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’omics data 

Genome 

Transcriptome 

Metabolome 

Proteome 

 Transcriptomics  - quantifications of gene expression 
 Proteomics   - quantifications of proteins (peptides) 
 Metabolomics   - quantifications of metabolites 



Gene expression data 

Steady state data Time series data 

G
en

es
 

Conditions Time 

G
en

es
 

Gene/Expr E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 … EM
G1 -0.47 -3.32 -0.81 0.11 -0.60 -1.36 -1.03 -1.84 -1.00 -0.60 … -0.94
G2 0.66 0.07 0.20 0.29 -0.89 -0.45 -0.29 -0.29 -0.15 -0.45 … -0.42
G3 0.14 -0.04 0.00 -0.15 -0.58 -0.30 -0.18 -0.38 -0.49 -0.81 … -1.12
G4 -0.04 0.00 -0.23 -0.25 -0.47 -0.60 -0.56 -1.09 -0.71 -0.76 … -0.62
G5 0.28 0.37 0.11 -0.17 -0.18 -0.60 -0.23 -0.58 -0.79 -0.29 … -0.74
G6 0.54 0.53 0.16 0.14 0.20 -0.34 -0.38 -0.36 -0.49 -0.58 … -1.47
G7 0.20 0.14 0.00 0.11 -0.34 -0.03 0.04 -0.76 -0.81 -1.12 … -1.36
G8 0.40 0.43 0.18 0.00 -0.14 0.29 0.07 -0.79 -0.81 -0.92 … -1.22
G9 0.01 0.46 0.28 -0.34 -0.23 -0.36 -0.45 -0.64 -0.79 -1.22 … -1.09
… … … … … … … … … … … … …
GN -0.23 0.04 0.00 -0.30 -0.29 -0.45 -0.97 -2.06 -0.89 -1.22 … -0.97

M < 100 

N > 10000 

Two-channel experiments:  ratio-based intensities (“Red/Green”) 
One-channel experiments:  ”absolut” intensities 
RNA-Seq:    ”number” of transcripts expressed 
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’omics data 

Conditions/tissues/time 
G

en
es

/m
et

ab
ol

ite
s/

pr
ot
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ns

 

Time Condition B 

C
on

di
tio

n 
A

 

0.54 0.53 0.16 0.14 0.20 -0.34 -0.38 -0.36
-0.47 -3.32 -0.81 0.11 -0.60 -1.36 -1.03 -1.84
0.66 0.07 0.20 0.29 -0.89 -0.45 -0.29 -0.29
0.14 -0.04 0.00 -0.15 -0.58 -0.30 -0.18 -0.38
-0.04 0.00 -0.23 -0.25 -0.47 -0.60 -0.56 -1.09
0.28 0.37 0.11 -0.17 -0.18 -0.60 -0.23 -0.58
0.54 0.53 0.16 0.14 0.20 -0.34 -0.38 -0.36
0.20 0.14 0.00 0.11 -0.34 -0.03 0.04 -0.76
0.40 0.43 0.18 0.00 -0.14 0.29 0.07 -0.79
0.01 0.46 0.28 -0.34 -0.23 -0.36 -0.45 -0.64
… … … … … … … …

-0.23 0.04 0.00 -0.30 -0.29 -0.45 -0.97 -2.06

Time series versus 
Feature space 
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Look at your data! 
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19 melanomas of  all 31 cutaneous melanoma samples 
(Bitter et al. Nature. 406: 536, 2000) 

 

Looking into more than 3D:  
Hierarchical clustering and principle component analysis (PCA) 
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Machine learning 

• Supervised learning; used to learn a model from a set of 
examples with predefined classes of genes/experiments 
(training set)  
 

• Unsupervised learning (clustering, class discovery); used 
to “discover” natural groups of genes/experiments 

 



