleotides in each position in the original 
DNA segment may now also be determined given fragments of all possible 
lengths. For example, the nucleotide in position 7 in the original segment is 
determined by the color of the light emitted by the dideoxynucleotide at the 3’ 
end of fragments of length 7. 

Whole genomes (or long DNA segments) may be sequenced by first dividing 
them into many overlapping fragments, then sequencing each of the fragments 
separately and finally assembling the genome sequence with the help of the 
overlaps. In addition to DNA, proteins may also be sequenced directly using 
methods such as Edman degradation.  

1.2.2 Microarray technology 
The complementary nature of the DNA double helix is of great importance to 
replication and transcription, and may also be utilized for the large-scale 
measurement of mRNA levels in cells. Two complementary nucleic acid 
molecules (i.e. strands) will combine under the right conditions to form double 
stranded helices.  In a reaction vessel this is referred to as hybridization. Hence, it 
is possible to use identified DNA strands (probes) to query complex populations 
of unidentified, complementary strands (targets) by checking for hybridization. 
Microarrays are glass slides or wafers populated with large numbers of strands 
derived from identified genes. By applying a target sample of unidentified 
mRNA to the array, the expression level of each gene probe may be quantified 
from the extent of hybridization between the probes and the targets. Since one 
slide may contain probes from thousands of genes, one microarray experiment 
may determine the genome-wide expression state of a cell sample. Furthermore, 
systematic series of microarray experiments may reveal the specific changes in 
cellular gene expression associated with different physiological or 
pathophysiological7 responses. 

The most common microarray technology is that of DNA microarrays [15, 36]. 
DNA microarrays are glass slides with DNA probes robotically printed in spots. 
Each spot contains probes from the same gene. The target mRNA is reverse 
transcribed into the more stable cDNA (complementary DNA) and is therefore 
complementary to the original mRNA. The target mRNA comes from two 
different samples (often called the test sample and the reference sample) and is 
separately labeled with the two different fluorescent dyes Cy5 and Cy3. 
Cy5/Cy3 are chemical groups that emit red/green light when absorbing 
radiation of particular wavelengths. The two target samples are in solution and 

                                                 
7 Physiology is the study of life at the organism level in healthy states, while pathophysiology is 

the study of disease states. 
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are simultaneously applied to the slide. The microarray is then scanned with a 
laser, and the two resulting images are analyzed using image analysis software. 
The intensity of the red and green light from each spot is assumed to be 
proportional to the amount of hybridized target cDNA labeled with Cy5 and 
Cy3, respectively. The expression level of each gene is presented as the ratio 
between the intensity of the red light and the green light, and hence reflects the 
expression level in the test sample relative to the expression level in the 
reference.  

The most used technology besides that of DNA microarrays is the so-called 
GeneChips manufactured by Affymetrix [19]. This technology uses photo-
lithographic techniques from the semiconductor industry to synthesize 
oligonucleotides on glass wafers. These oligonucleotide probes are in general much 
shorter than DNA probes (20-25 bases compared to 100-2000 bases) and 
hence less specific to one particular gene. However, oligonucleotides are more 
sensitive since such short probe strands only form stable double stranded DNA 
with target strands that match perfectly. Hence, oligonucleotides are more 
versatile and may be used for example to screen for DNA variations between 
individuals. Unlike DNA microarrays, oligonucleotide microarrays measure the 
absolute mRNA level and hence only need one sample. Another advantage is 
that probes may be synthesized directly from sequence databases, and do not 
need to be produced in advance. However, the oligonucleotide microarrays are 
considerably more expensive to produce than DNA microarrays. 

A microarray study comprises a number of steps in addition to what has been 
described here. Obtaining the actual mRNA measurement is preceded by the 
experimental design (e.g. [14]) and followed by filtering and normalization of 
the data (e.g. [33]) and computational data analysis (e.g. [1, 32, 38]). 

1.2.3 Crystallography and nuclear magnetic resonance 
Protein structure is physically determined by x-ray crystallography [39] or nuclear 
magnetic resonance (NMR) [43]. Although other methods may give different and 
complementary information about the structure of proteins, including the 
primary and quaternary structure, crystallography or NMR are needed to obtain 
the secondary and tertiary structure since this requires determining the 
arrangement of atoms within proteins. 

