
Department of Computer and Information Science

Norwegian University of Science and Technology

Fault Diagnosis in Rotating Machinery
Using Rough Set Theory and ROSETTA

78070 DATABEHANDLING PROSJEKTARBEID

Torgeir Rhodén Hvidsten

April 30, 1999

i

Abstract

This report outlines an approach to use rough set theory and the ROSETTA
system in the field of fault diagnosis in rotating machinery. The complexity
of rotating machinery makes fault diagnosis a difficult task. Several computer
based methods exist using mathematical modelling together with fuzzy logic,
neural networks, faults matrices, machine specific experience and simulation.
The ROSETTA system takes a machine learning approach to fault diagnosis
by inducing rules on the basis of measured data classified by a domain expert.

Data used in this work was collected from 15 different measurement points
on a large diesel engine. Six different machine states were recognised, five
fault states and one normal state. Our primary goal was twofold. First,
to establish whether machine specific knowledge could be used indirectly in
order to reduce the amount of data one has to consider when inducing rules
in ROSETTA. Second, to learn how much data is needed to induce effective
rules in ROSETTA.

Our analysis shows that machine specific knowledge not only can be used to
reduce the amount of data one has to consider, but also to obtain considerably
better results. ROSETTA is proven to be a powerful tool for fault diagnosis,
comfortably exceeding what domain experts consider to be good results.

iii

Preface

This report was written in connection with the course 78070 Databehandling
prosjektarbeid held by the Department for Computer and Information Sci-
ence (IDI), a faculty at the Norwegian University of Science and Technology
(NTNU). The project is a result of the cooperation between the Knowledge
System Group at IDI and the Department of Marine Machinery. Professor
Jan Komorowski was my main supervisor through this project, while Profes-
sor Maurice F. White and PhD student Bai Guanglai was my contacts and
domain experts on rotating machinery.

I have been working partly together with another student on this project
whose name is Marte Skarstein Bjanger. The area we were investigating was
the same, but we have been looking at two different machines, and conse-
quently we have been working with different problems and data sets. Because
of the similarity of our work, we wrote the first five chapters of the report,
which presents the problem area and the theory needed, in collaboration.

Acknowledgement

I would like to thank Maurice F. White and Bai Guanglai for providing me
with the data and for helping me to understand them. I would also like
to thank Alexander Øhrn for always being available in his office, answering
my many questions about rough set theory and ROSETTA. Finally, I would
like to thank Marte S. Bjanger for our many eagering discussions, and Dyre
Tjeldvoll for freeing me from the slavery of Konvert.exe.

Trondheim, April 30, 1999

Torgeir R. Hvidsten

Contents

1 Introduction 1
1.1 Our Task . 1
1.2 Reader’s Guide . 2

2 Data Mining and Knowledge Discovery 3

3 Diagnosis of Rotating Machinery 7
3.1 Problem Area . 7
3.2 Using Experts . 8
3.3 Using Mathematical Modelling 8
3.4 Using Expert Systems . 9

3.4.1 Fuzzy Logic . 9
3.4.2 Inverse Modelling . 11
3.4.3 Neural Networks . 11
3.4.4 Fault Matrices . 12

4 Rough Sets 15
4.1 Introduction . 15
4.2 Information Systems . 15

4.2.1 Indiscernibility . 16
4.3 Decision Systems . 17
4.4 Set Approximation . 18
4.5 Reducts . 21

4.5.1 Discernibility matrices 21
4.5.2 Discernibility functions 22

4.6 Decision rules . 23

5 The Rough Set Method and ROSETTA 25

v

vi CONTENTS

5.1 Analysis Steps . 25
5.2 Preprocessing . 27

5.2.1 Completion . 27
5.2.2 Discretisation . 28

5.3 Reduct Computation . 29
5.4 Rule Generation . 31
5.5 Classification . 33
5.6 Evaluating the Classifier . 34

6 Problem Description 37
6.1 The Machine . 38
6.2 The Data . 40
6.3 The Experiment . 41

7 Experiments and Results 45
7.1 Preprocessing . 45
7.2 Using Objects from the Whole Range of Speeds 46
7.3 Using Data from the Region Around the Optimal Operating

Point . 48
7.4 Combining the two Methods 48
7.5 Using Mean Value Objects . 49

8 Discussion/Conclusion 51
8.1 Evaluation of the Results . 51
8.2 Comparison to other Methods 55
8.3 Further Work . 55

A Preprocessing scripts 61
A.1 konvert.prl . 61
A.2 make table.prl . 62
A.3 operate30.prl . 65
A.4 duplicate.prl . 67
A.5 mean duplicate.prl . 69

Chapter 1

Introduction

1.1 Our Task

Our work has been done in connection with cooperative work between two
departments at NTNU, the Knowledge Systems group at the department of
Computer and Information Science, and the department of Marine Machin-
ery. The Knowledge Systems group is, among other things, concerned with
different applications of methods based on rough set theory. The department
of Marine Machinery has been interested in using several knowledge based
methods and system models in the field of diagnosis in rotating machinery,
among them the rough set method.

The work is carried out in connection with an EU research project on model
based diagnosis of machinery in power stations. The research project is aimed
at the development of methods for diagnosis of fault states and prognosis of
the remaining lifetime of rotating machinery as gas turbines, steam turbines,
generators and pumps.

The given assignment for our work was:

Model based diagnosis of machinery

The object of the work is to test methods for detection and evaluation of
fault states. In particular, do tests with a diagnosis system based on the
rough set method.

1

2 CHAPTER 1. INTRODUCTION

1.2 Reader’s Guide

This report is roughly divided in two parts. The first part presents the
background for our work, and gives the reader necessary knowledge on the
theory upon which our work is based. The second part presents our work and
a discussion on the results obtained. The reader is not expected to have any
previous knowledge of rough set theory or diagnosis of rotating machinery.

The first part of the report starts with a general description of the field of
Knowledge Discovery and Data Mining in chapter 2. This is to give the reader
a general introduction to the area we are concerned with from a Computer
Science point of view. Then in chapter 3, we give an overview of problems
that arise in the field of diagnosis in rotating machinery, and what methods
have been looked at to address these problems. Chapter 4 gives an intro-
duction to rough set theory, and chapter 5 elaborates this theory by giving
a description of ROSETTA, which is a system based on rough set methods.

In chapter 6 we present the specific problems addressed in this report. We
also present the data we were provided with and explain how these were
adapted to our analysis method. Chapter 7 explains the experiments in
detail and presents the results of our work. Finally, a discussion on the
obtained results is presented in chapter 8. In this chapter we also suggest
further work to be done in the same field.