Training examples 

Gene/Expr E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 … EM
G1 -0.47 -3.32 -0.81 0.11 -0.60 -1.36 -1.03 -1.84 -1.00 -0.60 … -0.94
G2 0.66 0.07 0.20 0.29 -0.89 -0.45 -0.29 -0.29 -0.15 -0.45 … -0.42
G3 0.14 -0.04 0.00 -0.15 -0.58 -0.30 -0.18 -0.38 -0.49 -0.81 … -1.12
G4 -0.04 0.00 -0.23 -0.25 -0.47 -0.60 -0.56 -1.09 -0.71 -0.76 … -0.62
G5 0.28 0.37 0.11 -0.17 -0.18 -0.60 -0.23 -0.58 -0.79 -0.29 … -0.74
G6 0.54 0.53 0.16 0.14 0.20 -0.34 -0.38 -0.36 -0.49 -0.58 … -1.47
G7 0.20 0.14 0.00 0.11 -0.34 -0.03 0.04 -0.76 -0.81 -1.12 … -1.36
G8 0.40 0.43 0.18 0.00 -0.14 0.29 0.07 -0.79 -0.81 -0.92 … -1.22
G9 0.01 0.46 0.28 -0.34 -0.23 -0.36 -0.45 -0.64 -0.79 -1.22 … -1.09
… … … … … … … … … … … … …
GN -0.23 0.04 0.00 -0.30 -0.29 -0.45 -0.97 -2.06 -0.89 -1.22 … -0.97

M < 100 

N > 10000 WT Transgenic 
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Artificial intelligence: 
The Turing test 

 Turing proposed that a computer program show intelligent 
behavior if is able to fool a human interrogator 
 

 The Turing test: the computer is interrogated by a human via a 
teletype, and passes the test if the interrogator cannot tell if there 
is a computer or a human at the other end 
− natural language processing 
− knowledge representation 
− automated reasoning 
− machine learning 

1912-1954 
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AI techniques 

 Logics 
 Knowledge representation 
 Search 
 Machine learning 
 Pattern recognition 
 Automatic theorem proving 
 Planning 
 Machine vision 
 Natural language processing 

 “…making a machine behave in ways 
that would be called intelligent if  a 
human were so behaving” 

- John McCarthy, August 31, 1955  
 
 “The subfield of  computer science 

concerned with the concepts and 
methods of  symbolic inference by 
computer and symbolic knowledge 
representation for use in making 
inferences.” 
- The Free On-line Dictionary of  
Computing (September 27, 2003)  
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Class knowledge: 
 Group 1:  Nordic countries 
 Group 2:  UK, France, Greece, Spain,  
 Portugal 
 Group 3:  Benelux countries, 
 Switzerland, Austria, Italy, Germany 

Example: Decision tree learning 

Christian Democrats > 16 

Group 3 

Yes 

Agrarians > 4 

Yes 
Group 1 Group 2 

No 

No 

11 
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P. Larrañaga. Briefings in 
Bioinformatics 2006 
7(1):86-112 

12 



Bayes decision rule 
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( | ) ( )
( | )

( )
j j

j

p x P
P x

p x
ω ω

ω =

posterior 

likelihood prior 

evidence 

Bayes decision rule: 
 If  P(w1|x) > P(w2|x) then choose w1, else choose w2.  



Example 

 
 
 
 

 Bayes Decision Rule 
− If P(apple | color) > P(peach | color) then choose apple 

 
 Note that the evidence p(color) is only necessary for normalization 

purposes; it does not affect the decision rule 
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So, what about the data? 

 Use examples to estimate the probability distributions: 
− P(wj) is easy. 
− p(x|wj): Histogram! 

 
 
 
 

 One feature: bins are rectangles, Two features: cubes, n-features: hyper-cubes. 
 More dimensions/features require more training data: Curse of  

dimensionality! 
− If  we need 10 observations when we have one feature (to get a good histogram), 

then we need 10n observations when we have n-features! 
 If  the true probability distributions are known, then Bayes decision rule is 

optimal (minimizes error rate) 
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Decision trees / Rule learning 

Final decision tree: Weather 

Play No play Light 

Play No play 

Sunny 
Raining 

Overcast 

Good Poor 

Interpretation: 
 
IF weather = sunny THEN play 
IF weather = raining THEN no play 
IF weather = overcast AND light = good THEN play 
IF weather = overcast AND light = poor THEN no play 
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Overfitting 
 Overfitting: The method learns the random patterns in the data as 

well as the underlying process that created the data 
− Occurs because the alg. tries to reduce the classification error 