The x-ray crystallography method depends on placing a repeating array of many 
identical molecules (a crystal) in an x-ray beam and observing the diffraction pattern. 
The x-ray beam interacts with the electrons of all atoms in the crystal. These 
interactions scatter x-rays in all direction and only those positively interfering 
with each other give rise to diffracted beams that may be seen as spots in the 



diffraction pattern. To calculate the positions of each atom, the amplitude, 
wavelength and phase of the diffracted beams are needed. The amplitude is 
proportional to the intensity of the spot and the wavelength is set by the x-ray 
source, however, the phase is lost in the diffraction pattern. The so-called phase 
problem is a major problem of crystallography and may be solved by comparing 
the diffraction data from the original crystal with data from crystals modified 
with the addition of heavy atoms. An electron-density map is then calculated for 
the repeating molecule in the crystal and interpreted as a structural model. The 
quality of the model mainly depends on the errors in the phases and the 
resolution of the diffraction pattern, which in turn depend on the crystal quality. 
The model is subjected to a computational process where the atoms in the 
model are shifted about to optimize the fit between the model and the 
experimental data. 

NMR measures the magnetic momentum or spin of certain atomic nuclei. Since 
the spin of atoms is affected by their bonds to other atoms, this method may 
obtain a list of distance constraints between the atoms of the molecule. A 
structural model of the protein molecule may then be calculated using these 
constraints. The main advantage of NMR over crystallography is that the 
proteins are in solution and do not need to be crystallized. The problems 
related to obtaining good crystals are the main restriction on the rate at which 
crystallography produces structural models. The main disadvantage of NMR is 
that the method cannot currently be applied to large protein molecules and that 
it requires the protein to have high solubility.  

1.3 Bioinformatics 
The development of genomics and high-throughput experimental technologies 
created the need for computers to store and analyze large amounts of data. As 
was the case for genomics, bioinformatics developed from being a discipline 
mainly associated with sequence databases and sequence analysis to a 
computational science using biological data to do e.g. functional genomics. 
Although different definitions and views of bioinformatics exist, most 
researchers now use bioinformatics as a generic term for both the storage and 
maintenance of biological data and the use of computational data analysis 
methods and algorithms in functional genomics-related studies [25]. 
Bioinformatics thus involves a number of scientific fields including 
mathematics, statistics, informatics, physics, chemistry, biology and medicine. It 
is the definition of bioinformatics as data analysis for functional genomics that 
will be emphasized in this study. 

One commonly used methodology in bioinformatics and functional genomics 
is that of machine learning. Machine learning addresses the problem of using 



 11 
 

computers to learn general concepts from observations and knowledge, and has 
traditionally been developed in two different schools. Statisticians develop 
learning methods based on the mathematical frameworks of probability theory 
and statistics (see e.g. [22, 24]). Computer scientists often develop methods 
based on models of intelligent systems (e.g. methods inspired by biology such 
as genetic algorithms and neural networks, or methods based on logic such as 
rule learning, see the section on machine learning below) [29]. The differences 
are primarily due to the fact that statisticians have mostly been interested in  
pure data analysis, while computer scientist have also been interested in 
building intelligent systems (e.g. robots with artificial intelligence [34]). However, 
these different views are somewhat converging, forming hybrids using elements 
from both statistics and computer science (e.g. pattern recognition [41]). 