Chapter 2

Data Mining and Knowledge
Discovery

Electronic measurement equipment and low cost storage media have the last
few decades made us able to store large amounts of information. A large part
of this information is primitive data collected in huge amounts, and a steadily
increasing amount of this kind of data remains unanalysed. Consequently, the
word data should not be mixed with the word knowledge which denotes the
results of further analysis of data. The relation between data and knowledge
is illustrated in Figure 2.1.

Knowledge Discovery (KD) is generally defined as the process of extracting
nontrivial, previously unknown and potentially useful information from data.
As defined in [1], this process is highly interactive and iterative, and includes
the following steps:

1. The selection, cleaning, transformation and projection of data.

2. Mining the data to extract pattern and appropriate models.

3. Evaluation and interpretation of the extracted patterns.

4. Consolidation of the knowledge, resolving conflicts.

5. Making the knowledge available for use.

In this definition Data Mining (DM) is viewed as a step in the KD pro-
cess. Thus, DM is reduced to the task of applying algorithms for extracting

3

4 CHAPTER 2. DATA MINING AND KNOWLEDGE DISCOVERY

KNOWLEDGE

DATA

THE WORLD

Figure 2.1: The information pyramid: Data are primitive pieces of informa-
tion measured form the world, while knowledge is the information extracted
from this data through analysis.

patterns or rules from the data.

KD can be viewed as a machine learning process. The input to this process is
a set of data called the training set. This set can be viewed as a table where
each row is an object and each column is an attribute describing a property
of the given objects. This kind of table is referred to as an information
system, and will be defined more formally in chapter 4. The machine learning
approach assumes the presence of a domain expert who is able to classify the
given objects in the information system by means of adding an attribute, the
decision attribute, to the information system transforming it into a decision
system. The actual learning in the KD process is now performed by means of
extracting general patterns, often in terms of rules, from the decision system.
Thus these patterns represent the knowledge initially held by the expert, but
now also learned by the process.

A number of problems add to the uncertainty of the resulting knowledge
extracted from a set of data. According to [1], databases typically have the
following properties:

• They maintain dynamic data; the data kept in the DB may change over
time.

• They may contain fields/attributes that are irrelevant to the learning
process.

5

• They may have values missing for any object.

• They are noisy, i.e. they may contain errors or outliers.

The hypothesis behind any machine learning approach to trying to extract
general knowledge is that the training set needs to be representative for the
given problem domain. The four properties given above are clearly a threat
to this assumption. Not taking that threat into account could either result
in knowledge too specific to the given training set or, even worse, knowledge
which is wrong relative to the given domain.

A more thorough introduction to the field of Knowledge Discovery and Data
Mining can be found in [1].

Chapter 3

Diagnosis of Rotating
Machinery

This chapter examines the field of fault diagnosis of rotating machinery. It
looks at the challenges of using computer based systems as assistance, or
even partially as substitution for human experts. It also describes some of
the methods used for this purpose.

3.1 Problem Area

As stated earlier, the problem area of our work is diagnosing faults in ro-
tating machinery. We are concerned with how it is possible to analyse data
measured from a machine in order to determine if a fault state has occurred
in the machine, and more preferably which fault state has occurred. In order
to do this, we have to examine large sets of measured data, which provide
us with information about the general state of the machine. The problem is
how to handle these data sets, and to interpret them in the correct way.

As defined in [2], a machinery environment consists of five basic parts:

1. A machine - characterised by its complexity, time-dependency and
speed of evolution.

2. Sensory and measurement system - characterised by the large number of

7

8 CHAPTER 3. DIAGNOSIS OF ROTATING MACHINERY

data collected, the uncertainty of this data and the possible overlapping
and conflict between different observations.

3. Process control system - used for on-line process control and sometimes
also for off-line decision support.

4. Interface - presents to the human experts the data coming from the
sensory and measurement system, and the process control system.

5. Human experts - both operators, maintenance team and specialists.

We will now discuss what kind of role fault diagnosis can play in such an
environment.

3.2 Using Experts

In the machinery environment outlined above, the experts play a very im-
portant role. However, these experts are often rare, expensive to use and cer-
tainly not available 24 hours a day. In addition, human experts often make
mistakes as a consequence of both the psychological and the environmental
factors ([2]). Some of these problems could obviously have been solved, or
at least have become less severe, using computer-based assistance, and in
particular computer-based fault diagnosis systems. Since both maintenance
staff and specialists are first of all needed when something goes wrong, or to
control that nothing will go wrong in the near future, an on-line fault diag-
nosis system would dramatically reduce the needs for these experts. Also,
since a computer never rests, an expert system is guaranteed to detect the
fault as early as possible. That is, if it is capable of detecting the fault at
all. The question is now how to build such a system.

3.3 Using Mathematical Modelling

Mathematical models of rotating machinery consist of systems of non-homogeneous
differential equations, where the general analytical solutions often are un-
known ([3]). This is due to the non-linearity and the complex form of these
equations. Thus, using mathematical modelling alone as the basis for expert

3.4. USING EXPERT SYSTEMS 9

systems seems difficult. In the following we will explain some methods which
have been used to build expert systems.

3.4 Using Expert Systems

Different approaches have been used for the purpose of computer-based fault
diagnosis in rotating machinery. Due to the mentioned problems of using
mathematical modelling alone, most approaches use a combination of math-
ematical modelling and various other methods. One method is to use inverse
modelling together with fuzzy logic and neural networks. Another method is
to use mathematical modelling together with both fault matrices, machine
specific experience and computer simulation. Some of these topics are out-
lined here.

The rough set method together with the ROSETTA system is conceptually a
method on the same level as the above mentioned methods. However, since
this is the method used in this project, rough set theory and the ROSETTA
system are more thoroughly examined later.

3.4.1 Fuzzy Logic

We divide our discussion of fuzzy logic into three parts; fuzzy set theory,
fuzzy logic and fuzzy classifiers. For more information, refer to [4] and [3]

Fuzzy Set Theory

Fuzzy set theory is used to specify how well an object satisfies a vague de-
scription. A fuzzy set can thus be defined as the set of pairs

{〈t, p(t)〉|t ∈ U} (3.1)

where U is a set of terms called the universe and p is a fuzzy predicate
such that p: U → [0, 1]. A fuzzy predicate is thus not a relation p′: U →
{true, false} as in ordinary predicate calculus. It is also important to notice
that fuzzy set theory is really not a method for uncertain reasoning, but

10 CHAPTER 3. DIAGNOSIS OF ROTATING MACHINERY

rather a method for specifying how strongly a given term, t, holds for a given
predicate, p(t).

