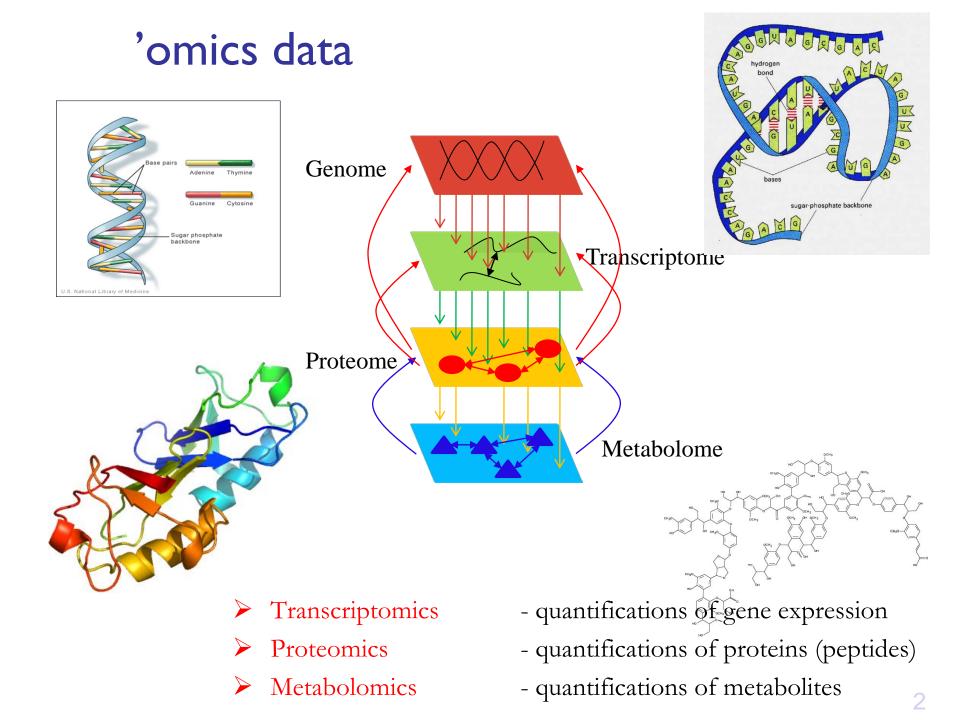
Omics data analysis

Torgeir R. Hvidsten Assistant professor in Bioinformatics Umeå Plant Science Center (UPSC) Computational Life Science Centre (CLiC)



Gene expression data

M < 100

Gene/Expr	E1	E2	E 3	E4	E5	E6	E7	E8	E9	E10		EM
G1	-0.47	-3.32	-0.81	0.11	-0.60	-1.36	-1.03	-1.84	-1.00	-0.60		-0.94
G2	0.66	0.07	0.20	0.29	-0.89	-0.45	-0.29	-0.29	-0.15	-0.45		-0.42
G3	0.14	-0.04	0.00	-0.15	-0.58	-0.30	-0.18	-0.38	-0.49	-0.81		-1.12
G4	-0.04	0.00	-0.23	-0.25	-0.47	-0.60	-0.56	-1.09	-0.71	-0.76		-0.62
G5	0.28	0.37	0.11	-0.17	-0.18	-0.60	-0.23	-0.58	-0.79	-0.29		-0.74
G6	0.54	0.53	0.16	0.14	0.20	-0.34	-0.38	-0.36	-0.49	-0.58		-1.47
G7	0.20	0.14	0.00	0.11	-0.34	-0.03	0.04	-0.76	-0.81	-1.12		-1.36
G8	0.40	0.43	0.18	0.00	-0.14	0.29	0.07	-0.79	-0.81	-0.92		-1.22
G9	0.01	0.46	0.28	-0.34	-0.23	-0.36	-0.45	-0.64	-0.79	-1.22		-1.09
GN	-0.23	0.04	0.00	-0.30	-0.29	-0.45	-0.97	-2.06	-0.89	-1.22	•••	-0.97

N > 10000

Two-channel experiments: One-channel experiments: RNA-Seq:

ratio-based intensities ("Red/Green") "absolut" intensities

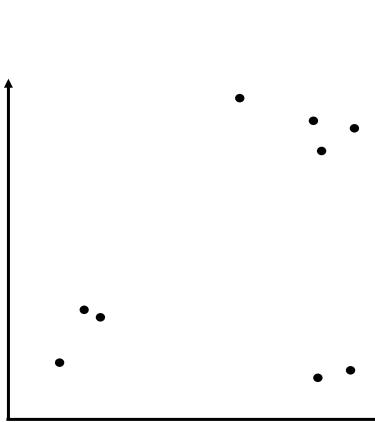
"number" of transcripts expressed

Conditions/tissues/time

_								
	0.54	0.53	0.16	0.14	0.20	-0.34	-0.38	-0.36
	-0.47	-3.32	-0.81	0.11	-0.60	-1.36	-1.03	-1.84
	0.66	0.07	0.20	0.29	-0.89	-0.45	-0.29	-0.29
	0.14	-0.04	0.00	-0.15	-0.58	-0.30	-0.18	-0.38
	-0.04	0.00	-0.23	-0.25	-0.47	-0.60	-0.56	-1.09
	0.28	0.37	0.11	-0.17	-0.18	-0.60	-0.23	-0.58
	0.54	0.53	0.16	0.14	0.20	-0.34	-0.38	-0.36
	0.20	0.14	0.00	0.11	-0.34	-0.03	0.04	-0.76
	0.40	0.43	0.18	0.00	-0.14	0.29	0.07	-0.79
	0.01	0.46	0.28	-0.34	-0.23	-0.36	-0.45	-0.64
	-0.23	0.04	0.00	-0.30	-0.29	-0.45	-0.97	-2.06
•								

Condition A

Time series versus Feature space



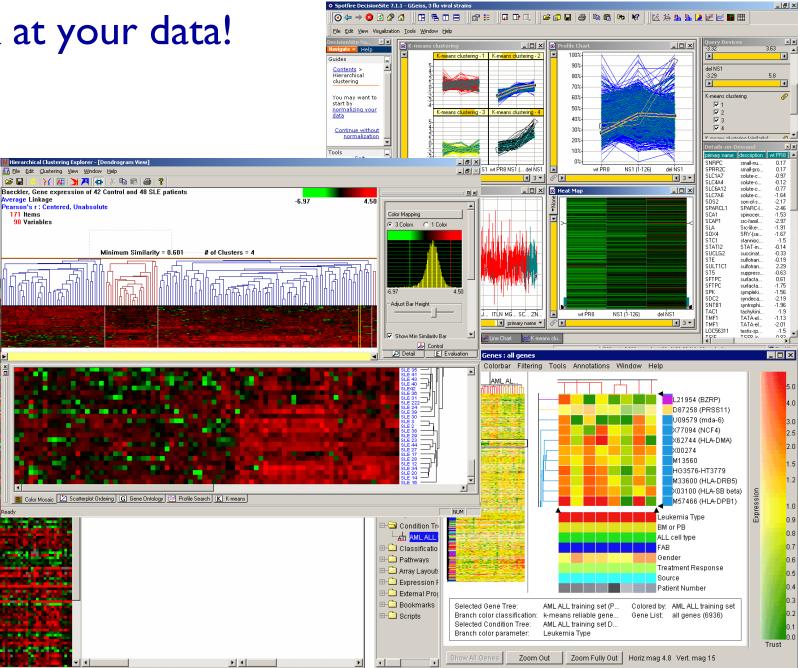
'omics data

Condition **B**

🛎 日

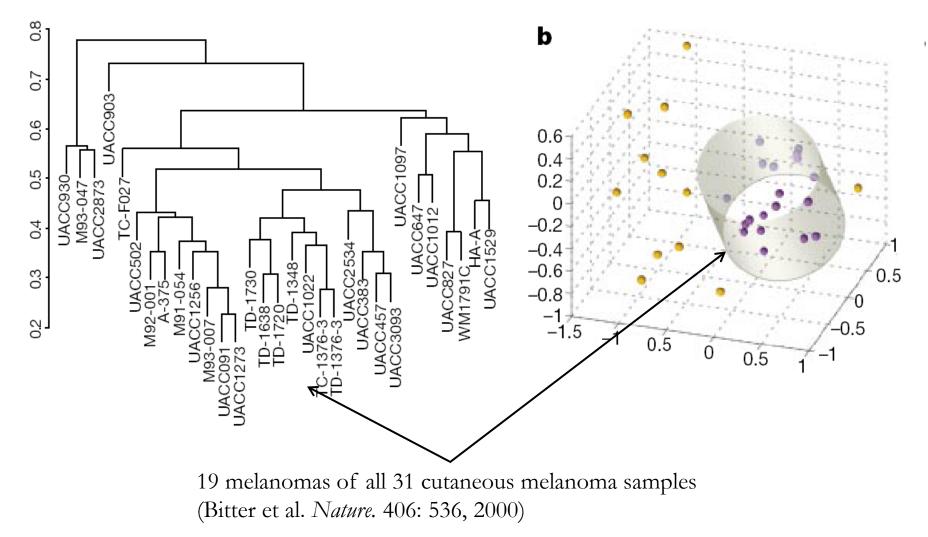
TreeView

Setting Find Help



Looking into more than 3D: Hierarchical clustering and principle component analysis (PCA)

а



Machine learning

- Supervised learning; used to learn a model from a set of examples with predefined classes of genes/experiments (training set)
- Unsupervised learning (clustering, class discovery); used to "discover" natural groups of genes/experiments

Training examples

M < 100

Gene/Expr	E1	E2	E3	E4	E5	E6	E7	E8	E9	E10	 EM	
G1	-0.47	-3.32	-0.81	0.11	-0.60	-1.36	-1.03	-1.84	-1.00	-0.60	 -0.94	٦
G2	0.66	0.07	0.20	0.29	-0.89	-0.45	-0.29	-0.29	-0.15	-0.45	 -0.42	
G3	0.14	-0.04	0.00	-0.15	-0.58	-0.30	-0.18	-0.38	-0.49	-0.81	 -1.12	
G4	-0.04	0.00	-0.23	-0.25	-0.47	-0.60	-0.56	-1.09	-0.71	-0.76	 -0.62	ł
G5	0.28	0.37	0.11	-0.17	-0.18	-0.60	-0.23	-0.58	-0.79	-0.29	 -0.74	
G6	0.54	0.53	0.16	0.14	0.20	-0.34	-0.38	-0.36	-0.49	-0.58	 -1.47	
G7	0.20	0.14	0.00	0.11	-0.34	-0.03	0.04	-0.76	-0.81	-1.12	 -1.36	
G8	0.40	0.43	0.18	0.00	-0.14	0.29	0.07	-0.79	-0.81	-0.92	 -1.22	٦
G9	0.01	0.46	0.28	-0.34	-0.23	-0.36	-0.45	-0.64	-0.79	-1.22	 -1.09	l
						• • •					 	ſ
GN	-0.23	0.04	0.00	-0.30	-0.29	-0.45	-0.97	-2.06	-0.89	-1.22	 -0.97	
			<u> </u>									

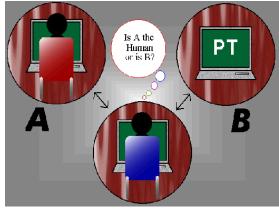
N > 10000

Transgenic

Artificial intelligence: The Turing test

1912-1954

- Turing proposed that a computer program show intelligent behavior if is able to fool a human interrogator
- The Turing test: the computer is interrogated by a human via a teletype, and passes the test if the interrogator cannot tell if there is a computer or a human at the other end
 - natural language processing
 - knowledge representation
 - automated reasoning
 - machine learning



Al techniques

- \succ Logics
- Knowledge representation
- ➤ Search
- ➢ Machine learning
- Pattern recognition
- > Automatic theorem proving
- ➢ Planning
- Machine vision
- Natural language processing

"...making a machine behave in ways that would be called intelligent if a human were so behaving"

- John McCarthy, August 31, 1955

"The subfield of computer science concerned with the concepts and methods of symbolic inference by computer and symbolic knowledge representation for use in making inferences."