Induction refers to generalizing from observations to broad concepts and differs 
from deduction that refers to using general concepts (or theories) to infer specific 
hypotheses. In molecular biology, induction is particularly relevant since the 
general theories have not yet been worked out. For example, we know that a 
relationship exists between sequence and structure, but this relationship is not 
well understood in terms of theories that may be used to deduce good 
structural models for a particular protein sequence. However, we do have 
examples of this relationship in terms of protein structures that are 
experimentally solved. And machine learning methods are designed to induce 
models based on examples, partially describing the assumed underlying 
functional relationship between, in this case, sequence and structure. The most 
common application of such models is that of prediction. However, given a 
model that can reliably predict protein structure from sequence (in particular 
for unseen proteins, i.e. proteins that were not available when the model was 
induced), this model obviously includes general concepts that may also be used 
to understand the relationship. And this understanding may in time lead to 
general theories. Consequently, machine learning may be used both for predictive 
and for descriptive purposes. In molecular biology, and in particular in functional 
genomics, we will se that a number of problems may be addressed using the 
concepts of examples and machine learning. And successful application of such 
methods could lead to situations where biological experiments are used to 
obtain information on a (representative) set of cases, models are automatically 
induced from these examples and finally used to fill in the missing knowledge 
for the remaining cases. This is the philosophy of structural genomics 
mentioned earlier: to solve the structure of at least one protein from each 
structural class (e.g. fold, see the section on databases and annotations below) 
experimentally and to predict the structure of the remaining proteins using 
sequence similarity to proteins with solved structures. 



One of the major obstacles for effective use of machine learning in functional 
genomics has been the lack of structure in the existing biological knowledge in 
terms of computer readable databases and annotations. Text mining and 
automatic inference from free text has therefore been one major part of 
bioinformatics and will continue to be so (for an overview see [37]). In what 
follows, a short introduction will be given to relevant databases and annotation 
efforts. This will be followed by an introduction to the most popular machine 
learning methods used for utilizing these resources in functional genomics.  

1.3.1 Databases and annotations 
The Internet provides the infrastructure for accessing and sharing biological 
information, and has been decisive in the development of functional genomics 
and bioinformatics. In general, we will divide biological information into 
measured, unprocessed data such as sequences and expressions, and human-
processed knowledge such as gene function. Data are normally stored in publicly 
accessible databases, while most biological knowledge is available in terms of 
published articles. PubMed (http://www.ncbi.nlm.nih.gov/PubMed) is the 
main electronic free-text database providing access to all biomedical literature 
in MEDLINE8. However, although PubMed in principle includes all available 
biological knowledge, this knowledge is not easily accessible at the large scale 
required by functional genomics studies. A biologist may read all articles 
relevant to one particular gene, but the task of extracting all relevant knowledge 
on all characterized genes for a genome-wide study is overwhelming. 
Additionally, this knowledge needs to be structured in a computer readable 
fashion so that, for example, expression data may be automatically correlated 
with gene function for a large number of genes. Hence, genomic studies have 
pushed the formalization of biological knowledge in terms of structured 
vocabularies that may be used for annotating the databases. A short overview 
of the most important and relevant databases and annotation efforts will be 
given next. 

The International Nucleotide Sequence Database Collaboration (INSD) 
consists of DNA Databank of Japan (Japan, http://www.ddbj.nig.ac.jp/, [40]), 
GenBank (USA, http://www.ncbi.nih.gov/Genbank/, [5]) and EMBL 9  
Nucleotide Sequence Database (Europe, http://www.ebi.ac.uk/embl/, [26]). 
These databases store and maintain all publicly available DNA sequences 
according to a commonly agreed-upon standard. In addition to sequences of 

                                                 
8 MEDLINE is the literature database maintained by the National Library of Medicine (NLM) 

covering the fields of medicine, nursing, dentistry, veterinary medicine, the health care system 
and the preclinical sciences. It contains abstracts, MeSH terms and other publication details. 
MeSH is a controlled hierarchical vocabulary used to index the articles.  

9 European Molecular Biology Laboratory (EMBL).  
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characterized genes, the nucleotide sequence databases include a large number 
of so-called expressed sequence tags (EST) [8]. ESTs are short sub-sequences 
of expressed DNA and are synthesized using mRNA as a template (hence the 
name). Many of these ESTs are not linked to any characterized genes, and  
are used both for gene discovery and for designing probes for  
microarray experiments. Since ESTs are short sub-sequences, even non-
overlapping ESTs may come from the same gene. UniGene 
(http://www.ncbi.nlm.nih.gov/UniGene, [42]) is an experimental system 
attempting to bring some order to the gene/EST sequence data by 
automatically clustering GenBank sequences into non-redundant sets that 
correspond to single genes. 