Fuzzy Logic

Fuzzy logic evaluates logical sentences containing fuzzy predicates as a func-
tion of the truth values of its components. This evaluation should be per-
formed in the following manner:

T (A ∧ B) = min(T (A), T (B)) (3.2)

T (A ∨ B) = max(T (A), T (B)) (3.3)

T (∼ A) = 1 − T (A) (3.4)

where T is the evaluated fuzzy truth and A, B are arbitrary logical formulae.

Fuzzy Classifier

In our context, fuzzy set theory is used to classify objects according to given
classes. Such a classification can be done defining a fuzzy set as a set of pairs:

Ã = {〈u,wA(u)〉|u ∈ U} (3.5)

where U is a set of objects called the universe and w is a fuzzy predicate
called the membership function such that w: U → [0, 1]. The membership
function wA(u) estimates in which degree the element u from the universe U
belongs to the set Ã. Consequently the closer the value is to 1.0, the more
strongly the element belongs to the set.

Given a well defined data set D, this set can be partitioned into regions or
classes, where each class can be defined by a membership function. Thus the
class and its corresponding membership function together form a fuzzy set.
Given a set of membership functions, {w1, w2, ..., wn}, each defining a class
or a region of the data set, a given object x belongs to class i if:

∀wj((j ∈ {1, .., n} ∧ j 6= i) → (wi > wj)) (3.6)

3.4. USING EXPERT SYSTEMS 11

3.4.2 Inverse Modelling

As mentioned, mathematical models in rotating machinery consist of systems
of non-homogeneous differential equations, where the general analytical so-
lutions often are unknown. In addition, these models are often strongly
simplified and require data that are difficult to measure. Thus, experts try
to look for models which take data that are easy to measure as input, and
give data that are not so easy to measure as output. The easiest way to do
this seems to be to invert the already existing models rather than preparing
new models. This is because the existing models contain knowledge collected
over a long time and which have been carefully validated through experiments
([3]).

Consider as an example the existing mathematical model M :

M : (x1, ..., xI , z1, ..., zK) → (y1, ..., yJ) (3.7)

Let x1, ..., xI and y1, ..., yJ be known parameters and let z1, ..., zK be un-
known parameters. The experts now look for an inverted model N which
can calculate these unknown parameters:

N : (x1, ..., xI , y1, ..., yJ) → (z1, ..., zK) (3.8)

It should be noted that the inverse model N does not exist in the general
case. As an example, the mathematical model M could be mapping input
parameters with different values into the same output value. How can this
model be reversed? One way of handling this problem is to apply a fuzzy
classifier as described earlier ([3]).

The most common way to look for the inverse model is to consider a neural
network. A neural network can be viewed as a trainable black box. Examples
are generated using the mathematical model M , and these examples are
then used to train the network to obtain the model or mapping N . A more
thorough examination of neural networks are outlined next.

3.4.3 Neural Networks

Neural networks is a method of representing functions using networks of
simple arithmetic computing elements. These simple arithmetic computing

12 CHAPTER 3. DIAGNOSIS OF ROTATING MACHINERY

Input layer
Hidden layer

Output layer

I1

I2

O2

I1

O1

I3

Figure 3.1: A 2-layer feed-forward neural network

elements correspond to the cells - called neurons - that perform information
processing in the human brain. A neural network is thus a network of such
neurons, or nodes, which are connected by links.

A numeric weight is associated with each node. These weights are the pri-
mary means of storage in neural networks. The learning in neural networks
takes place by updating these weights. The external environment is ”com-
municating” with the network trough some of the units, which are designated
as input or output units. In order to bring the network’s behaviour into line
with the external environment, the weights of each node are modified. Each
unit has input and output links. The units do a local computation based on
the input from its neighbours. To train the neural network, the weights are
initialised and then updated using a learning algorithm applied to a set of
training examples for the task in question. For a thorough coverage of neural
networks, see [5].

Figure 3.1 gives an example of a neural network. The particular neural
network shown in the figure is a 2-layer feed-forward neural network. For a
description of how this type of neural network can be used in diagnosis of
rotating machinery, see [6].

3.4.4 Fault Matrices

Fault matrices are two-dimensional arrays. The rows represent objects, in
our case different fault states. The columns represent attributes, in our case
the symptoms that may occur in each fault state. In this way a fault matrix
represents knowledge in a compressed way. From a fault matrix it is possible
to form conjunctions of symptoms of a fault, and from these conjunctions we
can conclude with either true or false for the fault in question. For a fault

3.4. USING EXPERT SYSTEMS 13

to be detected, it is necessary that all characteristic symptoms of this fault
are present.

According to [7], it is desirable that the fault matrix has the following prop-
erties:

1. Symptoms may take any truth-value, ranging from false over unknown
to true.

2. The presence of a symptom may strengthen the belief in a hypothesis.

3. The absence of a symptom may strengthen the belief in a hypothesis.

4. The presence of a symptom may weaken the belief in a hypothesis.

5. The absence of a symptom may weaken the belief in a hypothesis.

6. The use of absolute values should be avoided. The relative change of
a value should be used instead in order to facilitate tailoring of the
system to particular machines.

7. It should be possible to assign prior beliefs to each possible fault re-
flecting the experienced distribution of faults for particular machines.

8. Under development of a new fault matrix it should be possible to apply
different treatments of uncertainty using the same knowledge represen-
tation in order to find the one which is best suited for the problem.

Vibration analysis is a well-suited area for using fault matrices, since the
inference chains usually are kept very short. In vibration diagnosis, the
symptoms are usually directly connected to a fault, which is an advantage
when fault matrix representation is used.

Two systems that have been developed based on fault matrices for use in
diagnosis of rotating machinery are MATRIX and VIBEX. For a thorough
description of these systems, see [7] and [8].

Chapter 4

Rough Sets

This chapter gives an introductory description of rough set theory. It is not
meant to be a complete coverage of the theory, it merely gives an overview of
the main concepts. The main concepts are throughout the chapter illustrated
by an example. For a more thorough description of the theory, the reader is
referred to [9].

4.1 Introduction

The process of dividing a universe of objects into different categories is called
classification. Rough set theory deals with the analysis of this classificatory
property of a set of objects. If you have large data sets, acquired from
measurements or from human experts, these data sets may represent vague
knowledge, for instance uncertain or incomplete knowledge. Rough set theory
provides the means to discern and classify objects in data sets of this type,
when it is not possible to divide the objects into defined categories.