- The Free On-line Dictionary of Computing (September 27, 2003)

Example: Decision tree learning

Country	Communists	Socialists	Greens	Social Democrats	Liberals	Agrarians	Subnational, regional and ethnic parties	Christian Democrats	Conservatives	Extreme Right
Norway	0	7	0	38	4	8	0	9	24	6
Sweden	6	0	2	43	10	17	0	2	18	1
Denmark	4	9	0	33	13	14	0	3	15	9
Finland	15	0	2	24	3	25	5	3	21	0
Iceland	0	18	3	16	4	22	0	0	36	0
UK	0	0	9	39	15	0	4	0	42	0
Netherlands	2	5	0	30	23	0	0	37	0	0
Belgium	2	0	4	27	19	0	14	31	0	2
Luxembourg	6	1	3	31	21	0	0	34	0	1
Switzerland	2	2	7	22	23	11	0	22	3	5
Austria	1	0	2	48	0	U	0	41	0	8
Germany	1	0	3	40	9	0	0	46	0	1
France	15	2	2	28	20	0	0	-	25	5
Italy	29	0	3	15	4	0	3	35	2	6
Greece	10	0	0	39	6	0	0	U	44	0
Spain	8	0	0	39	16	0	10	0	21	0
Portugal	15	0	1	31	38	0	0	1	11	0

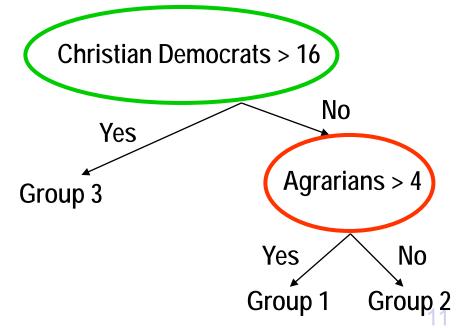
Class knowledge:

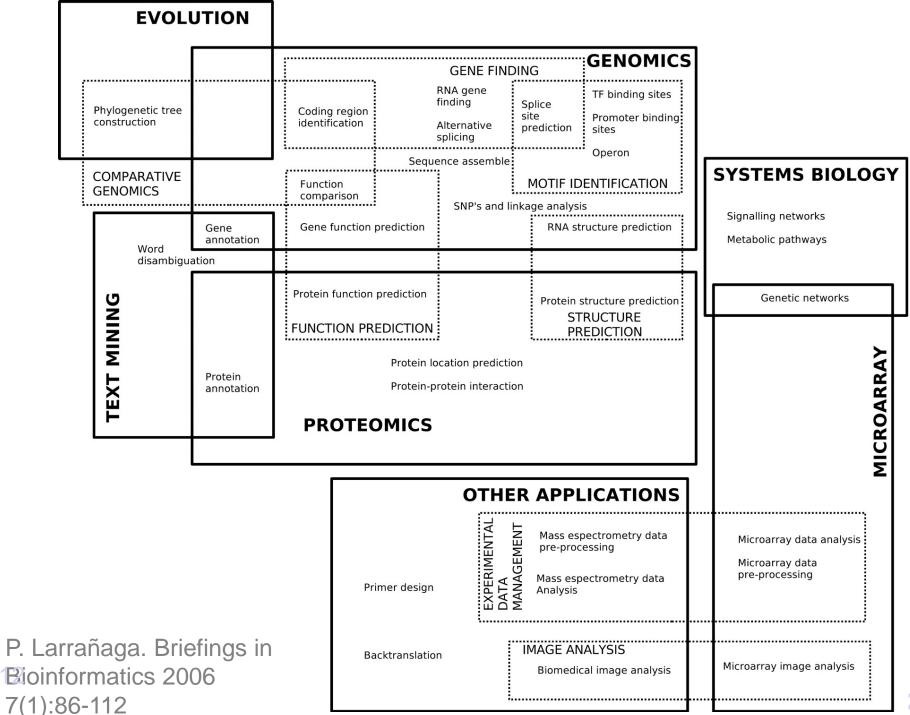
Group 1: Nordic countries

Group 2: UK, France, Greece, Spain, Portugal

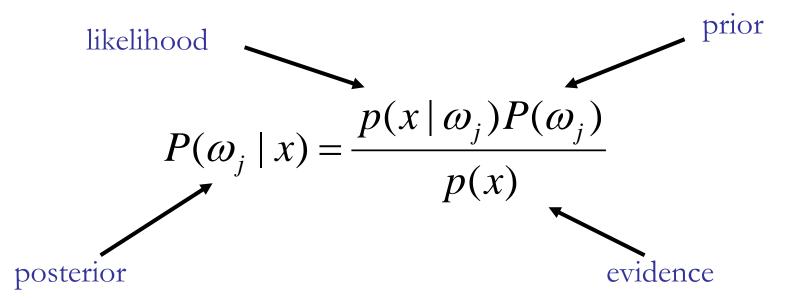
Group 3: Benelux countries,

Switzerland, Austria, Italy, Germany





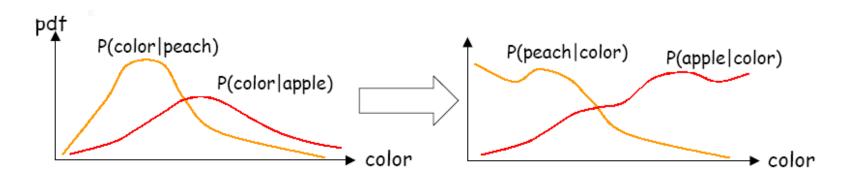
Bayes decision rule



Bayes decision rule:

If $P(w_1 | x) > P(w_2 | x)$ then choose w_1 , else choose w_2 .

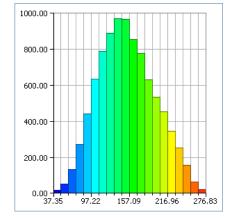
Example



- Bayes Decision Rule
 - If P(apple | color) > P(peach | color) then choose apple
- Note that the evidence p(color) is only necessary for normalization purposes; it does not affect the decision rule

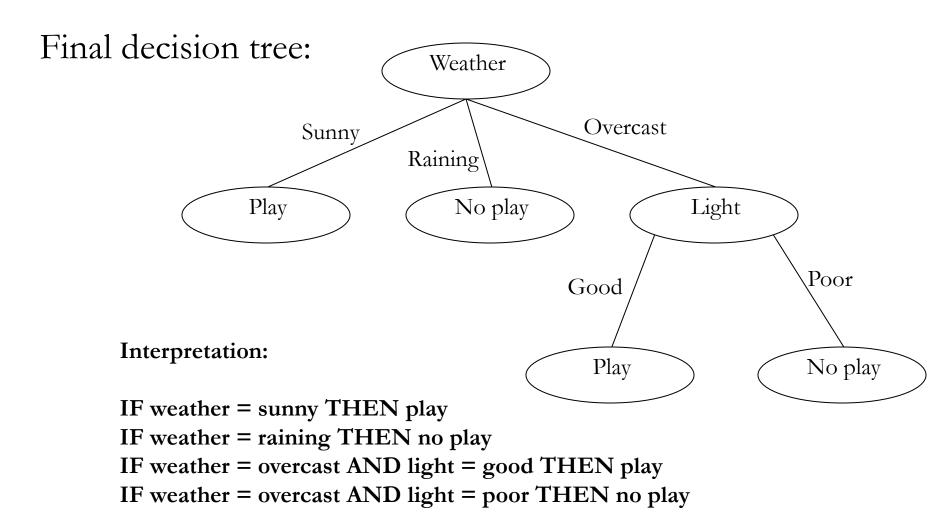
So, what about the data?

- ➢ Use examples to estimate the probability distributions:
 - $P(w_j)$ is easy.
 - $p(x | w_j)$: Histogram!



- One feature: bins are rectangles, Two features: cubes, *n*-features: hyper-cubes.
- More dimensions/features require more training data: Curse of dimensionality!
 - If we need 10 observations when we have one feature (to get a good histogram), then we need 10^n observations when we have *n*-features!
- If the true probability distributions are known, then Bayes decision rule is optimal (minimizes error rate)

Decision trees / Rule learning



Overfitting

- Overfitting: The method learns the random patterns in the data as well as the underlying process that created the data
 - Occurs because the alg. tries to reduce the classification error
- ➢ To identify this phenomenon:
 - Split data into training data ($\approx 75\%$) and test data ($\approx 25\%$)
 - Build tree on the training data and test the model on the test data
- A decision tree X is overfitted if there exists a tree Y that do better on an unseen test set, but worse on the training set
- Solution": Prune complex branches of the tree

Occam's razor

William of Occam 14th century: things should not be multiplied unnecessarily

Issac Newton (1687): we are to admit no more causes of natural things than such as are both true and sufficient to explain their appearance

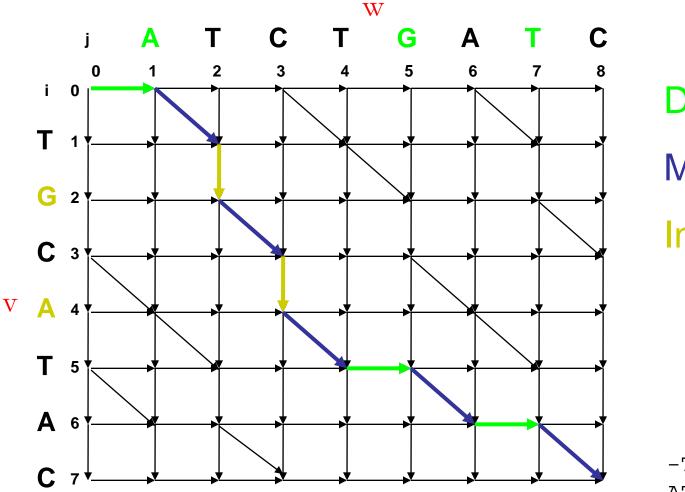
Albert Einstein (20th century): everything should be made as simple as possible, but not simpler

The simplest model that explains the data should be chosen

Decision trees: greedy algorithm

- Decision trees are built by iteratively splitting the training examples using the "best" feature: greedy
- ➢ Would benefit from some search strategy
 - A split could be evaluated in terms of its current ability to classify the data AND the accuracy of the splits later on in the algorithm run
- > All problems are search problems!