Swiss-Prot (http://www.ebi.ac.uk/swissprot/, [4]) is a protein sequence 
database that together with the TrEMBL supplement (Translated EMBL 
Nucleotide Sequence Data Library, [4]) contains translated protein sequences 
for all DNA sequences in the nucleotide sequence databases. In addition, 
Swiss-Prot provides extensive annotation and cross-references to other 
databases. Both these databases are now integrated in UniProt (Universal 
Protein Resource, http://www.ebi.ac.uk/uniprot/, [2]). 

The Protein Data Bank (PDB, http://www.rcsb.org/pdb/, [6]) is the major 
database for protein structures and provides 3D coordinates for all publicly 
known structures. The Macromolecular Structure Database (MSD, 
http://www.ebi.ac.uk/msd/, [9]) includes all proteins in PDB and provide 
extensive annotations and cross-references to other databases such as Swiss-
Prot. In addition, two major classification trees exist for protein structures. 
SCOP (Structural Classification of Proteins, http://scop.berkeley.edu/, [30]) 
classify  protein domains from PDB proteins into three major levels of 
increasing specificity: 

 Fold: Domains are classified to the same fold if their main secondary 
structure elements have the same relative orientation and connectivity 
(Protein structure topology may be defined in terms of orientation and 
connectivity. Orientation refers to the direction of the structural 
elements in space, while connectivity refers to the order of these 
elements along the main chain, i.e. how they are connected by the main 
chain). 

 Superfamily: Domains are classified to the same superfamily if their 
sequence identity is low, but structural and functional features indicate 
that a common evolutionary origin is probable. 



 Family: Domains classified to the same family have a clear evolutionary 
relationship, and normally have sequence identity greater than 30% or, 
in some cases where sequence identity is lower, common structural or 
functional features that provide definitive evidence of an evolutionary 
relationship. 

ASTRAL (http://astral.berkeley.edu/, [13]) provides non-redundant sets of 
SCOP protein domains and PDB coordinates for these domains. CATH  
(Class, Architecture, Topology and Homologous superfamily, 
http://www.biochem.ucl.ac.uk/bsm/cath/, [31]) is the other major 
classification tree for protein domains providing a similar classification tree to 
that of SCOP. 

Gene expression data are now also published in databases. MIAME (Minimum 
Information About a Microarray Experiment, [10]) is a standard specifying the 
information that should be published together with a microarray experiment to 
facilitate correct interpretation and reproducibility. A number of public 
databases storing gene expression data are using the MIAME standard, 
including ArrayExpress (http://www.ebi.ac.uk/arrayexpress/, [11]) and GEO 
(Gene Expression Omnibus, http://www.ncbi.nlm.nih.gov/geo/, [16]). 

The main goal of functional genomics is the genome-wide determination of 
gene function. Gene Ontology (GO, http://www.geneontology.org, [3]) 
provides an organism-independent controlled vocabulary for describing the 
cellular roles of genes and gene products to this end. The ontology is divided 
into three parts: 

 Molecular function: task performed by an individual gene product. 

 Biological process: broad biological goal accomplished by an ordered 
assembly of molecular functions. 

 Cellular component: subcellular location where a gene product is active. 

Each of the three parts of GO is a directed acyclic graph (DAG)10 where nodes are 
so called GO terms describing a particular aspect of a molecular function, 
biological process or cellular component and edges are either is-a or part-of11 

                                                 
10 A graph is defined by a finite set of nodes connected by edges. A directed acyclic graph is a 

graph where the edges only have one direction (often symbolized by arrows) and where there 
is no path (i.e. set of connected nodes) starting and ending at the same node. 