 
 To identify this phenomenon: 

− Split data into training data (≈75%) and test data (≈25%) 
− Build tree on the training data and test the model on the test 

data 
 

 A decision tree X is overfitted if there exists a tree Y that do better 
on an unseen test set, but worse on the training set 
 

 “Solution”: Prune complex branches of the tree 
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Occam’s razor 

William of Occam 14th century: things should not be 
multiplied unnecessarily 
 

 Issac Newton (1687): we are to admit no more causes of 
natural things than such as are both true and sufficient to explain 
their appearance  
 

 Albert Einstein (20th century): everything should be made as 
simple as possible, but not simpler 
 

 
The simplest model that explains the data should be chosen 
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Decision trees: greedy algorithm 

 Decision trees are built by iteratively splitting the training 
examples using the “best” feature: greedy 
 

 Would benefit from some search strategy 
− A split could be evaluated in terms of its current ability to classify the data 

AND the accuracy of the splits later on in the algorithm run 

 
 All problems are search problems! 



Sequence alignment as a search problem 

T 

G 

C 

A 

T 
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C 
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5 
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7 

0 i 

A T C T G A T C 
0 1 2 3 4 5 6 7 8 

j 

Deletion 

Matches 

Insertion 

-TGCAT-A-C 
AT-C-TGATC 

v 

w 
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Algorithm design 

 Exhaustive algorithms (brute force): examine every 
possible alterative to find the solution 

Greedy algorithms: find the solution by always 
choosing the currently ”best” alternative 

 Randomized algorithms: finds the solution based on 
randomized choices 
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Time complexity 

 Genome assembly: pice together a genome from short reads (~200bp) 
− Aspen: 300M reads 
− Spruce: 3000M reads 

 

 Pair-wise all-against all alignment for Aspen takes 3 weeks on 16 processors 
 What about spruce? 

 

Bioinformatician: 
Spruce: 300 uker 

0
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Million reads 

Biologist: 
Spruce: 30 weeks 

Time complexity: O(n2) 
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Tractable versus intractable problems 

 Some problems requires polynomial time 
− e.g. sorting a list of integers 
− called tractable problems 

 Some problems require exponential time 
− e.g. listing every subset in a list 
− called intractable problems 

 Some problems lie in between 
− e.g. the traveling salesman problem 
− called NP-complete problems 
− nobody have proved whether a polynomial time algorithm 

exists for these problems 



Phylogenetic trees/Decision trees 

Number of trees with n 
leaves: nn-2 

− n=10: 108 

− n=30: 1041 

− n=50: 1081 

 
There are1080 particles 

in the universe! 
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Method power 
You want to find homologous proteins to a specific protein A 
using some computational method X: 

All proteins in the database 

Homologous to A 

Predicted by X to be 
homologous to A 

TP 

TN 

FP 

FN 

Sensitivity: TP/(TP+FN) 
Specificity: TN/(TN+FP) 
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Cross validation 

 k-fold cross validation: k iterations 
 Leave-one out cross validation: n iterations 

Observation 1 
Observation 2 
. 
. 
. 
. 
. 
. 
. 
. 
. 
. 
. 
. 
. 
. 
. 
Observation n 

Test set 
Training set 

Training set 

Training set 
Training set 

Test set 

Training set 
Test set 

Training set 

Iteration 1 Iteration 3 Iteration 2 

 
 
 
Fold 1 
 
 
 
 
Fold 2 
 
 
 
 
 
Fold 3 
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Evaluation 

 Classifications can be 
− True positives (TP) 
− False negatives (FN) 
− True positives (TP) 
− False positives (FP) 

 Evaluation measures: 
− accuracy = (TP+TN)/(TP+FN+TN+FP) 
− sensitivity = TP/(TP+FN) 
− specificity = TN/(TN+FP) 

 Confusion matrix: 



Threshold selection 

1 

C
er

ta
in

ty
 in

  
“p

ro
te

in
 

bi
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yn
th
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is”

 

Test set g1     g2     g3     g4     g5     g6     g7    g8     g9     g10   g11   g12   

Sensitivity = 2/3, Specificity=1 
Sensitivity = 1,    Specificity=2/3 

Gene with function “protein biosynthesis” 