Sequence alignment as a search problem



Deletion Matches Insertion

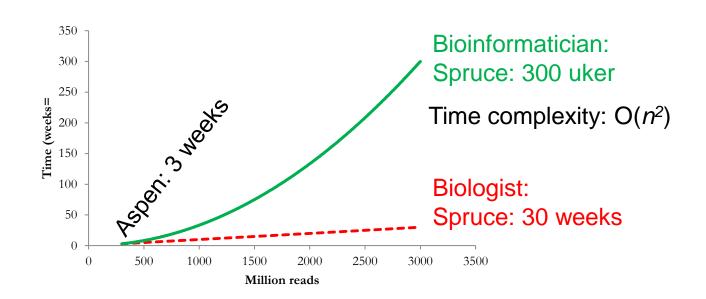
> -TGCAT-A-C AT-C-TGATC

Algorithm design

- Exhaustive algorithms (brute force): examine every possible alterative to find the solution
- Greedy algorithms: find the solution by always choosing the currently "best" alternative
- Randomized algorithms: finds the solution based on randomized choices

Time complexity

- Genome assembly: pice together a genome from short reads (~200bp)
 - Aspen: 300M reads
 - Spruce: 3000M reads
- Pair-wise all-against all alignment for Aspen takes 3 weeks on 16 processors
 What about spruce?

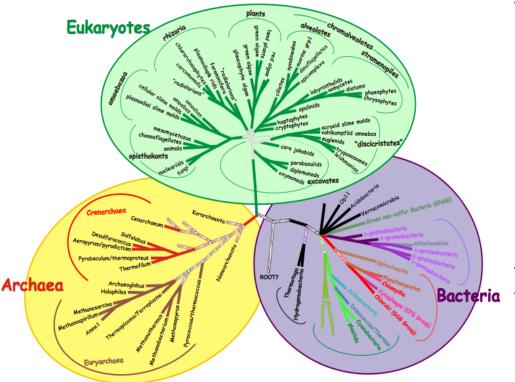


Tractable versus intractable problems

Some problems requires polynomial time

- e.g. sorting a list of integers
- called tractable problems
- Some problems require exponential time
 - e.g. listing every subset in a list
 - called intractable problems
- ➢ Some problems lie in between
 - e.g. the traveling salesman problem
 - called NP-complete problems
 - nobody have proved whether a polynomial time algorithm exists for these problems

Phylogenetic trees/Decision trees

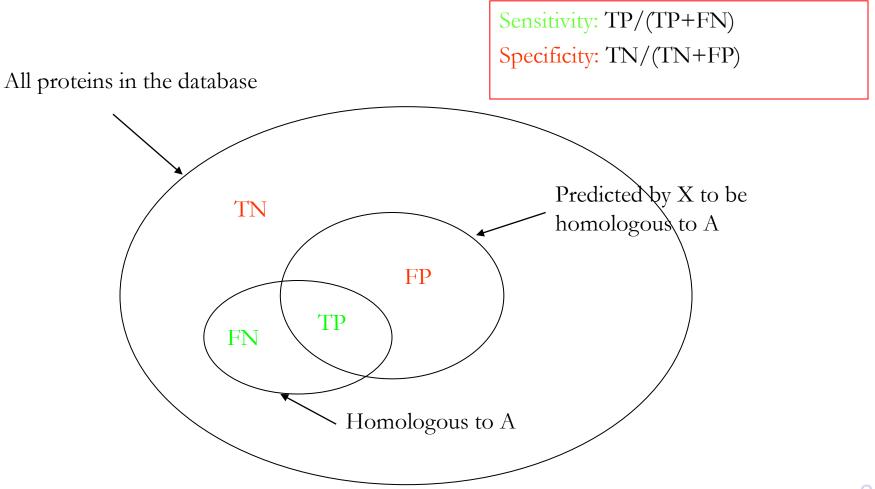


Number of trees with *n* leaves: *nⁿ⁻²* n=10: 10⁸
 n=30: 10⁴¹
 n=50: 10⁸¹

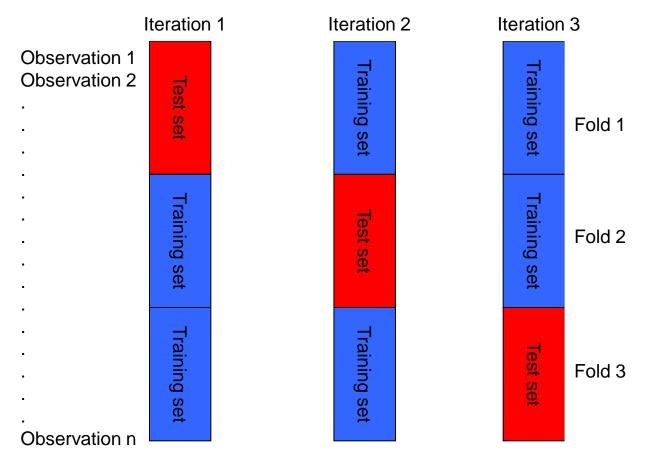
Bacteria > There are 10⁸⁰ particles in the universe!

Method power

You want to find homologous proteins to a specific protein A using some computational method X:



Cross validation



k-fold cross validation: *k* iterations
 Leave-one out cross validation: *n* iterations

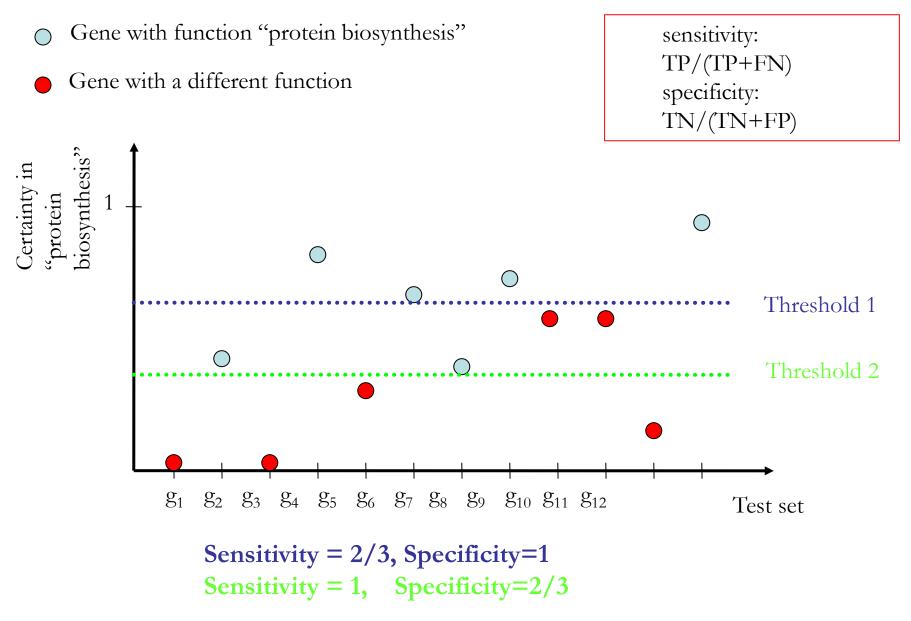
Evaluation

Classifications can be

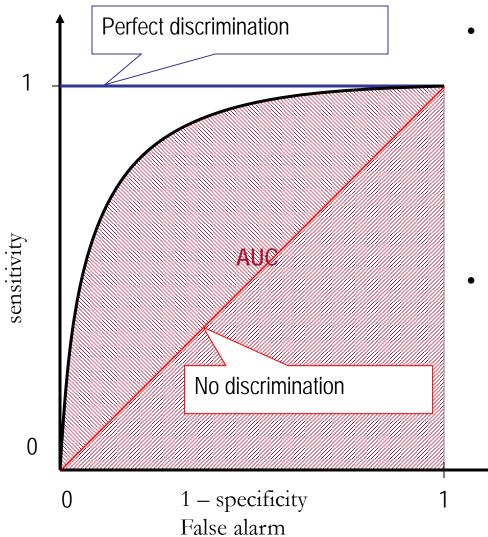
- True positives (TP)
- False negatives (FN)
- True positives (TP)
- False positives (FP)
- Evaluation measures:
 - accuracy = (TP+TN)/(TP+FN+TN+FP)
 - sensitivity = TP/(TP+FN)
 - specificity = TN/(TN+FP)
- Confusion matrix:

		Predicted						
		Class 0	Class 1					
ual	Class 0	TN	FP					
Actual	Class 1	FN	ТР					

Threshold selection

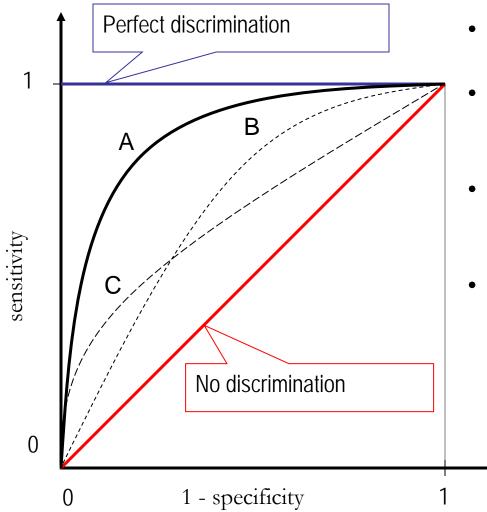


ROC analysis and classifier evaluation



- ROC: Receiver operating characteristics curve results from plotting sensitivity against specificity for all possible thresholds
 - sensitivity: TP/(TP+FN)
 - specificity: TN/(TN+FP)
- AUC: Area under the ROC curve

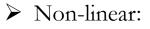
ROC analysis and classifier evaluation



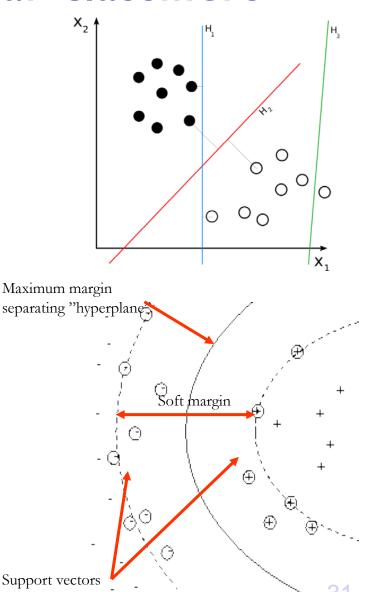
- Which ROC curve is better?
- A dominants B and C and clearly has a higher AUC
- B and C have approximately the same AUC
- B is better for some thresholds, C for others

Linear versus non-linear classifiers

- Linear: Finds a hyperplane that separates the classes
 - In two dimensions: $w_0 + w_1 \cdot x_1 + w_2 \cdot x_2$
 - Use the examples \boldsymbol{x} to estimate \boldsymbol{w}