4.2 Information Systems

In rough set theory, knowledge is represented in information systems. An
information system is a data set represented in a table. Each row in the

15

16 CHAPTER 4. ROUGH SETS

table represents an object, for instance a case or an event. Each column in
the table represents an attribute, for instance a variable, an observation or a
property. To each object (row) there are assigned some attribute values.

An information system, A, is defined as:

A = (U,A) (4.1)

U - non-empty finite set of objects called the universe
A - non-empty finite set of attributes such that

a : U → Va for every a ∈ A

Va - the value set of a

Example: To illustrate the concept of information system, we present an
example. The example will be used throughout this chapter. The example
information system is shown in Table 4.1.

The objects (rows) in this example are bottles of red wine. Different attributes
(columns) are measured for each bottle. The measured attributes are wine
district, main grape variety, vintage and storage temperature.

Wine district Main grape variety Vintage Storage temp.

x1 Bordeaux Cabernet Sauvignon 1992 12-15
x2 Rhône Syrah 1992 <12
x3 Chile Cabernet Sauvignon 1995 12-15
x4 Bordeaux Merlot 1995 >15
x5 Chile Cabernet Sauvignon 1995 12-15
x6 Rhône Merlot 1992 12-15
x7 Bordeaux Merlot 1995 >15
x8 Chile Merlot 1992 <12

Table 4.1: Example information system

�

4.2.1 Indiscernibility

One of the most important concepts of rough set theory is indiscernibility,
which is used to define equivalence classes for the objects.

4.3. DECISION SYSTEMS 17

Given a subset of attributes B ⊆ A, each such subset defines an equivalence
relation INDA(B) called an indiscernibility relation. This indiscernibility
relation is defined as:

INDA(B) = {(x, x′) ∈ U2|∀a ∈ B, a(x) = a(x′)} (4.2)

Equation 4.2 states that the subset of attributes, B, will define a partitioning
of the universe into sets such that each object in a set cannot be distinguished
from other objects in the set using only the attributes in B. The sets which
the objects are divided into are called equivalence classes.

Example: In the information system shown in Table 4.1, we see that objects
x3 and x5, x4 and x7 are (pairwise) indiscernible.

Example indiscernibility relations from the table:

IND(WineDistrict) = {{x1, x4, x7}, {x2, x6}, {x3, x5, x8}}

IND(WineDistrict,MainGrapeV ariety, V intage, StorageTemp.) =
{{x1}, {x2}, {x3, x5}, {x4, x7}, {x6}, {x8}}

�

4.3 Decision Systems

If a new attribute is added to the information system, and this attribute
represents some classification of the objects, the system is called a decision
system. We get:

A = (U,A ∪ {d}) (4.3)

d - the decision attribute.

The elements of A are called conditional attributes or conditions.

The decision is not necessarily constant on the equivalence classes. That
is, for two objects belonging to the same equivalence class, the values of
the decision attribute may be different. In this case, the decision system is
inconsistent (non-deterministic). If a unique classification can be made for
all the equivalence classes, the system is consistent (deterministic).

18 CHAPTER 4. ROUGH SETS

Example: We add information to the information system in Table 4.1 by
introducing a decision attribute. This additional attribute states whether or
not the bottle of wine has been stored for a sufficient period of time. We
now have a decision system, which is shown in Table 4.2.

Wine district Main grape variety Vintage Storage temp. Decision

x1 Bordeaux Cabernet Sauvignon 1992 12-15 Drink now
x2 Rhône Syrah 1992 <12 Hold
x3 Chile Cabernet Sauvignon 1995 12-15 Drink now
x4 Bordeaux Merlot 1995 >15 Drink now
x5 Chile Cabernet Sauvignon 1995 12-15 Hold
x6 Rhône Merlot 1992 12-15 Hold
x7 Bordeaux Merlot 1995 >15 Drink now
x8 Chile Merlot 1992 <12 Hold

Table 4.2: Example decision system

�

From this example we see some of the problems that rough set theory ad-
dresses. For instance, objects x3 and x5 belong to the same equivalence
class, but they are classified differently. They have the exact same values
for the conditional attributes, but they have different values for the decision
attribute. This means that the information system in this example is incon-
sistent. The question is then: How can we address the problem that arises
due to the impossibility of distinguishing between the two objects using only
the information given from the equivalence classes?

4.4 Set Approximation

In order to classify an object based only on the equivalence class in which
it belongs, we need the concept of set approximation. Given an information
system, A = (U,A), and a subset of attributes, B ⊆ A, we would like to
approximate a set of objects, X, using only the information contained in B.

We define:

4.4. SET APPROXIMATION 19

B-lower approximation of X:

BX = {x|[x]B ⊆ X} (4.4)

B-upper approximation of X:

BX = {x|[x]B ∩ X 6= ∅} (4.5)

The lower approximation is the set containing all objects for which the equiv-
alence class corresponding to the object is a subset of the set we would like
to approximate. This set contains all objects which with certainty belong to
the set X.

The upper approximation is the set containing the objects for which the
intersection of the object’s equivalence class and the set we would like to
approximate is not the empty set. This set contains all objects which possibly
belong to the set X.

We now define the boundary region:

B-boundary region of X:

BNB(X) = BX − BX (4.6)

This set contains the objects that can not be classified as definitely inside X
nor definitely outside X. A set is rough if BNB(X) 6= ∅.

The concepts of lower approximation, upper approximation and B-boundary
region are illustrated in Figure 4.1.

20 CHAPTER 4. ROUGH SETS ��

Figure 4.1: Set approximation

Example: Approximating the set of wine bottles that can be drunk now is
shown in Figure 4.2.

{{x2},{x6},{x8}}

{{x3,x5}}

{{x1},{x4,x7}}

Drink now

Drink now/Hold

Hold

Figure 4.2: Approximation of the set Drink now

�

4.5. REDUCTS 21

4.5 Reducts

Sometimes not all of the knowledge in an information system is necessary to
divide the objects into classes. In these cases we can reduce the knowledge.
Reducing the knowledge results in reducts.

A reduct is a minimal set of attributes, B ⊂ A, such that

INDA(B) = INDA(A) (4.7)

A reduct is a combination of attributes that will make you able to discern
between objects as well as you would if you used all attributes.