11 The is-a relationship between two terms (or nodes) means that one term (the child) is a 
subclass of the other term (the parent) (e.g. mitotic cell cycle is-a cell cycle). The part-of 
relationship means that whenever the child exists, it is as part of the parent (but not necessarily 
the other way around) (e.g. cell cycle is part-of cell proliferation (i.e. cell growth through cell 
division)). 

http://www.ebi.ac.uk/arrayexpress/
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relations connecting two nodes. GO consequently describes cellular roles at 
different levels of generality and offers a powerful vocabulary for annotating 
gene products. An annotation in this context is simply an association between a 
gene or gene product and a GO term. An annotated gene should be associated 
with at least one GO term from each of the three GO parts (very often 
biologists find that several terms from each part are needed in order to describe 
the role of a gene product). Obviously, annotations will reflect the knowledge 
biologists possess about a certain gene product and may therefore vary in terms 
of how general they are. The GO graph, however, describes the relationship 
between different GO terms and therefore provides a way of comparing the 
annotations of two different gene products. The GO homepage provides 
annotations for a number of organisms made available by different 
collaborating groups. The MSD database (see earlier in this section) provides 
GO annotations for all characterized protein structures in PDB. Finally, there 
exist several other controlled vocabularies for functional annotation, most 
notably the MIPS12 functional catalogue (http://mips.gsf.de/projects/funcat, 
[28]). 

1.3.2 Machine learning 
Machine learning deals with the problem of using computers to learn general 
concepts from training sets. A training set consists of a finite number of 
observations labeled or annotated with class knowledge and is assumed to 
constitute a partial description of an underlying functional relationship between 
the observations and the classes. In general, the labels may be continuous 
values or even more complex structures. However, in this section we will deal 
with the so called classification problem in which the training observations are 
assumed to belong to a finite set of classes and we want to learn a model or 
classifier capable of assigning an observation to one of these classes. Moreover, 
we will in general assume two classes, since problems with more than two 
classes easily may be reduced to a set of two-class problems.  

Most machine learning methods represent the observations in terms of features. 
Each observation is a set of measurements, one for each such feature, 
collectively constituting a feature vector. Each observation may alternatively be 
viewed as a point in the multidimensional space spanned by the features (i.e. 
the feature space). Of course, not all classification problems are easily represented 
in this way, and choosing the right features is a very important issue specific to 
each classification problem. 

 
12 Munich Information center for Protein Sequences (MIPS) 



The machine learning methods mainly differ in how they represent the induced 
model. A number of different designs exist with different advantages and 
disadvantages. A short overview will be given in the next paragraphs, 
emphasizing methods that are commonly used in relevant functional genomics 
studies (see e.g. [24, 29, 41] or specified references for further reading). 

Clustering methods 
Methods for discovering natural, underlying classes from a set of observations 
are called clustering or unsupervised learning. These methods are used when no class 
knowledge is available. Consequently, methods utilizing labeled training sets are 
called supervised learning reflecting the conceptual idea that a supervisor provides 
the labels to the learning system. 

Clustering methods are divided into iterative methods and hierarchical methods. 
The k-means algorithm is the most used iterative approach. It starts with a set of 
k randomly chosen clusters of observations and iteratively (a) calculates the 
center of each cluster (i.e. the centroid), (b) assigns each observation to the 
cluster defined by the closest centroid and (c) returns to (a) until no more 
observations change clusters. The centroid of a cluster and the closeness of two 
observations may easily be calculated in the feature space by using e.g. the 
notion of distance. The k-means algorithm is fast and uses little memory, but 
depends on the initial number and configuration of clusters. A well known 
related method is that of self-organizing maps. 

The most popular hierarchical clustering method is agglomerative hierarchical 
clustering. It starts with the observations as single clusters and subsequently 
merges the two most similar clusters until all observations reside within one big 
cluster. The distance between two clusters may easily be calculated as the 
average distance between all pairs of observations in the two clusters (average 
linkage) or the longest/shortest distance between two observations in the two 
clusters (complete/single linkage). The result of the algorithm is a tree of clusters 
(dendrogram) illuminating the similarity structures in the data set. Since the 
method needs to compute and store the distance between all clusters, it is much 
slower and uses much more memory than for example the k-means algorithm. 

Bayes classification rule 
The Bayes classification rule states that an observation should be assigned to the 
class with the highest probability given the probability distribution of feature 
vectors in each class. It may be proven that this rule results in an optimal error 
rate for classification (i.e. fraction of training observations classified to the 
wrong class). However, the true probability distribution is normally not known 
and hence needs to be estimated. The difficulty of estimating the distributions 
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from the training data is why other methods exist and often perform better on 
real world problems. 