Gene with a different function 

sensitivity: 
TP/(TP+FN) 
specificity: 
TN/(TN+FP) 

Threshold 1 

Threshold 2 



ROC analysis and classifier evaluation 

1 

se
ns

iti
vi

ty
 

1 – specificity 
False alarm 

1 

No discrimination 

Perfect discrimination 

AUC 

0 

0 

• ROC: Receiver operating 
characteristics curve results from 
plotting sensitivity against 
specificity for all possible 
thresholds 

– sensitivity: TP/(TP+FN) 
– specificity: TN/(TN+FP) 

 
• AUC: Area under the ROC curve 



ROC analysis and classifier evaluation 

1 

se
ns

iti
vi

ty
 

1 - specificity 1 

No discrimination 

Perfect discrimination 

0 

0 

• Which ROC curve is better? 
 

• A dominants B and C and clearly 
has a higher AUC 
 

• B and C have approximately the 
same AUC 
 

• B is better for some thresholds, 
C for others 

A B 

C 
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Linear versus non-linear classifiers 
 Linear: Finds a hyperplane that separates the classes 

– In two dimensions: w0 + w1∙x1 + w2∙x2  
– Use the examples x to estimate w 

 
 
 
 
 
 

 Non-linear:  
– Support vector machines uses the kernel trick: 

The kernel maps the observations into a 
higher dimensional space where the 
problem is linearly separable 

– Artifical neural networks 
 

Maximum margin 
separating ”hyperplane” 

Support vectors 

Soft margin 



siRNA classification 

The kernel trick 

32 
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Artificial neural networks 
 Inspired by how the brain works – a mathematical model for 

the operation of  the brain 
 Learning in an ANN is reduced to the process of  using the 

training data to tune the weights so that the network 
represents the desired function 
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Image recognition 
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Clustering analysis 
Need to define; 
• measure of similarity 
• algorithm for using the measure of similarity to 

discover natural groups in the data 

The number of  ways to divide n items into k clusters: 
  kn/k! 
 
Example: 10500/10! = 2.756 × 10493 
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Measure of similarity 

E1 

E2 

d 

What is similar? Euclidean distance 
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Hierarchical clustering 
Inter-cluster similarity measures: (a) single linkage, (b) complete linkage and (c) 
average linkage 
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Example of hierarchical clustering:  
languages of Europe 

Distance: Frequency of  numbers with different first letter e.g. 
 dEN = 2  dEDu = 7  dSpI = 1 
 
Inter-cluster strategy: SINGEL LINKAGE 



39 

Iteration 1 

E N Da Du G Fr Sp I P H Fi
E 0
N 2 0

Da 2 1 0
Du 7 5 6 0
G 6 4 5 5 0
Fr 6 6 6 9 7 0
Sp 6 6 5 9 7 2 0
I 6 6 5 9 7 1 1 0
P 7 7 6 10 8 5 3 4 0
H 9 8 8 8 9 10 10 10 10 0
Fi 9 9 9 9 9 9 9 9 9 8 0

I 

1 
2 
3 
4 
5 
6 
7 
8 

Fr 
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Iteration 2 

I Fr E N Da Du G Sp P H Fi
I Fr 0
E 6 0
N 6 2 0

Da 5 2 1 0
Du 9 7 5 6 0
G 7 6 4 5 5 0
Sp 1 6 6 5 9 7 0
P 4 7 7 6 10 8 3 0
H 10 9 8 8 8 9 10 10 0
Fi 9 9 9 9 9 9 9 9 8 0

I 

1 
2 
3 
4 
5 
6 
7 
8 

Fr Da N 
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Iteration 3 

Da N I Fr E Du G Sp P H Fi
Da N 0
I Fr 5 0
E 2 6 0

Du 5 9 7 0
G 4 7 6 5 0
Sp 5 1 6 9 7 0
P 6 4 7 10 8 3 0
H 8 10 9 8 9 10 10 0
Fi 9 9 9 9 9 9 9 8 0