Example: To discern between the different equivalence classes in the ex-
ample in Table 4.1, only the attributes wine district and main grape variety
are necessary. Thus, {WineDistrict,MainGrapeV ariety} is an example of
a reduct:

INDA({WineDistrict,MainGrapeV ariety}) = INDA(A)

�

Reducts can be computed on the basis of discernibility matrices and discerni-
bility functions.

4.5.1 Discernibility matrices

A discernibility matrix of A is a symmetric n × n matrix with entries

cij = a ∈ A|a(xi) 6= a(xj) for i, j = 1, ..., n.

The entries for each object are thus the attributes that are needed in order
to discern object i from object j.

Example: The discernibility matrix for our example in Table 4.1 is shown
in Table 4.3. For readability, the four attributes are abbreviated d, g, v, s.

We see that since objects x3 and x5 are indiscernible, the entry in the matrix
here is the empty set. This means that there are no attributes that will
discern between these two objects.

22 CHAPTER 4. ROUGH SETS

[x1] [x2] [x3] [x4] [x5] [x6] [x7] [x8]

[x1] ∅
[x2] d, g, s ∅
[x3] d, v d, g, v, s ∅
[x4] g, v, s d, g, v, s d, g, s ∅
[x5] d, v d, g, v, s ∅ d, g, s ∅
[x6] d, g g, s d, g, v d, v, s d, g, v ∅
[x7] g, v, s d, g, v, s d, g, s ∅ d, g, s d, v, s ∅
[x8] d, g, s d, g g, v, s d, v, s g, v, s d, s d, v, s ∅

Table 4.3: Discernibility matrix.

�

4.5.2 Discernibility functions

From the discernibility matrix, we can build a discernibility function. A
discernibility function fA for an information system A is a Boolean function
of m Boolean variables a∗

1
, ..., a∗

m (corresponding to the attributes a1, ..., am)
defined as below, where c∗ij = {a∗| a ∈ cij}

fA(a∗

1
, ..., a∗

m) = ∧{∨c∗ij|1 ≤ j ≤ i ≤ n, cij 6= ∅}

The discernibility function is a conjunction of all the entries in the discerni-
bility matrix that are not the empty set. The conjunction may, if possible,
be simplified. The results of simplification are the possible reducts for the
information system.

It is also possible to generate a discernibility function from the discernibility
matrix for one of the objects in the information system. This is done by
looking at only one row (or column) in the discernibility matrix, and form a
conjunction of all the entries in this row (or column). When we simplify this
conjunction, we get possible reducts for the particular object in question.

4.6. DECISION RULES 23

4.6 Decision rules

For decision systems, A = (U,A∪ {d}), we would like to find an approxima-
tion of the decision, d. This can be done by constructing the decision-relative
discernibility matrix of A. This matrix tells us how to discern an object from
objects belonging to another decision class. The process of computing this
matrix is called computing the discernibility matrix modulo the decision at-
tribute.

If M(A) = (cij) is the discernibility matrix of a decision system A, the
decision-relative discernibility matrix of A is defined as:

Md(A) = (cd
ij) assuming cd

ij = ∅ if d(xi) = d(xj) and cd
ij = cij − d, otherwise.

From the reducts computed from this discernibility matrix, we can generate
decision rules for classification of the objects.

Example: A reduct for the decision system in Table 4.2 is
{WineDistrict,MainGrapeV ariety}. This reduct will, for object x2, pro-
duce the decision rule:

Wine District = Rhône ∧ Main Grape Variety = Syrah ⇒ Decision = Hold

�

Chapter 5

The Rough Set Method and
ROSETTA

In this chapter we will describe the rough set method in more detail. In par-
ticular, we will look at how the ROSETTA system implements this method.

The ROSETTA system is a toolkit for analysis of tabular data using rough
set theory. It consists of a Windows NT interface against a kernel containing
various algorithms for preprocessing, reduct computation, rule generation,
rule filtering and classification.

For a more thorough description of the rough set method and the ROSETTA
system, see [9] and [10]

5.1 Analysis Steps

Figure 5.1 shows the analysis steps when using the ROSETTA system. ROSETTA
takes a machine learning approach to the classification task. The decision ta-
ble is imported into ROSETTA and divided into a training set and a test set.
The idea behind the method is now to use the training set to induce rules,
and then use the test set to validate these rules. In general, non-categorical
attributes need to be discretised in order to induce effective rules. The cut-
off points generated during the discretisation step are produced using the
training set. The test set is then discretised using these cuts. Rules are

25

26 CHAPTER 5. THE ROUGH SET METHOD AND ROSETTA

TABLE

Import

TABLETABLE

Split
Test dataTraining data

TABLE

Discretise

TABLE

Discretise

REDUCTS

Reduce

RULES

Generate
rules

RESULTS

Classify

DECISION
TABLE

Cuts

RULES

Filter

Figure 5.1: How to use the rough set method and the ROSETTA system to
induce and validate a classifier

5.2. PREPROCESSING 27

then generated on the basis of the discrete training table using the computed
reducts. The results from applying the generated rules on the discrete test
set, indicate how successfully the rules classified the objects in the test set.

This method can be carried out for two purposes. First, the rule set can be
viewed as a classifier, used for the purpose of classifying only. Second, the
computed reducts and the generated rules can be used by domain experts to
learn more about the data. The last approach often requires a small set of
rules for the human expert to examine, thus rule filtering can be carried out.

We will now examine the steps briefly described here in more detail.

5.2 Preprocessing

Before the data can be imported into ROSETTA they need to be collected
and classified by a domain expert. Then they need to be transformed into a
decision table. This involves quite a lot of work, since it often is not obvious
how to interpret the data. Also, this is often an iterative process; as you
learn more about the data through using the pipeline shown in Figure 5.1,
you may want to view the data in a different way.

After the data has been imported into ROSETTA, two important prepro-
cessing steps need to be carried out; completion and discretisation.

5.2.1 Completion

During measurements values often get lost. Objects with missing values are
very undesirable, since ROSETTA might make rules on the basis of these
missing values. Three algorithms exist in ROSETTA that take different
approaches to the task of filling in these missing values:

1. Remove objects with missing values - this is often undesirable when
very few objects are available or when the object in question represents
a very rare event.

2. Fill in the missing values with the mean value of all non-missing entries
for that attribute - alternatively, the computation of the mean values
could be conditioned to the decision classes.

28 CHAPTER 5. THE ROUGH SET METHOD AND ROSETTA

3. Expand every object with a missing value into multiple objects; one
object for each possible value - alternatively, the set of possible values
could be conditioned to the decision classes.