There are two basic concepts for estimating probability distributions from data; 
parametric and non-parametric methods. A parametric method assumes a 
distribution structure (e.g. the normal distribution) and calculates its parameters 
from the data (e.g. average and variance for the one-dimensional normal 
distribution). A non-parametric method is based on constructing histograms 
from the data using for example Parzen windows or k nearest neighbor density 
estimation, or simulation methods such as Monte Carlo simulation or 
bootstrapping. In the one dimensional case, a histogram is constructed by 
dividing the observations into bins and using the fraction of observations from 
each bin as probability estimates. In the multidimensional case, however, bins 
are replaced by hypercubes (e.g. Parzen windows). If N observations are needed 
from each bin to get good probability estimates in the one dimensional case, Nn 
observations are needed in the n-dimensional case. The dramatic increase in the 
number of observations needed to get good estimates is often referred to as the 
“curse of dimensionality”. 

Linear classifiers 
Linear classifiers use a line (in two dimensions) or a hyperplane (in multiple 
dimensions) to separate two classes of observations in feature space. These 
methods generally consist of a cost function (e.g. error rate) and an 
optimization algorithm which iteratively changes the parameters defining the 
hyperplane so that the cost function is minimized over the training set. 

If linear classifiers do not yield good results, the problem might be that the 
classes are not linearly separable. Artificial neural networks (ANNs) are one 
popular method for nonlinear problems and are based on networks of so-called 
perceptrons. A perceptron is a simple computational unit that multiplies each 
input value with a weight and sums up the products. In principle, the output 
from the perceptron is 0 if the sum is less than a particular threshold and 1 
otherwise. ANNs consist of layers of perceptrons, where the output of each 
perceptron in one layer is connected to the input of each perceptron in the next 
layer. The first layer (i.e. the input layer) consists of the same number of 
perceptrons as the number of features and the last layer (i.e. the output layer) 
consists, in the case of two classes, of one perceptron. The network is trained 
by iteratively inputting the feature vectors to the first layer, calculating the 
output of each perceptron until the last perceptron, comparing the output value 
with the true class label and updating the weights for each perceptron by 
propagating the error backwards in the network (the backpropagation algorithm). 
The training stops when the network is no longer improving its classification. 



Another popular method for nonlinear problems is (nonlinear) support vector 
machines (SVMs). The SVMs first map the observations in the feature space into 
another space using a kernel function. A maximally separating hyperplane is then 
constructed based on the observations closest to the region that separates the 
two classes (the support vectors). The performance of SVMs greatly relies on the 
choice of kernel function and to what degree the kernel function is able to map 
the original classification problem into a linearly separable one. 

Context-dependent classifiers 
A classifier is context dependent if the classification does not only depend on the 
feature vector of one observation, but also on the feature vectors of the other 
observations and on the dependencies between the classes. The task then 
becomes to simultaneously assign a class sequence to a sequence of 
observations. This corresponds to the problem of optimally aligning two 
sequences and therefore often occurs in DNA and amino acid sequence 
analysis. One of the most common approaches to this problem is to assume 
that the class of one observation only depends on the class of the previous 
observation. This model is called a (first-order) Markov model and may be 
utilized to find the optimal class sequence with a reasonable amount of 
computation (using e.g. dynamic programming). 

k-nearest neighbor classifiers 
k-nearest neighbor approaches are based on classifying observations according to 
the class labels of the k closest training observations in the feature space. This 
is probably the simplest and most intuitive approach among all supervised 
methods, and is therefore commonly used. 

Decision trees and rule-based classifiers 
Decision trees and rule-based classifiers work on discrete (i.e. categorical) values or 
by dividing the feature space into boxes (two dimensions) or hypercubes 
(multiple dimensions), and by combining these into complex decision surfaces 
(i.e. surfaces in the feature space separating the classes).  

Decision trees classify observations by sorting them down a tree from the root 
node to the leaf nodes, where the leaf nodes actually provide the classification. 
Each node corresponds to a feature and redirects the observations to different 
child nodes depending on their values for that feature. The tree is constructed 
top-down by iteratively selecting the most class-separating feature as a node. 