I 

1 
2 
3 
4 
5 
6 
7 
8 

Fr Da N Sp 
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Iteration 4 

Sp I 
Fr

Da 
N E Du G P H Fi

Sp I Fr 0
Da N 5 0

E 6 2 0
Du 9 5 7 0
G 7 4 6 5 0
P 3 6 7 10 8 0
H 10 8 9 8 9 10 0
Fi 9 9 9 9 9 9 8 0

I 

1 
2 
3 
4 
5 
6 
7 
8 

Fr Da N Sp E 
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Iteration 5 

E Da 
N

Sp I 
Fr Du G P H Fi

E Da 
N 0

Sp I 
Fr 5 0
Du 5 9 0
G 4 7 5 0
P 6 3 10 8 0
H 8 10 8 9 10 0
Fi 9 9 9 9 9 8 0

I 

1 
2 
3 
4 
5 
6 
7 
8 

Fr Da N Sp E P 
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Iteration 6 

P Sp 
I Fr

E Da 
N Du G H Fi

P Sp 
I Fr 0

E Da 
N 5 0

Du 9 5 0
G 7 4 5 0
H 10 8 8 9 0
Fi 9 9 9 9 8 0

I 

1 
2 
3 
4 
5 
6 
7 
8 

Fr Da N Sp E P G 
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Iteration 7 

G E 
Da 
N

P Sp 
I Fr Du H Fi

G E 
Da 
N 0

P Sp 
I Fr 5 0
Du 5 9 0
H 8 10 8 0
Fi 9 9 9 8 0

I 

1 
2 
3 
4 
5 
6 
7 
8 

Fr Da N Sp E P G Du 
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Iteration 8 

Du 
G E 
Da 
N

P Sp 
I Fr H Fi

Du 
G E 
Da 
N 0

P Sp 
I Fr 5 0
H 8 10 0
Fi 9 9 8 0

I 

1 
2 
3 
4 
5 
6 
7 
8 

Fr Da N Sp E P G Du 
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Iteration 9 

P Sp I Fr 
Du G E 
Da N H Fi

P Sp I Fr 
Du G E 
Da N 0

H 8 0
Fi 9 8 0

I 

1 
2 
3 
4 
5 
6 
7 
8 

Fr Da N Sp E P G Du H 
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Iteration 10 

Fi 
H

P Sp I Fr 
Du G E 
Da N

Fi H 0
P Sp I 

Fr Du G 
E Da N 8 0

I 

1 
2 
3 
4 
5 
6 
7 
8 

Fr Da N Sp E P G Du H Fi 
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Any data mining result needs to be consistent 
BOTH with the data and current knowledge! 
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Evaluation of clusters 

I 

1 
2 
3 
4 
5 
6 
7 
8 

Fr Da N Sp E P G Du H Fi 

Clusters may be 
evaluated 
according to how 
well they describe 
current knowledge 

Roman 
Slavic 
Germanic 
Ugro-Finnish 
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Existing knowledge 

KEGG pathways 

AtRegNet: Confirmed 
interactions in Arabidopsis 
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Randomization experiments 

• Randomize the input data 
 

• P-values: fraction of randomized datasets resulting in 
”better” models than the real data 
 

• Better? 
• Cross validation 
• Existing knowledge 
• Other model properties 

 



Example: Hierarchical 
clustering 

Alizadeh et al., Distinct 
types of diffuse large B-
cell lymphoma 
identified by gene 
expression profiling, 
Nature, 403:503-511, 
2000. 

96 normal and malignant lymphocyte 
samples 
 
Almost 20 000 cDNA clones 
 
Two sub-clusters of  DLBCL were 
shown to include patients with 
significantly different expected survival 
time! 
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K-means clustering 

• Split the data into k random clusters 
• Repeat 

− calculate the centroid of each cluster 
− (re-)assign each gene/experiment to the closest 

centroid 
− stop if no new assignments are made 
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Example of K-means: 
two dimensions 

Initial  
clusters 
K=2 
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Iteration 1 

Calculate 
centroids 

x 
x 
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Iteration 1 

(Re-)assign  

x 
x 
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Iteration 2 

Calculate 
centroids 

x 

x 
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Iteration 2 

(Re-)assign 

x 

x 
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Iteration 3 

Calculate 
centroid 

x 

x 
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Iteration 3 

(Re-)assign 
 
No new 
assignments! 
STOP 

x 

x 



62 

Hierarchical vs. k-means 

 Hierarchical clustering:  
− Huge memory requirements: stores the n × n matrix 
− Running time: O(n3) 
− Nice visualization: dendrogram 
− Deterministic 
− Cannot correct early ”mistakes” (greedy alg.) 
 