5.2.2 Discretisation

In ROSETTA, discretisation is reduced to searching for “cuts” that determine
intervals. All values that lie within this interval is then mapped to the
same value. Discretisation is necessary to ensure that the rules ROSETTA
induces are not too specific. Some of the methods used for discretisation in
ROSETTA are briefly explained here:

1. Naive algorithm: For each attribute:

a) Order the objects according to the value.

b) Scan the sorted objects and add a cut for that attribute midway
between to neighbouring objects if the decision values for those
objects differ.

There also exists a semi-naive algorithm that selects a subset of the
cuts found by the naive algorithm.

2. Equal frequency binning: For each attribute the algorithm dis-
cretises the given attribute into a number of intervals such that each
interval contains approximately the same number of objects.

3. Boolean reasoning: This algorithm reduces the search for appropri-
ate cut-off points to finding minimal Boolean expressions.

4. Manual cuts: Gives the user the opportunity to enter cuts manually.

It is reasonable to expect that the naive, and even the semi-naive, algorithm
provides more cuts than is actually necessary because they only consider
one attribute at a time. The boolean reasoning algorithm sees patterns
in multiple dimensions by considering more than one attribute at a time.
Thus this algorithm produces fewer cuts. It is often desirable to first use
boolean reasoning and then use one of the other algorithms on the remaining
attributes. Manual cuts are often provided by a domain expert, and can
therefore be of great help in many situations.

5.3. REDUCT COMPUTATION 29

5.3 Reduct Computation

Computing reducts is the task of finding minimal attribute subsets as ex-
plained in chapter 4. Note that ROSETTA only compute approximations to
reducts. Finding a minimal reduct is NP-hard, but there exists good heuris-
tics that compute sufficiently many reducts in an acceptable time. The the-
oretical maximum numbers of reducts one can compute from an information
system A = (U,A) equals a binomial coefficient such that:

|RED(A)| ≤

(

|A|

⌈|A|/2⌉

)

(5.1)

To understand how reducts are computed in ROSETTA, we should consider
the following definitions:

i) A term is a conjunction of literals.

ii) An implicant of a Boolean function f is a term p such that p ≤ f .

iii) A prime implicant is an implicant of f that ceases to be so if any of its
literals are removed.

iv) Given any information system A = (U,A): B ∈ RED(A) if and only
if term(B) is a prime implicant of the discernibility function fA.

Thus finding reducts boils down to finding prime implicants of the discerni-
bility function. There exist many algorithms for reduct computation in
ROSETTA. Some of them are explained here:

1. The Johnson algorithm: This algorithm invokes a simple greedy
algorithm that computes a single reduct only. Consider an information
system A = (U,A) where:

i) fA is the discernibility function (product of sums) constructed on
the basis of the discernibility matrix as explained in chapter 4.

ii) w(s) denotes a weight for a sum s in fA.

A reduct B can now be found in two steps:

a) Initialise B to the empty set.

30 CHAPTER 5. THE ROUGH SET METHOD AND ROSETTA

b) While the function fA has any sums left:
Add attribute a to B if a maximises

∑

w(s), where s occurs in
fA and a occurs in s. Delete all sums from fA that contains a.

Running the Johnson algorithm results in a small set of reducts, and
thus also a small set of rules, compared to the other algorithms available
in ROSETTA.

2. The genetic algorithm: This is an implementation of a genetic al-
gorithm for computing minimal hitting sets. Again consider an infor-
mation system A = (U,A) and interpret its discernibility function as a
set of sets in the following manner:

SfA
= {MA(x, y)|MA(x, y) is used to construct fA} (5.2)

where MA(x, y) is the discernibility matrix and fA is the discernibility
function. A hitting set of SfA

is now a set Ah ⊆ A such that the
intersection between Ah and every set in S is non-empty. A minimal
hitting set is consequently a hitting set Ah that ceases to be a hitting
set if any of its elements are removed. It should now be obvious that
a hitting set of SfA

is an implicant of fA. And consequently a minimal
hitting set of SfA

is a prime implicant of fA, or, as stated earlier, a
reduct.

3. Dynamic reducts: Real world data almost always contain noise and
other peculiarities. Only one single noisy object can change the dis-
cernibility matrix, thus one would like to find reducts that reveal the
underlying, general pattern in the data set.

Computing dynamic reducts from an information system A = (U,A)
can be done in the following manner:

a) Randomly sample a family of subsystems S = {Ai} from A =
(U,A) such that Ai = (Ui, A) and Ui ⊆ U .

b) From each subsystem Ai ∈ S, compute RED(Ai).

c) The reducts that occur the most often in step b) are now believed
to be the most “stable”.

The actual reduct computation performed in b) can be done using one
of the other two algorithms described. Dynamic reduct computation

5.4. RULE GENERATION 31

are thus just a combination of normal reduct computation and resam-
pling techniques.

In ROSETTA, reducts can be computed along two dimensions:

1. Reducts can be computed on the basis of both the discernibility matrix
modulo the decision attribute and the discernibility matrix not modulo
the decision attribute.

2. Reducts can be computed with:

a) full discernibility: The discernibility function is built using all the
entries in the discernibility function.

b) object related discernibility: One discernibility function is built for
each equivalence class using one row in the discernibility function.

When ROSETTA is used for classification purposes, reducts are computed
modulo the decision attribute and with object related discernibility. How-
ever, full discernibility is often used when one is interested in general patterns
rather than rules.

5.4 Rule Generation

Rules are generated on the basis of the computed reducts, and constitute one
of the most important results of rough set data analysis.

Given a decision system A = (U,A∪{d}), a descriptor is defined as a simple
expression a = v where a ∈ A and v ∈ Va. A decision rule is now denoted
α → β, where α is a conjunction of descriptors, formed by overlaying a
reduct B ∈ RED(A) over an object x ∈ U and reading off the value of x for
every a ∈ B, and β is the corresponding descriptor d = d(x). α is called the
rule’s antecedent and β is called the rule’s consequent. In ROSETTA rules
are generated in this manner for every object and its related reducts. New
occurrences of an already existing rule are discarded. Rules with equivalent
antecedent and different decisions are merged. Thus, for an inconsistent de-
cision system the consequent of a decision rule α → β could be a disjunction
of descriptors.

32 CHAPTER 5. THE ROUGH SET METHOD AND ROSETTA

 ��

Figure 5.2: The relation between coverage and accuracy

There exist several units of measure for the quality of a given decision rule
α → β:

1. Support: The number of rules that possess both property α and β.

2. Accuracy: Measures how trustworthy the rule is in drawing conclusion
β on the basis of evidence α:

accuracy(α → β) =
support(α · β)

support(α)
(5.3)

Equation (5.3) is often used as an estimate for the conditional proba-
bility Pr(β|α).