A related approach is that of learning a set of IF-THEN rules. Note that a 
decision tree may be represented as a set of rules by translating each path in the 
tree (from root to leaf) into a rule.  
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Feature selection 
Feature selection refers to the problem of selecting the most important features so 
as to reduce their number and at the same time retaining class separability 
allowing classification. There are a number of reasons for doing feature 
selection. The obvious reason relates to reducing the computational cost of 
inducing classifiers. However, more important is the fact that the number of 
features translates directly into the number of classifier parameters (e.g. the 
number of perceptron/weights in an artificial neural network). And there is a 
fundamental principle in machine learning stating that the higher the ratio 
between the numbers of training examples and the numbers of classifier 
parameters, the better the induced classifier will perform on unseen 
observations (e.g. more observations per dimension/feature gives better 
estimates of the probability distribution and hence better performance using 
Bayes classification rule). 

There are two broad approaches to feature selection. Filter methods select 
features according to some evaluation criterion (e.g. correlation between the 
feature and the class knowledge) and then induce a classifier based on these 
features. Wrapper methods use the classifier itself as the evaluation criterion, and 
select the features that result in the best classification performance. 

Feature generation/extraction refers to constructing new features based on different 
combinations of the old features. One example is rotating the feature space to 
possibly obtain better class separation (e.g. using principle component analysis). 

Bootstrapping, bagging and boosting 
Bootstrapping [17] is a general re-sampling method that allows statistical inference 
about a summary statistic (e.g. sample mean) from a data set without knowing 
the sample distribution. The idea is to randomly draw with replacement a large 
number of new data sets from the original data set and to calculate the 
summary statistic from each such bootstrap sample. This provides several 
values for the summary statistic which may be used to infer for example its 
variance or confidence interval. 

Bagging [12] and boosting [35] are general methods for improving the 
classification performance of any supervised method. Bagging (bootstrap 
aggregation) uses bootstrapping to sample a large number of training sets from 
the original set of examples. A model is induced from each such bootstrap 
sample and combined (aggregated) during classification to obtain what is often 
a better classification performance. Boosting is a similar method in which a 
weight is associated with each training example. Models are iteratively induced 
from the training set according to these weights and used to re-classify the 



examples. The weights are subsequently updated to put more emphasis on 
incorrectly classified examples. If the applied learning method cannot utilize the 
weights directly, bootstrap training sets may be constructed according to the 
weights (i.e. each example is drawn with a probability corresponding to the 
weight). 

Genetic algorithms 
Genetic algorithms are used to solve search problems where solutions can be 
coded as strings of 0’s and 1’s. An initial population of solutions is generated 
randomly and the best solutions, according to some fitness function, are 
iteratively chosen to breed new generations of solutions using genetic operators 
such as mutation and crossover. Supervised learning involves a number of 
search problems that may easily be approached with genetic algorithms. One 
example is feature selection, where each solution may be interpreted as a mask 
for including or excluding features. 

Time complexity 
The big O notation is used to describe the worst case running time of an 
algorithm as a function of its input size n. For example, the agglomerative 
hierarchical clustering algorithm using single linkage has a time complexity of 
O(n2) (i.e. it computes the “all-against-all” distance between observations in 
feature space). Hence, if 100 observations take 10 seconds to cluster, then 
10000 observations (which is a typical number of genes in a microarray 
experiment) take 27.8 hours. 

Algorithms that have a worst case running time of O(nk), where k is a constant, 
are so-called polynomial-time algorithms. Problems for which no polynomial-
time algorithm has yet been discovered are said to belong to the class of NP-
complete problems (NP stands for non-polynomial). Such problems need to be 
approached with approximation algorithms that find “good enough” solutions. 
For example, finding the optimal subset of features (which is the goal of 
features selection discussed earlier) is NP-complete (i.e. it requires searching 
trough all 2n-1 subsets and hence has a time complexity of O(2n)). Feature 
selection may for example be approached with the wrapper method using a 
genetic algorithm, or with the filter method using the correlation coefficient 
between each feature and the class labels. The latter approach of reducing a 
multi-dimensional problem into considering one dimension at a time (starting 
with the “best” dimension) is often referred to as a greedy approach. 