 K-means:  
− Low memory usage 
− Running time: O(kn), where k is the number of iterations 
− Improves iteratively: not trapped in previous mistakes (randomization alg.) 
− Non-deterministic: will produce different clusters with different initializations 
− Number of clusters must be decided in advance 
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Network representations 

Network: nodes connected by edges 
Nodes represent genes, proteins, metabolites 
 Edges represent relationships 

− Co-expression networks: expression correlation 
− Gene networks: genes affect the expression of other genes 
− Regulatory network: transcription factors regulate genes by 

binding DNA motifs in the promoter region 
 

Network representations are flexible and allow 
integration of heterogeneous data 
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Co-expression networks versus gene networks 

G1 

G2 

G3 

G1 

G2 

G3 

Co-expression network: 
Expression of G1 correlates with that of G3 
Expression of G2 correlates with that of G3 

Gene network: 
The expression of G3 can be predicted 
from that of G1 and G2 
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Co-expression network in aspen trees 

Based on a UPSC 
collection of over 
1000 cDNS 
microarrays 
 
 
 
 
A Grönlund, RP Bhalerao, J Karlsson. 
Modular gene expression in Poplar: a 
multilayer network approach. New 
Phytologist, 2009. 
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Regulatory network in Arabidopsis 

J. Carrera , G. Rodrigo , A. Jaramillo  and S. F Elena. Reverse-engineering Arabidopsis thaliana transcriptional 
network under changing environmental conditions. Genome Biology, 10:R96, 2009. 
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Phenotypes 

Interacting genes/protein/metabolites 

Emergence 

 
Trans- 

criptomics 

 
   Meta- 
   bolomics 

 
Prot-   
eomics 

 
   Pheno- 
 types 

 
Regulatory 

genome 
(promoters) 

Synergy from integration 

Systems biology 

67 
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Holistic versus reductionistic 

 Emergent properties: 
− Can biology be reduced to chemistry? 
− Can chemistry be reduced to physics? 

 
− Ernest Rutherford : "Physics is the only real science. The rest 

are just stamp collecting.“  
 

 Can biological systems be reduced to individual genes, 
proteins and metabolites? 

Derek Gatherer . So what do we really mean when we say that systems biology is holistic? 
BMC Systems Biology 4: 22, 2010. 

68 



Emergent properties:  
differential expression 

69 



Emergent properties:  
AND logics in regulation 

70 



Inferring regulatory mechanism 

Steady state data 

Time series data 

G
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Conditions/samples 

Time 
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Example: Three genes  

3132121 yyy ββα ++=

Expr y2 y3 y1 y1  predicted 
 

Cond. A 1.2 -1.3 -1.1 α + β12∙ 1.2 - β13 ∙ 1.3 -0.594 

Cond. B 1.7 -1.4 -1 α + β12∙ 1.7 - β13 ∙ 1.4 -0.429 

Cond. C 1.1 -0.9 -1.2 α + β12∙ 1.2 - β13 ∙ 0.9 -0.437 

Cond. D 1.3 1.2 1.4 α + β12∙ 1.3 + β13 ∙ 1.2 0.699 

Cond. E 1.4 1.4 1.2 α + β12∙ 1.4 + β13 ∙ 1.4 0.842 

Cond. F 1.8 1.9 1.1 α + β12∙ 1.8 + β13 ∙ 1.9 1.264 

... ... ... ... ... ... 

Choose α, β12and β13 so that the correlation 
between observed (y1) and predicted (y1 
predicted) expression is maximized! 