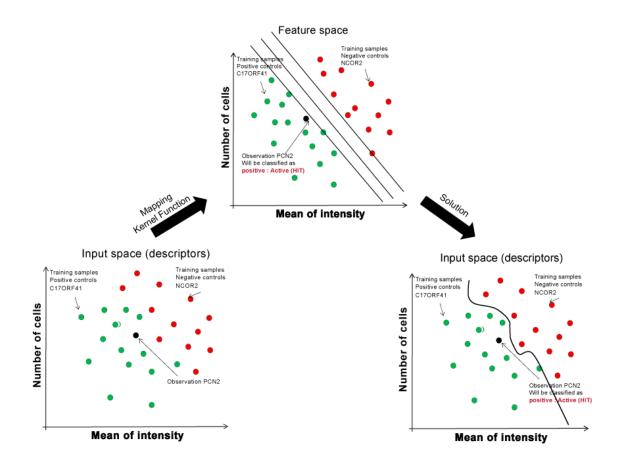


- Support vector machines uses the kernel trick: The kernel maps the observations into a higher dimensional space where the problem is linearly separable
- Artifical neural networks



The kernel trick

siRNA classification



Artificial neural networks

- Inspired by how the brain works a mathematical model for the operation of the brain
- Learning in an ANN is reduced to the process of using the training data to tune the weights so that the network represents the desired function

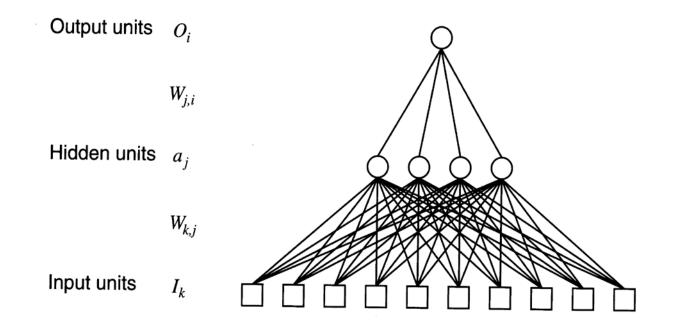
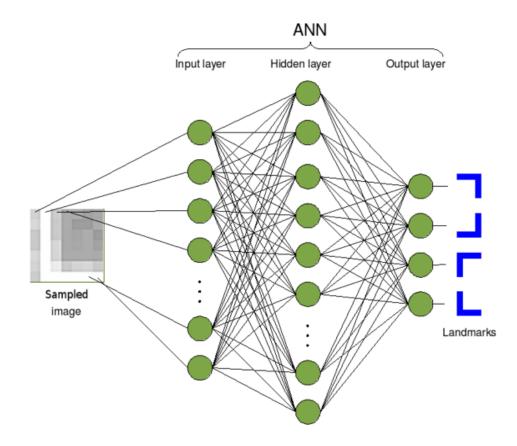


Image recognition



Clustering analysis

Need to define;

- measure of similarity
- algorithm for using the measure of similarity to discover natural groups in the data

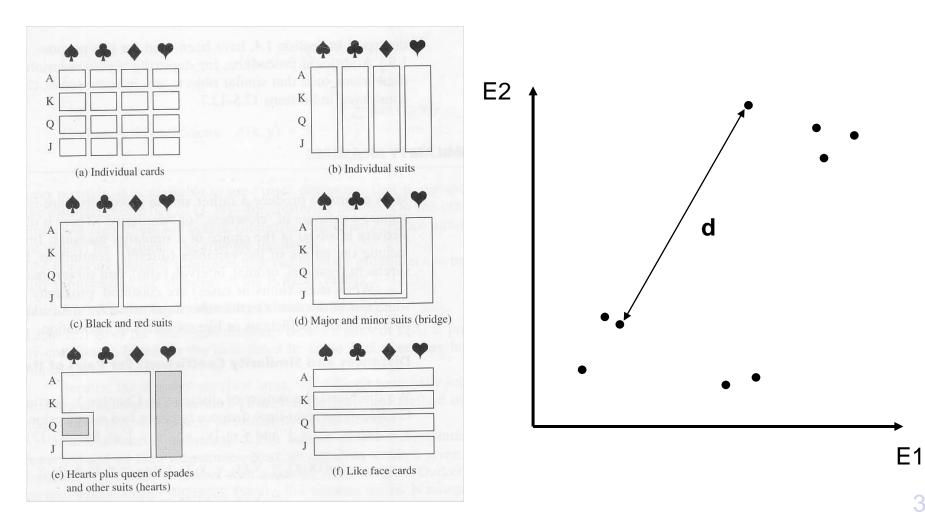
The number of ways to divide *n* items into *k* clusters: $k^n/k!$

Example: $10^{500}/10! = 2.756 \times 10^{493}$

Measure of similarity

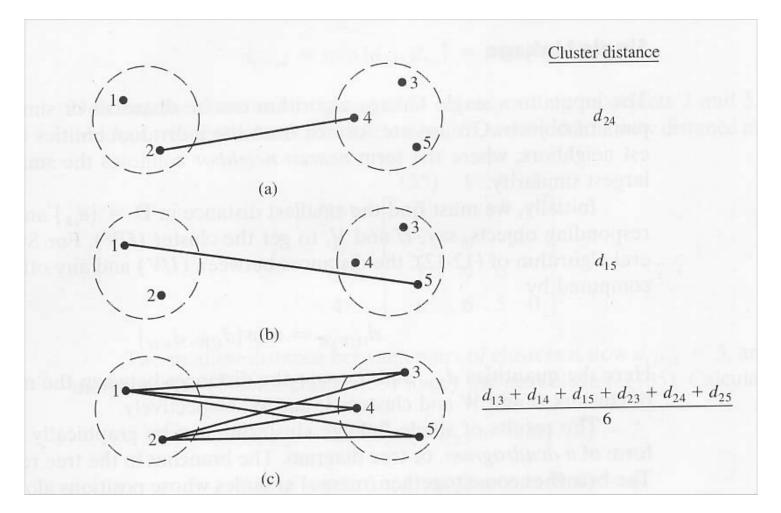
What is similar?

Euclidean distance



Hierarchical clustering

Inter-cluster similarity measures: (a) single linkage, (b) complete linkage and (c) average linkage



Example of hierarchical clustering: languages of Europe

TABLE 12.3	NUMERALS IN 11	LANGUAGES
-------------------	----------------	-----------

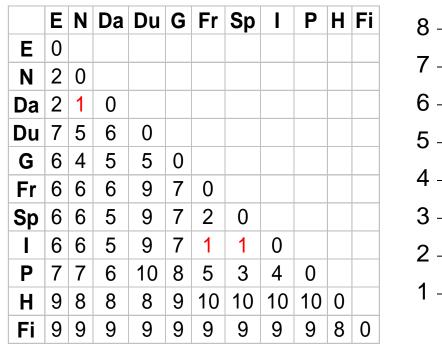
English	Norwegian	Danish	Dutch	German	French	Spanish	Italian	Polish	Hungarian	Finnish
(E)	(N)	(Da)	(Du)	(G)	(Fr)	(Sp)	(I)	(P)	(H)	(Fi)
one	en	en	een	eins	un	uno	uno	jeden	egy	yksi
two	to	to	twee	zwei	deux	dos	due	dwa	ketto	kaksi
three	tre	tre	drie	drei	trois	tres	tre	trzy	harom	kolme
four	fire	fire	vier	vier	quatre	cuatro	quattro	cztery	negy	neua
five	fem	fem	vijf	funf	cinq	cinco	cinque	piec	ot	viisi
six	seks	seks	zes	sechs	six	seis	sei	szesc	hat	kuusi
seven	sju	syv	zeven	sieben	sept	siete	sette	siedem	het	seitseman
eight	atte	otte	acht	acht	huit	ocho	otto	osiem	nyolc	kahdeksan
nine	ni	ni	negen	neun	neuf	nueve	nove	dziewiec	kilenc	yhdeksan
ten	ti	ti	tien	zehn	dix	diez	dieci	dziesiec	tiz	kymmenen

Distance: Frequency of numbers with different first letter e.g.

 $d_{EN} = 2 \quad d_{EDu} = 7 \quad d_{SpI} = 1$

Inter-cluster strategy: SINGEL LINKAGE

Iteration I



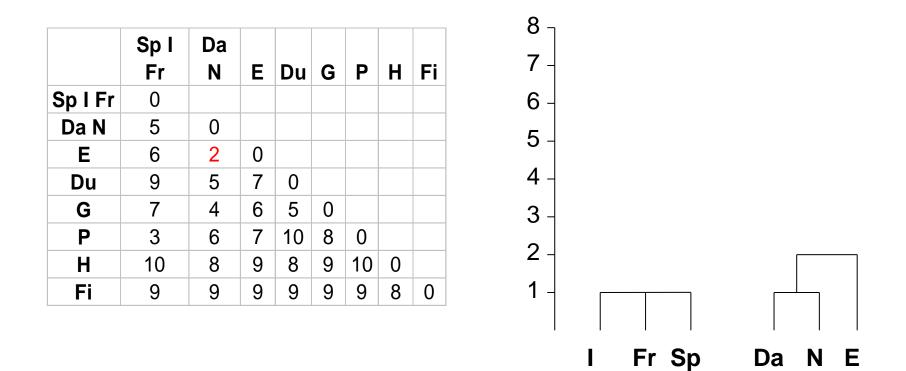
Fr

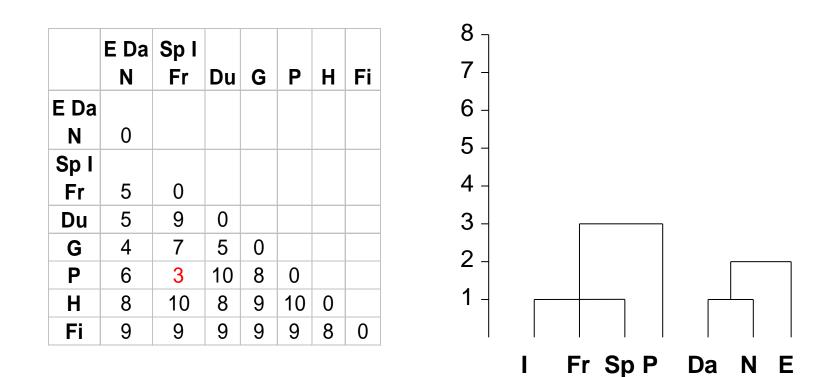
	l Fr	Ε	Ν	Da	Du	G	Sp	Ρ	Н	Fi
l Fr	0						_			
Ε	6	0								
Ν	6	2	0							
Da	5	2	1	0						
Du	9	7	5	6	0					
G	7	6	4	5	5	0				
Sp	1	6	6	5	9	7	0			
Ρ	4	7	7	6	10	8	3	0		
Η	10	9	8	8	8	9	10	10	0	
Fi	9	9	9	9	9	9	9	9	8	0