Classifier evaluation 
A classifier is best evaluated by applying it to a set of unseen observations (i.e. a 
test set). To obtain good estimates of the true classification performance it is 
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important to use a test set that is representative for the observations that the 
classifier is likely to encounter in the future. In practice, it is common to divide 
the available labeled observations (i.e. examples) randomly into a training set 
and a test set. The training set is used to induce a classifier and the test set is 
used for estimating the classification performance. If few observations are 
available, which is commonly the case, cross validation may get the most out of 
the data in terms of performance estimation. k-fold cross validation refers to 
dividing the examples into k equally sized subsets and using one subset for 
testing and the rest for training. This is done repeatedly so that each subset acts 
as a test set once and is part of the training set k-1 times. If k equals the 
number of examples, this method is referred to as leave-one-out cross validation. 
To get good estimates of the classifier performance it is important that 
information contained in the test set is not used in the training. For example, 
feature selection should be done after splitting the available examples into 
training and test sets. Doing feature selection on all available examples implies 
using the class knowledge contained in future test sets to induce the classifier 
and hence may lead to optimistic estimates of the true classification 
performance. 

Performance measures and ROC analysis 
A number of statistics exist for measuring the performance of a classifier on a 
test set. Accuracy is simply the fraction of test observations classified to the 
correct class (error rate = 1-accuracy). However, accuracy may provide 
insufficient information when the classes contain different numbers of 
examples or when making one type of error is more severe than making 
another.  

Given two classes of positive and negative observations,  

 false positives (FP) are negative observations classified to the positive 
class, 

 false negatives (FN) are positive observations classified to the negative 
class,  

 true positives (TP) are correctly classified positive observations and 

 true negatives (TN) are correctly classified negative observations. 

Furthermore, sensitivity and specificity are the fractions of correctly classified 
positive and negative observations, respectively (i.e. TP/(TP+FN) and 
TN/(TN+FP)). Many classification methods do not perform classification 
directly, but rather output a value representing the certainty that a test 
observation belongs to the positive class. Hence, we are left with the problem 



Figure 3. Example ROC curves. 
Clearly, classifier A performs better than 
both B and C. However, classifier B 
only performs better than C on low 
threshold values, while C performs 
better than B on high threshold values. 
Nonetheless, the AUC value of B is 
larger than that of C. 
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of choosing a certainty threshold for selecting the positive class as the 
classification. The receiver operating characteristic (ROC) curve may be constructed 
by plotting sensitivity against specificity for the full range of possible threshold 
values (see Figure 3). A number of classification applications are associated with 
different costs for making a false positive classification compared to making a 
false negative classification. The ROC curve graphically displays the threshold-
independent classification performance and provides a vehicle for controlling 
the number of false positives and false negatives. Increasing the threshold value 
reduces the number of false positives, but at the same time increases the 
number of false negatives. The area under the ROC curve (AUC, [21])  is often 
used to measure the threshold independent classification performance using 
one single number (i.e. AUC equal to 1 signifies a perfect discrimination of the 
positive and negative examples, while AUC equal to 0.5 signifies no 
discriminatory capability at all). The standard error of this measure is calculated 
using the Hanley-McNeil formula [21]. However, one should be aware that two 
ROC curves obtained using two competing classifiers may intersect and hence 
indicate that one classifier performs better for one range of threshold values, 
while the other performs better for another range of threshold values (see 
Figure 3). This information is of course lost when computing the AUC value. 

Overfitting and classifier selection 
A classifier is said to overfit the training set if there exists another classifier that 
performs worse on the training set, but better on the test set. A general 
principle for handling overfitting is related to the principle of Occam’s razor 
which states that the simplest model fitting the data should be used. Hence, 
according to this principle we should for example use the artificial neural 
network with the fewest perceptrons classifying the training set satisfactorily. 
This principle also applies to choosing a classification method. One should for 
example avoid using a nonlinear method on a linearly separable classification 
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problem. This is of course related to the principle that the ratio between the 
number of training observations and the number of classifier parameters should 
be as large as possible (see the discussion in the feature selection paragraph 
above) More in-depth discussions on issues related to so-called learning theory 
may be found in e.g. [29, 41]. 
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