3. Coverage: Measures how well the evidence α describes the decision
class defined through β:

coverage(α → β) =
support(α · β)

support(β)
(5.4)

Equation (5.4) is often used as an estimate for the conditional proba-
bility Pr(α|β).

When inducing rules one would like to obtain decision rules that are both
accurate and have a high degree of coverage. Figure 5.2 shows graphically
that as the antecedent grows long, the coverage decreases while the accuracy
increases. Thus one would have to balance the trade-off between these two
measures.

5.5. CLASSIFICATION 33

5.5 Classification

The set of rules induced on the basis of the computed reducts are often used
to classify new and unseen objects. In this context the rule set is called
a classifier. Given the classifier RUL and a test set, there exist different
approaches to perform the actual classification. The most usual one is called
voting and is described bellow.

Given object x to classify, voting is performed in the following way:

a) The set RUL is scanned for rules that have an antecedent that matches
x. These rules are denoted RUL(x) and are said to fire for the given
object x.

b) If RUL(x) = ∅ the classification is undefined.

c) The different decisions indicated by the rules in RUL(x) are given votes
in an election process:

i) Each rule r ∈ RUL(x) are given a number of votes votes(r) in
favour of the decision class indicated by the rule. votes(r) is typ-
ically based on the support of the rule r.

ii) A normalisation factor norm(x) is computed. norm(x) is typically
the number of votes given altogether.

iii) A certainty coefficient that indicates the certainty of x belonging
to the decision class β is then defined:

certainty(x, β) =
votes(β)

norm(x)
(5.5)

The set of certainty coefficients given by the voting algorithm can now be
interpreted in two different ways:

1. Choose the decision class with the highest certainty coefficient.

2. Prioritise a particular decision class by always choosing this partic-
ular decision class if it obtained a certainty coefficient above a given
threshold. Else, choose the the decision class with the highest certainty
coefficient.

How to evaluate the resulting classification is described next.

34 CHAPTER 5. THE ROUGH SET METHOD AND ROSETTA

5.6 Evaluating the Classifier

In the following we will view a classifier c as a function that takes a given ob-
ject x as input and gives a classification d̂c as output. The true classification
of x will be denoted d(x).

One way of evaluating the result of applying a classifier c to a set of test
objects, is to consider a confusion matrix C. The entry C(i, j) is the number
of objects that really belong to class i, but were classified by c as belonging
to class j. Given the case where c is a binary classifier, i.e. where Vd = {0, 1},
the following would be a confusion matrix:

d̂c

0 1

d
0 TN FP
1 FN TP

where TN is interpreted as “true negatives”, TP as “true positives”, FN as
“false negatives” and FP as “false positives”. Three important quantities in
this context is sensitivity, specificity and accuracy :

TP/(TP + FN) Sensitivity Pr(d̂c = 1|d(x) = 1)

TN/(TN + FP) Specificity Pr(d̂c = 0|d(x) = 0)
(TP + TN)/(TP + TN + FP + FN) Accuracy

By further considering a binary classifier, with decision classes X0 and X1,
we can define the relation d̂c as follows:

d̂c : U
Φ
→ [0, 1]

θ
→ {0, 1} (5.6)

Considering a given object x to classify, we now have the following:

Φ(x) = certainty(x,X1) (5.7)

θ(Φ(x)) =

{

1 if Φ(x) ≥ τ

0 otherwise
(5.8)

Here, τ is the threshold mentioned at the end of section 5.5. Remember that
certainty was the output of the voting algorithm also explained in section
5.5.

The binary classifier can now be evaluated along two dimensions:

5.6. EVALUATING THE CLASSIFIER 35

1. Discrimination: Measure of how good the classifier is at guessing the
correct value for d(x) when presented with object x.

2. Calibration: Measure of how close the output Φ(x) of a classifier is to
the probability Pr(d(x) = 1|x).

Discrimination is an intuitive measure because it indicates how good a clas-
sifier is at classifying. Calibration is also very important, because human
experts often want to use this value as a decision base rather than using the
final classification given by θ.

 ��

Figure 5.3: An example of an ROC curve

A frequently used graphical representation of discrimination is the receiver
operating characteristic (ROC) curve. Equation 5.8 shows us that the output
of a classifier depends on a selected threshold τ . An ROC curve describes the
behaviour of a classifier as the threshold τ is varied across the full spectrum
of possible values. Each point on the ROC curve represents a different 2 × 2
confusion matrix with different sensitivity and specificity, all defined by the
given threshold value. An example of an ROC curve is given in Figure 5.3. It
is common to interpret the area under the ROC curve, AUC, as the highest
obtainable accuracy, given that the best threshold τ is used.

There exist other measures not discussed here, including calibration plot and
various methods using statistical hypothesis testing.

Chapter 6

Problem Description

We now turn our attention to the specific problems addressed in this project.
These problems are both specific to fault diagnosis and to the ROSETTA
system. The data used was collected from a large diesel engine and classified
by experts on rotating machinery. ROSETTA was then used to classify these
data in order to answer the following main questions:

1. How many objects from each decision class are needed in order to clas-
sify objects from this machine?

2. Is it possible to reduce the amount of data one would have to consider
by using expert knowledge about the given machine?

In addition, we were also interested in the answers of more general ques-
tions like; How can ROSETTA be used efficiently to solve practical problems
specific to the given data? Which algorithms for preprocessing and reduct
computation gives the best results for the given data?

In the following we will describe the machine and the collected data more
thoroughly. We will also explain how we plan to carry out the experiments
in order to answer the given questions.

37

38 CHAPTER 6. PROBLEM DESCRIPTION

6.1 The Machine

Figure 6.1 shows a picture of the large diesel engine used in this project and
Table 6.1 shows some of its most important characteristics.