I Fr Da N

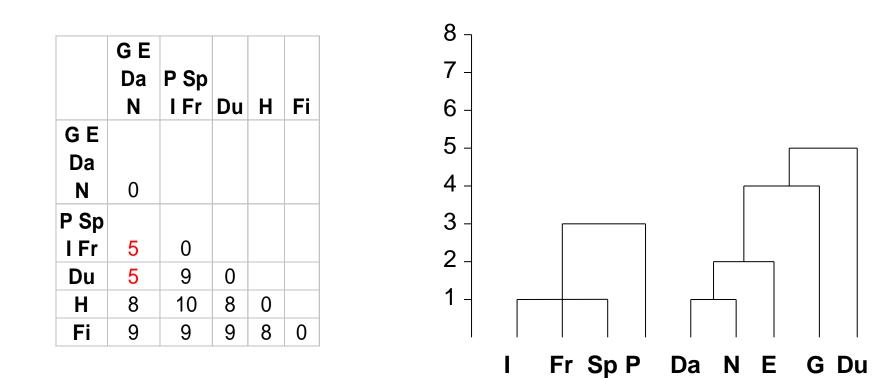
	Da N	l Fr	Е	Du	G	Sp	Р	н	Fi	8 7 -
Da N	0									
l Fr	5	0								6 -
Ε	2	6	0							5 -
Du	5	9	7	0						4 -
G	4	7	6	5	0					
Sp	5	1	6	9	7	0				3 -
Ρ	6	4	7	10	8	3	0			2 -
Н	8	10	9	8	9	10	10	0		1
Fi	9	9	9	9	9	9	9	8	0	

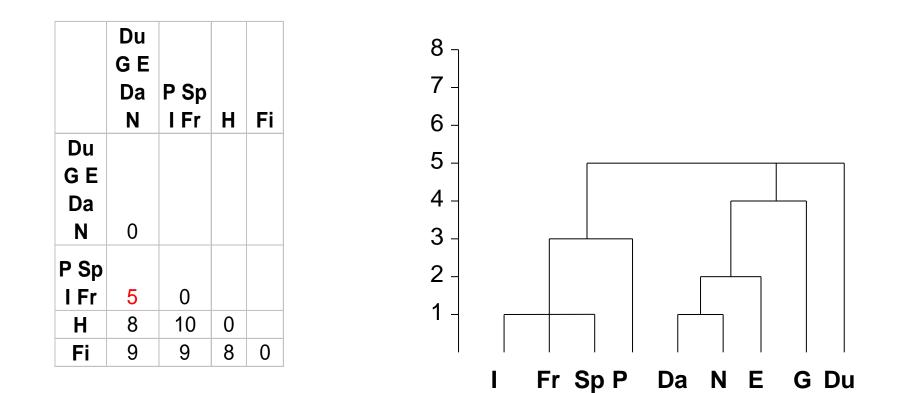
I Fr Sp Da N

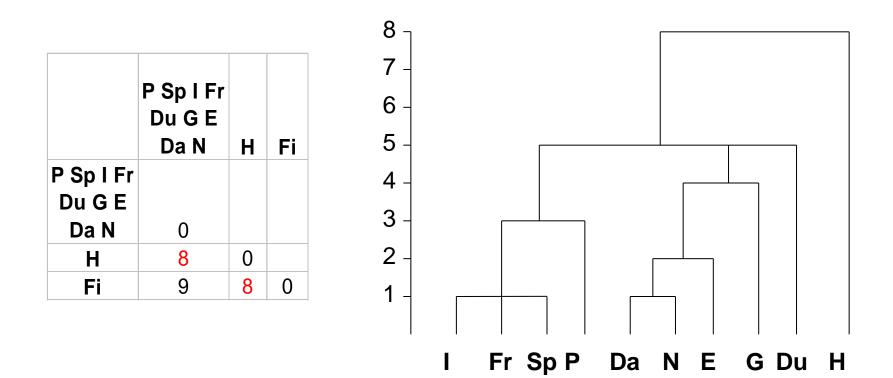


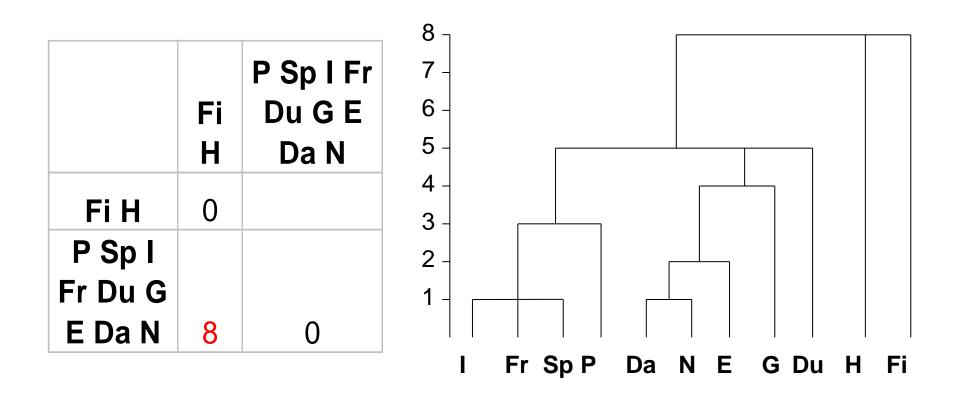


				8 ₇
	Ρ	P Sp E Da		7 -
ΗF		I Fr N Du	H Fi	6 -
)	p		
		r 0		5 -
	1	a		4 -
		5 0		3
		ı 9 5 0		
		7 4 5		
0		10 8 8	0	
8 0		9 9 9	8 0	
		9 9 9		8 0

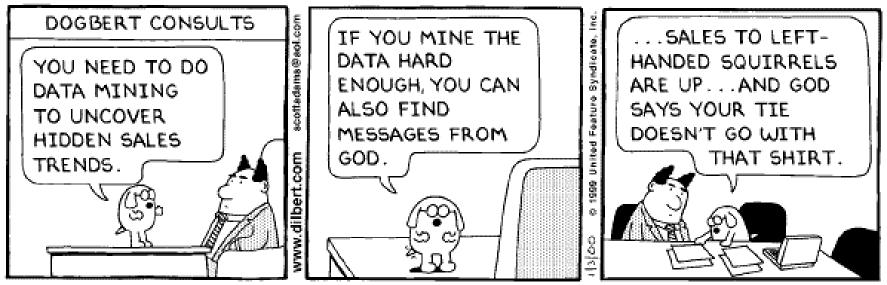








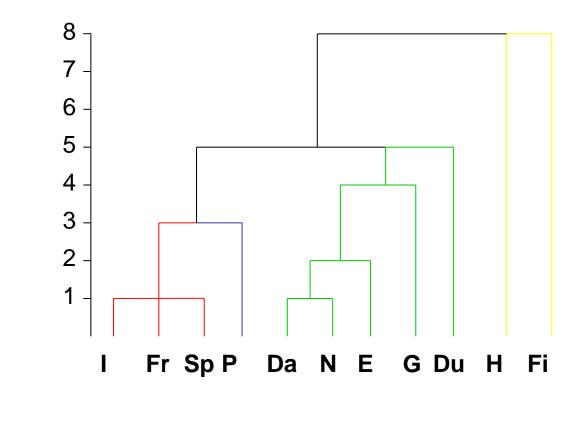
Any data mining result needs to be consistent BOTH with the data and current knowledge!



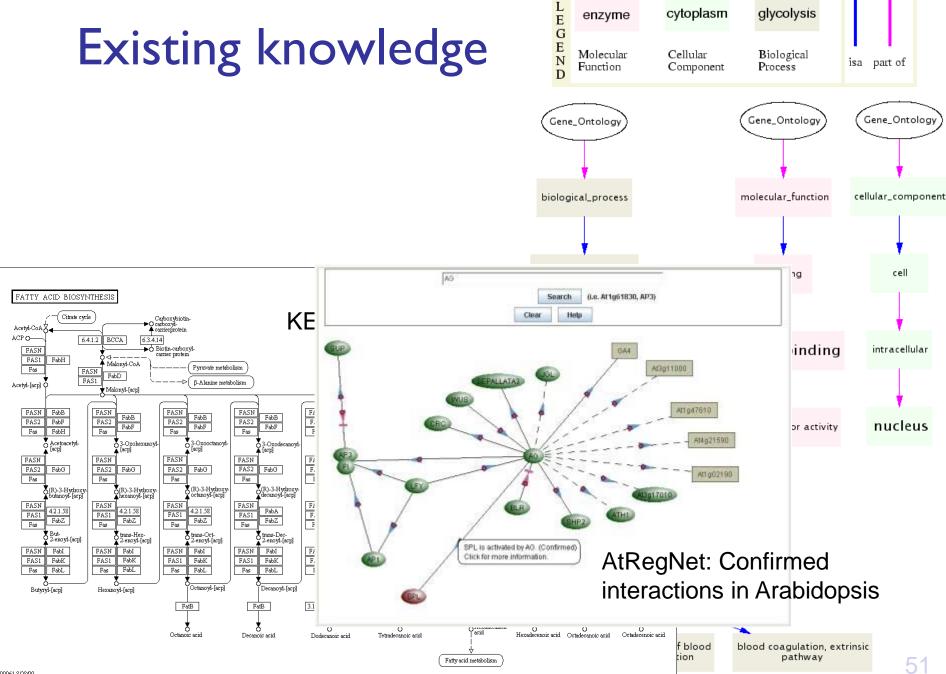
Copyright 3 2000 United Feature Syndicate, Inc. Redistribution in whole or in part prohibited

Evaluation of clusters

Clusters may be evaluated according to how well they describe current knowledge



Roman Slavic Germanic Ugro-Finnish



Randomization experiments

- Randomize the input data
- P-values: fraction of randomized datasets resulting in "better" models than the real data

• Better?

- Cross validation
- Existing knowledge
- Other model properties

Example: Hierarchical clustering

96 normal and malignant lymphocyte samples

Almost 20 000 cDNA clones

Two sub-clusters of DLBCL were shown to include patients with significantly different expected survival time!

1.0

0.5

0.0 -

0

Probability

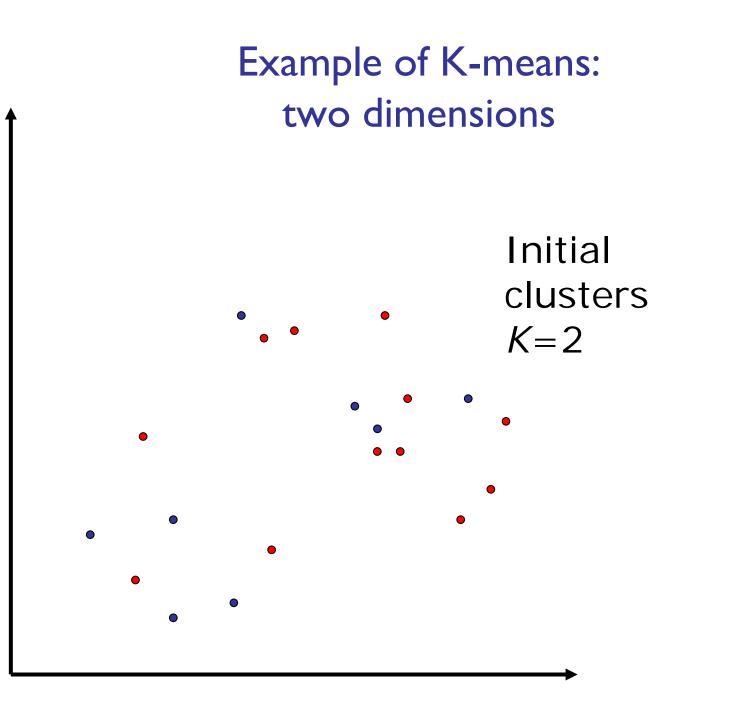
NI. lymph node/tonsil Activated blood B Resting/activated 1 Transformed cell lines FL Resting blood B CLL Pan B cell Germinal Centre B cell T cell Activated B cell All patients Proliferation 19 patients, 6 deaths Activated B-like Lymph node 21 patients, 16 deaths P=0.012 1012-2 -1 0 Overall survival (years) 0.250 0.500 1.000 2.000 4.000