α = -0.46 
β12= 0.43 
β13=0.50  

Correlation: 0.78 
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Linear versus non-linear models 

 Linear model: 
 
 

Non-linear model:  

iprelationsh ecompetitiv:0
nsinteractio csynergisti:0

123

123

321233132121

<
>

+++=

β
β

βββα yyyyy

3132121 yyy ββα ++=



AND - logic 

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

1 2 3 4 5 6 7 8 9 10 11 12

y2

y3

y1

y1-pred-lin

y1-pred-nonlin

Linear model: 
 α = -0.46 
 β12= 0.43 
 β13=0.50  
 
Non-linear model: 
 α = -0.55 
 β12= 0.37 
 β13=0.27 
  β123=0.37 

Correlation between observed and predicted: 
 Linear model:   0.77 
 Non-linear model:  0.91 
Correlation between gene 1 and 
 gene 2:    0.55 
 gene 3:   0.65 



OR - logic 

Linear model: 
 α = 0.59 
 β12= 0.40 
 β13=0.27  
 
Non-linear model: 
 α = 0.64 
 β12= 0.43 
 β13=0.40 
  β123=-0.21 

Correlation between observed and predicted: 
 Linear model:   0.85 
 Non-linear model:  0.96 
Correlation between gene 1 and 
 gene 2:    0.72 
 gene 3:   0.60 
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XOR - logic 

Linear model: 
 α = -0.02 
 β12= -0.10 
 β13=-0.30  
 
Non-linear model: 
 α = 0.11 
 β12= -0.01 
 β13=0.03 
  β123=-0.56 

Correlation between observed and predicted: 
 Linear model:   0.40 
 Non-linear model:  0.92 
Correlation between gene 1 and 
 gene 2:    -0.19 
 gene 3:   -0.39 
 

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

1 2 3 4 5 6 7 8 9 10 11 12

y2

y3

y1

y1-pred-lin

y1-pred-nonlin



77 

Overfitting and the course of dimensionality 

xzy
yx

xy
yx

+=
=

+=
=

7

3
7

Has a unique solution:  x=-3.5, y=-0.5 

Has many solutions:  z=3, x=-3.5, y=-0.5 
   z=6, x=-7, y=-1 
   ... 

i.e. we need more samples than genes in order to solve: 
∑+=

j
jijii yy βα

there are ~45 000 genes in Populus ... 
and even ~2500 transcription factors ... 

∑∑+
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Data dimentionality:  
How many samples do I need? 

Steady state data Time series data 
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Conditions Time 
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 Predicting relationships between genes require high quality data observed 
over many different conditions 

 Co-expression: Analogous to establishing whether you are being followed by 
the car behind you 

 

 Gene networks: Analogous to establishing whether you are being followed by 
many collaborating car behind you 



Complexity of data analysis 

Differential 
expression 
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Differential 
expression 

To do e.g. a t-test you need at 
least three biological replicates 
from each class 
 
Bonferroni for 10k genes: 0.5e-5 



Complexity of data analysis 
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Similarity can happen by chance 
(e.g. Pearson correlation). 

Time 

G1 

G2 

G3 

Co-expression network: 

Linear 
relationships 



Complexity of data analysis 
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Detecting genes that best 
predict the expression of our 
gene of interest … linear … 

3132121 yyy ββα ++=
G1 

G2 

G3 

Gene network: 



Complexity of data analysis 

Differential 
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… and non-linear models. 

321233132121 yyyyy βββα +++=
G1 

G2 

G3 

Gene network: 



Are there laws of genome evolution? 
(or Is biology more than stamp collecting?) 

Koonin EV (2011) Are There Laws of Genome Evolution? PLoS Comput Biol 7(8): e1002173. 
84 

(A) Log-normal distribution of 
evolutionary rates of orthologous 
genes. 
 

(B)  Anticorrelation between gene 
expression level (protein abundance) 
and sequence evolution rate. 
 

(C)Power law–like distribution of 
paralogous family size and out-
degrees in networks. 
 

(D)Differential scaling of functional 
classes of genes with the total 
number of genes in a genome: 0 – no 
dependence, typical of translation 
system component; 1 – linear 
dependence, characteristic of 
metabolic enzymes; 2 – quadratic 
dependence, characteristic of 
regulatory and signal transduction 
system components. 
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Some freely available tools 

 R contains packages for most methods discussed here 
Machine learning: RapidMiner 
Networks: Cytoscape 
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