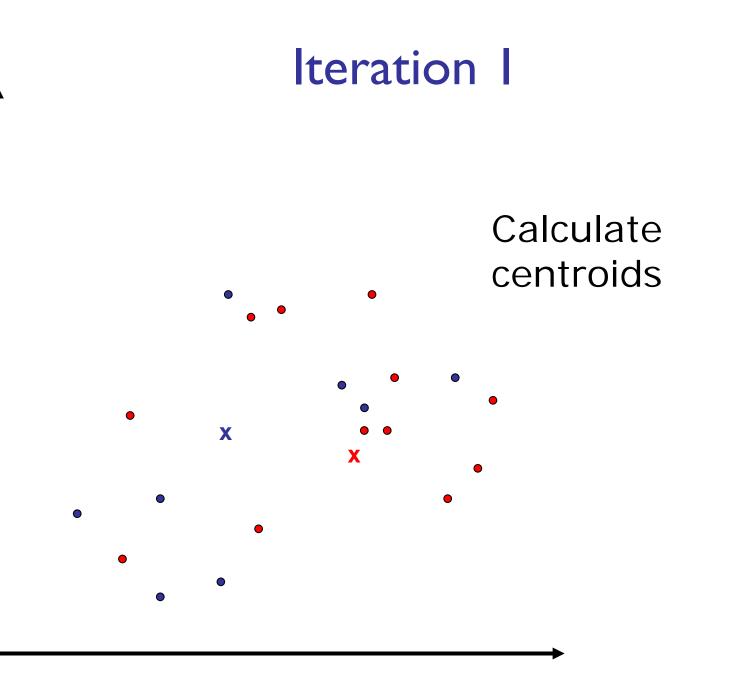
DLBCL Germinal centre B

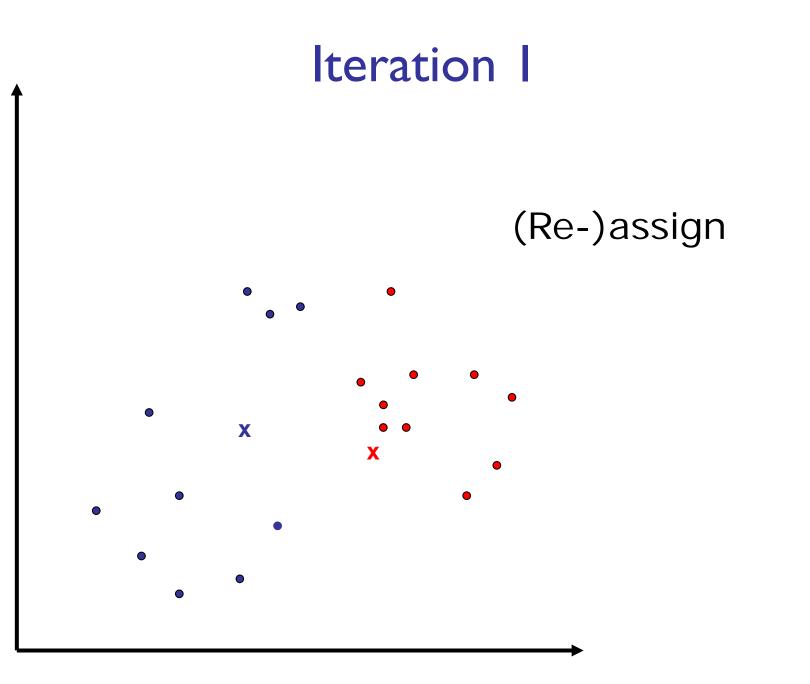
Alizadeh et al., Distinct types of diffuse large Bcell lymphoma identified by gene expression profiling, *Nature*, 403:503-511, 2000.

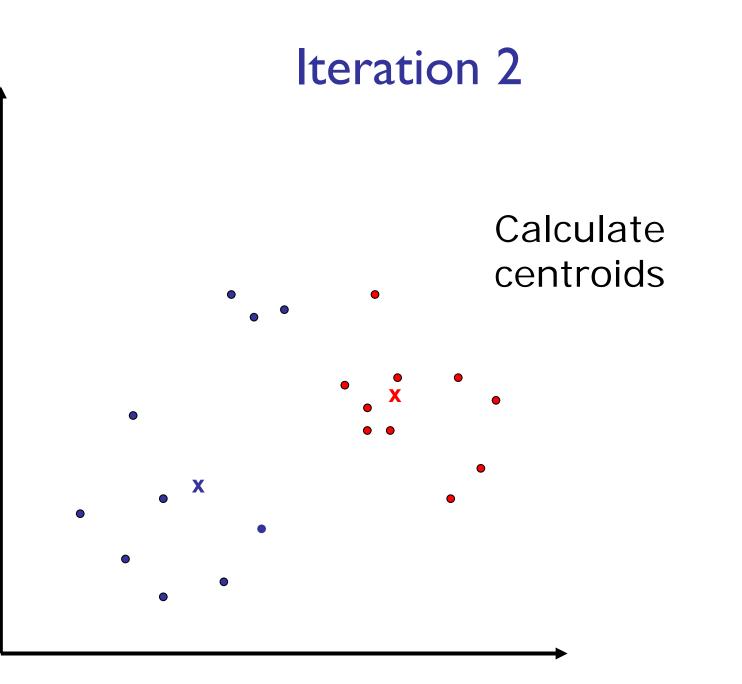
K-means clustering

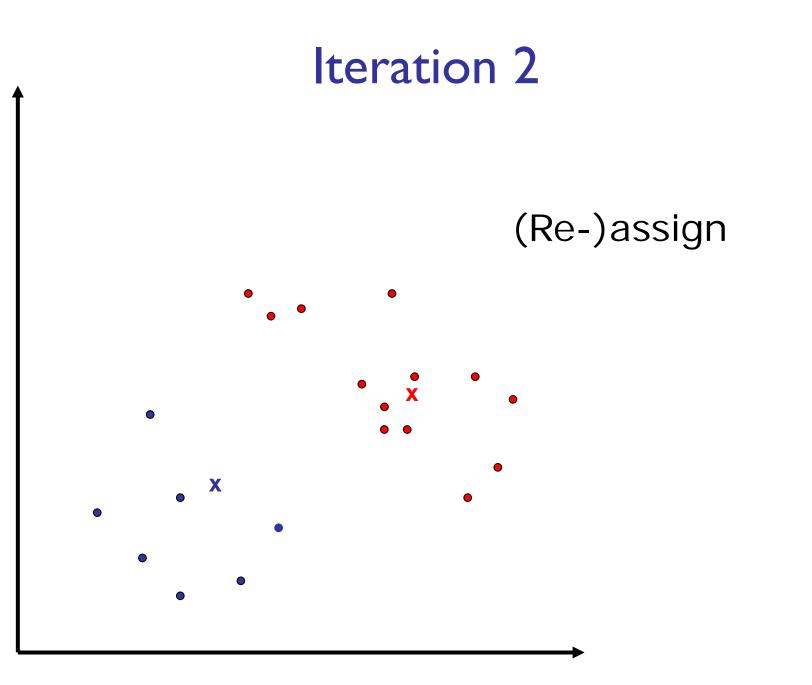
- Split the data into *k* random clusters
- Repeat
 - calculate the centroid of each cluster
 - (re-)assign each gene/experiment to the closest centroid
 - stop if no new assignments are made

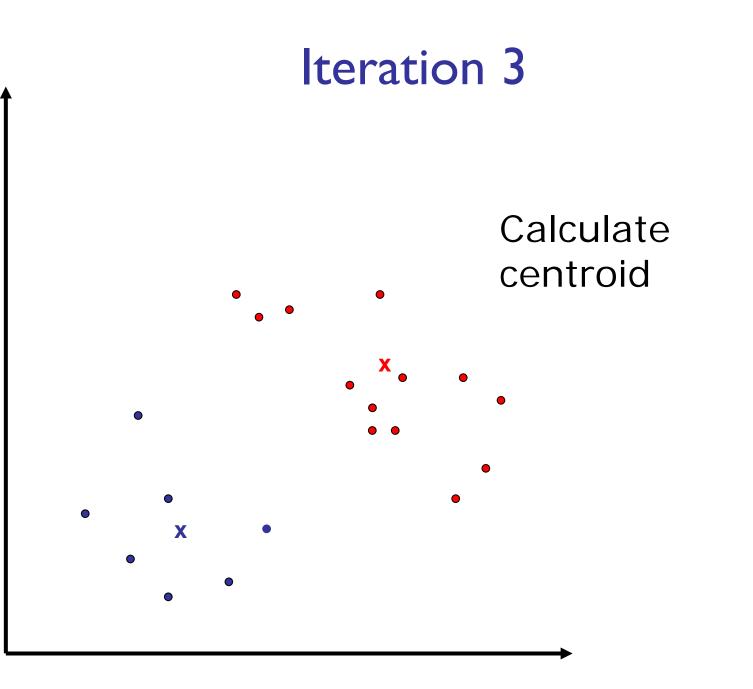


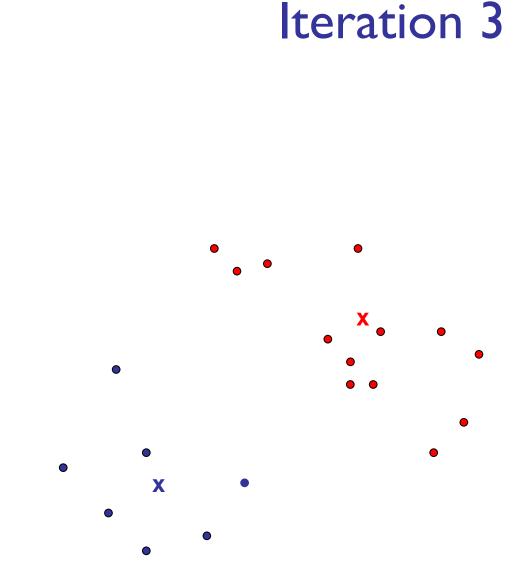












(Re-)assign

No new assignments! STOP

Hierarchical vs. k-means

Hierarchical clustering:

- Huge memory requirements: stores the $n \times n$ matrix
- Running time: $O(n^3)$
- Nice visualization: dendrogram
- Deterministic
- Cannot correct early "mistakes" (greedy alg.)

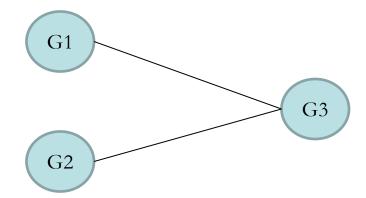
➢ K-means:

- Low memory usage
- Running time: O(kn), where k is the number of iterations
- Improves iteratively: not trapped in previous mistakes (randomization alg.)
- Non-deterministic: will produce different clusters with different initializations
- Number of clusters must be decided in advance

Network representations

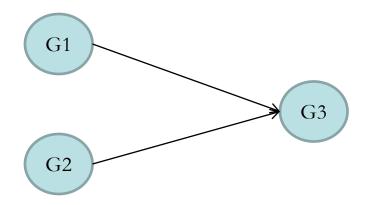
- Network: nodes connected by edges
- Nodes represent genes, proteins, metabolites
- Edges represent relationships
 - Co-expression networks: expression correlation
 - Gene networks: genes affect the expression of other genes
 - Regulatory network: transcription factors regulate genes by binding DNA motifs in the promoter region
- Network representations are flexible and allow integration of heterogeneous data

Co-expression networks versus gene networks



Co-expression network:

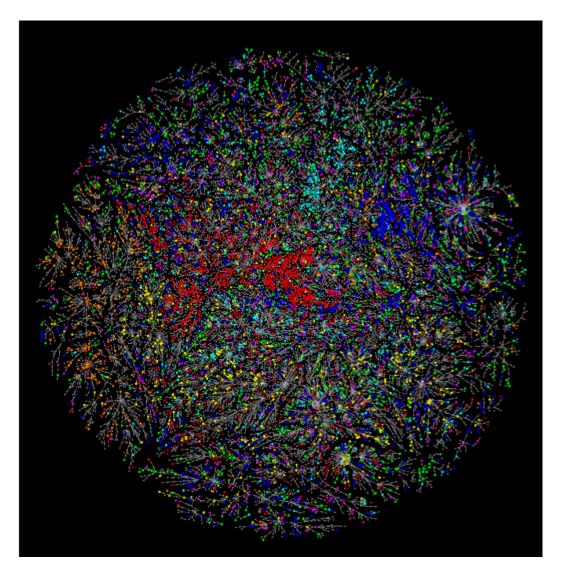
Expression of G1 correlates with that of G3 Expression of G2 correlates with that of G3



Gene network:

The expression of G3 can be predicted from that of G1 *and* G2

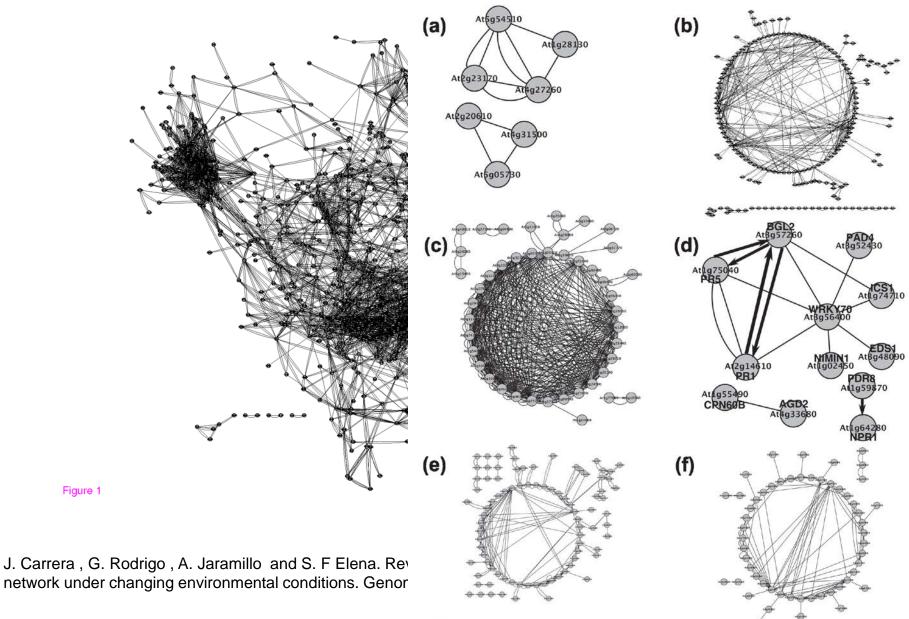
Co-expression network in aspen trees



Based on a UPSC collection of over 1000 cDNS microarrays

A Grönlund, RP Bhalerao, J Karlsson. Modular gene expression in Poplar: a multilayer network approach. New Phytologist, 2009.

Regulatory network in Arabidopsis



Systems biology Phenotypes Regulatory Trans-Phenogenome criptomics types (promoters) Prot-Metaeomics bolomics Emergence Synergy from integration quack! quack ck ck ck ck ck 67 Interacting genes/protein/metabolites

67

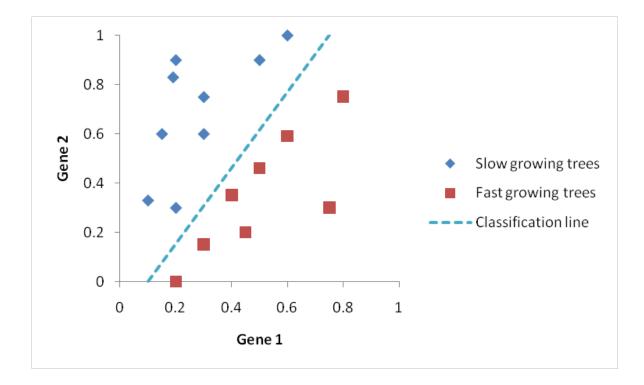
Holistic versus reductionistic

- Emergent properties:
 - Can biology be reduced to chemistry?
 - Can chemistry be reduced to physics?
 - Ernest Rutherford : "Physics is the only real science. The rest are just stamp collecting."
- Can biological systems be reduced to individual genes, proteins and metabolites?

68

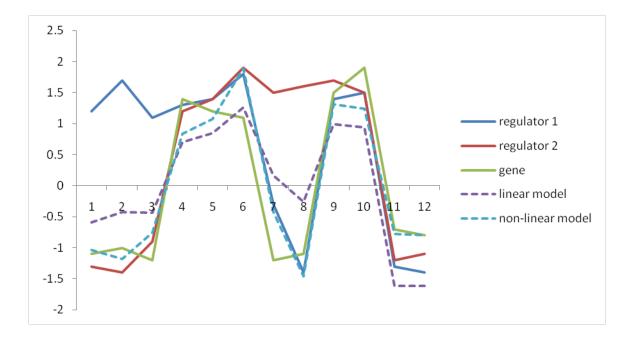
Derek Gatherer . So what do we really mean when we say that systems biology is holistic? *BMC Systems Biology* 4: 22, 2010.

Emergent properties: differential expression

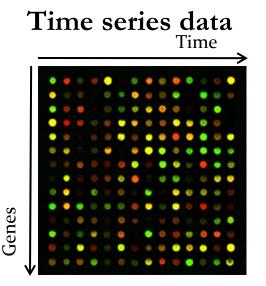


69

Emergent properties: AND logics in regulation



Inferring regulatory mechanism



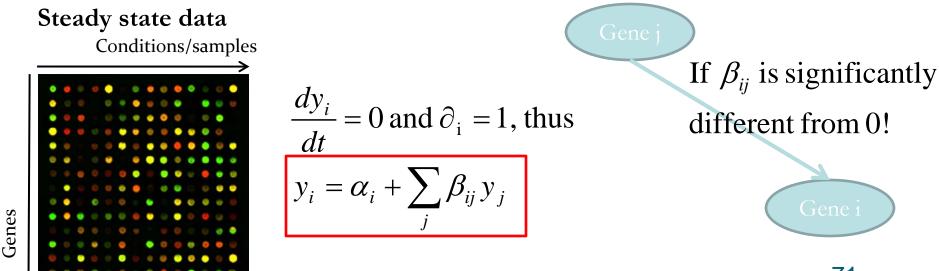
For each gene *i* :

$$\frac{dy_i}{dt} = \alpha_i - \partial_i y_i + \sum_j \beta_{ij} y_j$$

where α_i is its transcription rate,

 ∂_i the degradation coefficient,

and β_{ii} is the regulatory effect that gene *j* has on gene *i*.



Example: Three genes

y₂

y₃

Expr

•••

 $\alpha = -0.46$ $\beta_{12} = 0.43$ $\beta_{13} = 0.50$

-0.594

-0.429

-0.437

0.699

0.842

1.264

...

	Cond. A	1.2	-1.3	-1.1	$a + \beta_{12} \cdot 1.2 - \beta_{13} \cdot 1.3$	
$y_1 = \alpha + \beta_{12} y_2 + \beta_{13} y_3$	Cond. B	1.7	-1.4	-1	$a + \beta_{12} \cdot 1.7 - \beta_{13} \cdot 1.4$	
	Cond. C	1.1	-0.9	-1.2	$a + \beta_{12} \cdot 1.2 - \beta_{13} \cdot 0.9$	
	Cond. D	1.3	1.2	1.4	$a + \beta_{12} \cdot 1.3 + \beta_{13} \cdot 1.2$	
	Cond. E	1.4	1.4	1.2	$a + \beta_{12} \cdot 1.4 + \beta_{13} \cdot 1.4$	
	Cond. F	1.8	1.9	1.1	$a + \beta_{12} \cdot 1.8 + \beta_{13} \cdot 1.9$	

y₁

Correlation: 0.78

y₁ predicted

Choose α , β_{12} and β_{13} so that the correlation between observed (y_1) and predicted (y_1) predicted) expression is maximized!

Linear versus non-linear models

≻ Linear model:

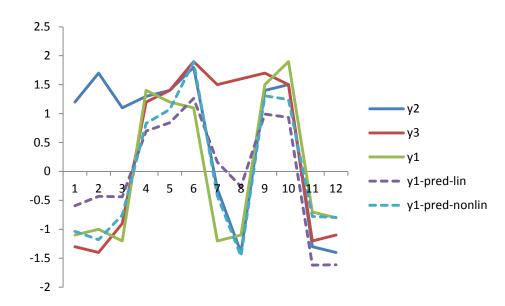
$$y_1 = \alpha + \beta_{12} y_2 + \beta_{13} y_3$$

≻ Non-linear model:

$$y_1 = \alpha + \beta_{12}y_2 + \beta_{13}y_3 + \beta_{123}y_2y_3$$

 $\beta_{123} > 0$: synergistic interactions $\beta_{123} < 0$: competitive relationship

AND - logic



Linear model: $\alpha = -0.46$ $\beta_{12} = 0.43$ $\beta_{13} = 0.50$

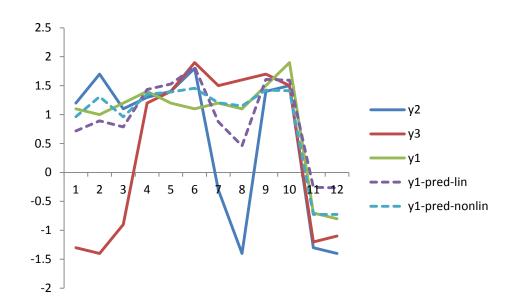
Non-linear model: $\alpha = -0.55$ $\beta_{12} = 0.37$ $\beta_{13} = 0.27$ $\beta_{123} = 0.37$

Correlation between observed and predicted:

Linear model:	0.77
Non-linear model:	0.91
Correlation between gene 1 and	
gene 2.	0.55

gene 2.	0.55
gene 3:	0.65

OR - logic



Linear model: $\alpha = 0.4$

 $\alpha = 0.59$ $\beta_{12} = 0.40$ $\beta_{13} = 0.27$

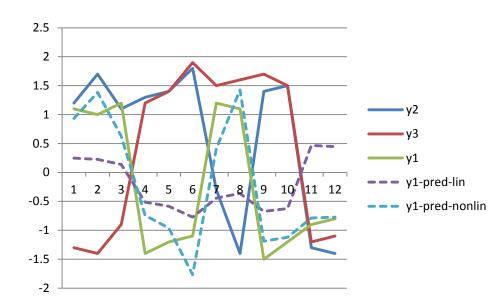
Non-linear model: $\alpha = 0.64$ $\beta_{12} = 0.43$ $\beta_{13} = 0.40$ $\beta_{123} = -0.21$

Correlation between observed and predicted:

Linear model:	0.85
Non-linear model:	0.96
Correlation between gene 1 and	

gene 2:	0.72
gene 3:	0.60

XOR - logic



Linear model: $\alpha = -0.02$ $\beta_{12} = -0.10$ $\beta_{13} = -0.30$

Non-linear model: $\alpha = 0.11$ $\beta_{12} = -0.01$ $\beta_{13} = 0.03$ $\beta_{123} = -0.56$

Correlation between observed and predicted:

Linear model:	0.40
Non-linear model:	0.92
Correlation between gene 1 and	
gene 2:	-0.19

Serie 2.	0.19
gene 3:	-0.39

Overfitting and the course of dimensionality

$$x = 7y$$

 $y = 3 + x$ Has a unique solution: $x = -3.5, y = -0.5$

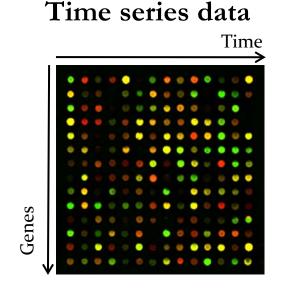
$$x = 7 y$$
Has many solutions: $z=3, x=-3.5, y=-0.5$ $y = z + x$ $z=6, x=-7, y=-1$

i.e. we need more samples than genes in order to solve:

$$y_i = \alpha_i + \sum_j \beta_{ij} y_j$$

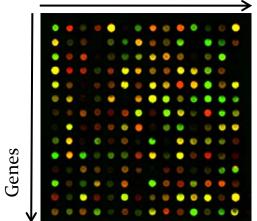
there are ~45 000 genes in *Populus* ... and even ~2500 transcription factors ...

Data dimentionality: How many samples do I need?

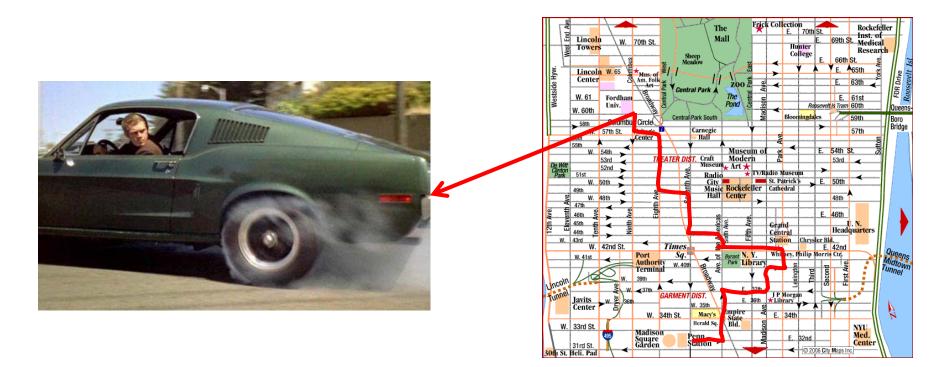


Steady state data

Conditions



- Predicting relationships between genes require high quality data observed over many different conditions
- Co-expression: Analogous to establishing whether you are being followed by the car behind you

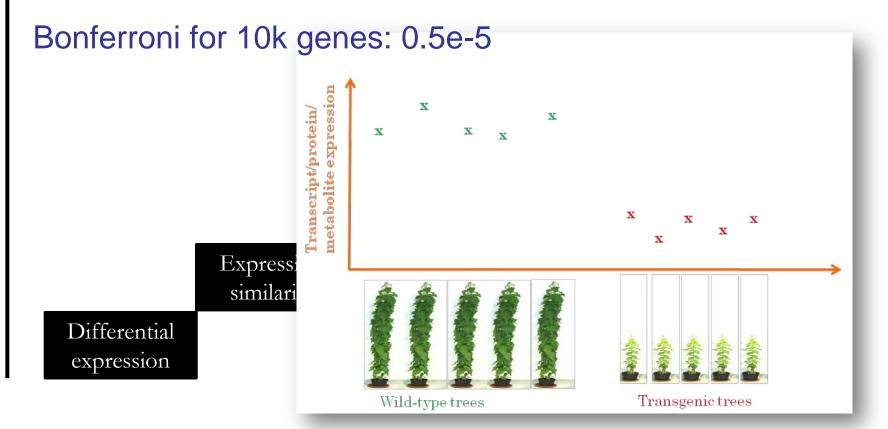


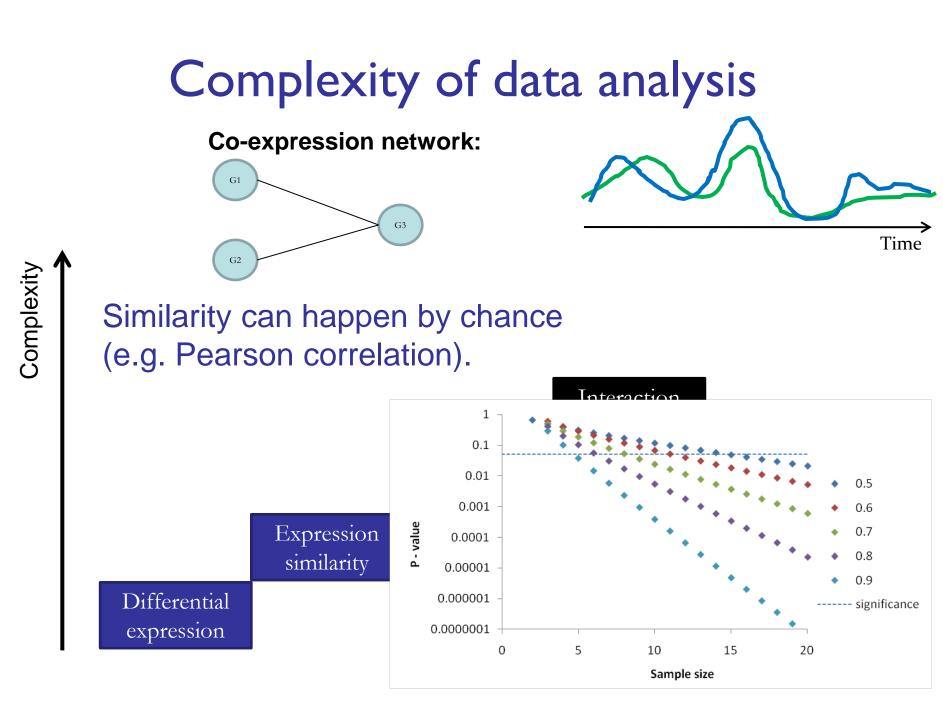
Gene networks: Analogous to establishing whether you are being followed by many collaborating car behind you

Complexity of data analysis

To do e.g. a t-test you need at least three biological replicates from each class

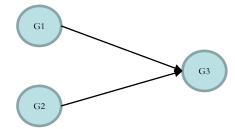
Complexity



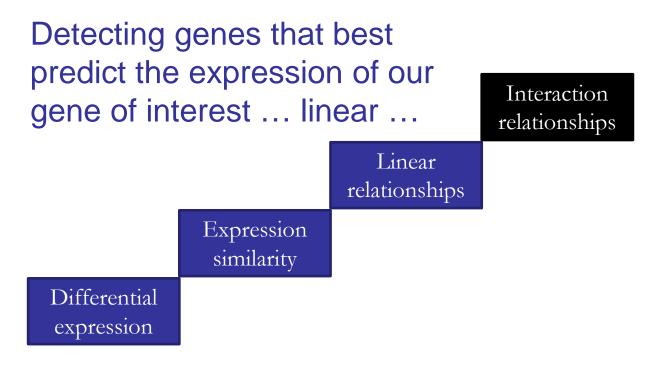


Complexity of data analysis

Gene network:

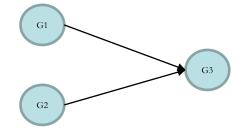


 $y_1 = \alpha + \beta_{12} y_2 + \beta_{13} y_3$



Complexity of data analysis

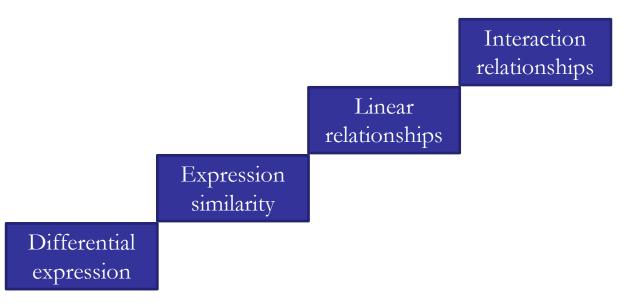
Gene network:



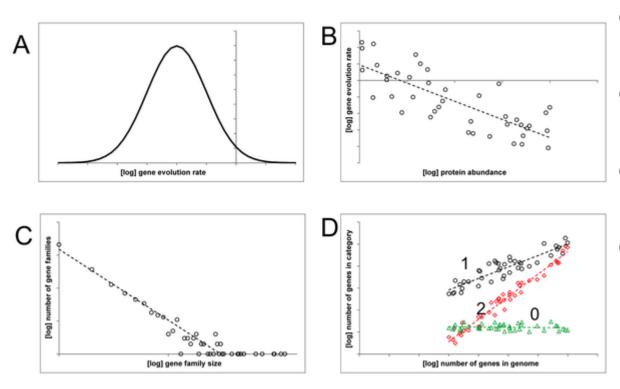
 $y_1 = \alpha + \beta_{12}y_2 + \beta_{13}y_3 + \beta_{123}y_2y_3$

... and non-linear models.

Complexity



Are there laws of genome evolution? (or Is biology more than stamp collecting?)



- (A) Log-normal distribution of evolutionary rates of orthologous genes.
- (B) Anticorrelation between gene expression level (protein abundance) and sequence evolution rate.
- (C) Power law–like distribution of paralogous family size and out-degrees in networks.
- (D) Differential scaling of functional classes of genes with the total number of genes in a genome: 0 – no dependence, typical of translation system component; 1 – linear dependence, characteristic of metabolic enzymes; 2 – quadratic dependence, characteristic of regulatory and signal transduction system components.

Koonin EV (2011) Are There Laws of Genome Evolution? PLoS Comput Biol 7(8): e1002173.

Some freely available tools

 \triangleright R contains packages for most methods discussed here

- Machine learning: RapidMiner
- ➢ Networks: Cytoscape