 ��

Figure 6.1: The large diesel engine considered in this rapport

Type: Scania DS11
Diameter of cylinder: 127 mm
Length of stroke: 145 mm
Number of cylinders: 6
Number of tacts: 4
Rate of compression: 15:1 (nominal)
Max. nominal capacity: 186 kW (2200 rpm)
Max. load: 1024 (1050 rpm)
Turbo charger: Holset type 4-550-224
Fuel system: Direct injection (Bosch)
Opening pressure: 210kp/cm2

Table 6.1: Selected data for the given machine

Two parameters which are important when collecting data from the machine
are speed and load. Speed is measured in revolutions per minute (rpm) and
indicates how fast the machine’s rotor spins. Load is measured in newton
meter (Nm) and indicates what kind of load the machine can handle at a
given speed. Thus load is a function of speed. It seems reasonable to expect
that load increases with increasing speed. However, this is only partially

6.1. THE MACHINE 39

correct. At a certain point the machine reaches its maximum capacity, and
the load starts decreasing. This point is called the optimal operating point.
Given the optimal operating point and its corresponding speed s, one can
define a region below and above this speed given by a radius corresponding
to 30% of s. In this region experts assume linearity. The relation between
speed and load for the machine in normal condition is depicted in Figure 6.2.

 ��

Figure 6.2: The relation between speed and load for the machine in normal
condition. The optimal operating point and its corresponding 30% region is
also indicated.

The diesel engine is known to be operating in one of six different states, five
fault states and one normal state:

1. Normal.

2. Insufficient air.

3. Insufficient air & misfiring in cylinder 4.

4. Insufficient cooling.

5. Insufficient cooling & misfiring in cylinder 4.

6. Misfiring in cylinder 4.

Obviously one would like the machine to operate in the normal state. A fault
should be detected as early as possible in order not to damage the machine.
However, the machine can operate normally for years before a fault occur.

40 CHAPTER 6. PROBLEM DESCRIPTION

By way of comparison, a fault can develop in just a few hours. Hence, the
machine should be under constant supervision in order to avoid the machine
to enter one of the fault states.
The relations between the different states can be viewed as a state chart
depicted in Figure 6.3.

INSUFFICIENT AIR &
MISFIRING IN
CYLINDER 4

INSUFFICIENT
COOLING &

MISFIRING IN
CYLINDER 4

INSUFFICIENT AIR
MISFIRING IN
CYLINDER 4

INSUFFICIENT
COOLING

NORMAL

Figure 6.3: State chart showing the relations between the different machine
states.

6.2 The Data

The diesel engine is equipped with a computer based measurement system
which can measure a large number of parameters. In addition, some param-
eters need to be measured by hand. The six different states from Figure 6.3
was simulated, and measurements were done for increasing speed in the same
manner as shown in Figure 6.2. Here each point, given a fixed speed and
load, corresponds to an object in an information system as defined in chapter
4. Each object has 15 attributes, including speed and load. These attributes
are shown in Table 6.2. In addition, each object belongs to a decision class.
A decision class corresponds to the set of objects measured from one of the
given machine states, thus there are six different decision classes. Conse-
quently, the measured data constitute a decision system with 15 conditional
attributes and one decision attribute.

The amount of data we have available in this project is not equally distributed

6.3. THE EXPERIMENT 41

speed (rpm) exhaust from turbo (2)
load (Nm) charge air in compressor
charge air pressure (bar) air temp. in the motor cell
exhaust pressure temp. of cooling water from motor
consumption (cm3/m) exhaust temp. in turbo
turbo charger (rpm × 1000) fuel temp.
cooling water in the motor power (kW)
exhaust from turbo (1)

Table 6.2: Attributes measured from the diesel engine.

over the different decision classes. The following objects are available: 25
objects from the normal decision class, 50 from insufficient air, 100 from
insufficient air & misfiring in cylinder 4, 50 from insufficient cooling, 50
from insufficient cooling & misfiring in cylinder 4 and 100 from misfiring in
cylinder 4

6.3 The Experiment

We will now describe how we intend to carry out the experiments in order
to answer the questions outlined in the beginning of this chapter.

When using accuracy as a measure of quality for a given classifier, one should
be aware of two problems. First, accuracy can give a wrong impression if
the objects are unequally distributed over the given decision classes. As an
example, consider a decision system with two decision classes, X0 and X1, X0

with 90 objects and X1 with 10 objects. The objects in this decision system
can now easily be classified with an accuracy of 0.90 simply by assigning
decision class X0 to every object. The obtained accuracy is now good, but
the classifier is absolutely useless! The second problem with accuracy should
be seen in relation with how ROSETTA induces rules and how ROSETTA
classifies on the basis of these rules (described in chapter 5). A large number
of objects from one decision class, would in turn give a large number of rules
indicating this decision. Thus there is a large possibility that objects not
belonging to this decision class will match some of the rules indicating this
decision. Consequently, if enough votes are given to the wrong decision,

42 CHAPTER 6. PROBLEM DESCRIPTION

the objects will be classified incorrectly. Normally, the distribution of the
amount of objects from each decision class should as far as possible reflect
the distribution from the real world. However, in our data set the normal
decision class would totally overshadow the fault decision classes, since a
machine can spend years operating normally before a fault occurs. We will
therefore have to use a larger number of objects from the fault decision classes
compared with the real world, in order to be able to classify them at all. This
can in some sense be justified noting the fact that using more objects from
the fault decision classes only makes it easier for the voting process to detect
these objects, thus giving a better classification altogether.
One should notice that using AUC in high degree evade these difficulties.
Unfortunately, AUC can only be used in relation with binary classifiers. We
will come back to this problem later.

For the purpose of this project we will use an equal amount of data from
each decision class in the training sets. In this way we make comparison easy
and we prioritise all decision classes equally. We will subsequently compare
classifiers based on training sets with different amount of data; five objects
from each decision class, ten objects from each decision class, ... , 50 objects
from each decision class, with respect to accuracy. When too few objects are
available from a given decision class, randomly selected objects from this class
will be copied until enough objects are obtained. In the same manner objects
will be discarded randomly from the decision classes in question when too
many objects are available. Note, however, that the copying and discarding
of objects only will be performed in the training set, never in the test set.
Thus this has to be done after the decision table has been divided into a
training set and a test set.
We will also try out a different approach when too few objects from a given
decision class are available. This approach creates a new object generated
on the basis of all the other objects in this decision class by computing the
mean value of each attribute and then use these values as attribute values.
Then this object will be copied until enough objects are obtained.

As mentioned, experts assume linearity in the region around the optimal op-
erating point. This indicates that this region is stable and easy to model
mathematically compared with other regions. Thus one would expect that
using training and test sets only from this region would give better results
than using objects from the whole range of speeds. Also, it would be inter-
esting to use objects from the region around the optimal operating point as

6.3. THE EXPERIMENT 43

training data and objects from the whole range of speeds as test data.

The two approaches outlined above, using different amounts of data for rule
induction and using different ranges of speeds as the basis for rule induction,
will be merged into one experiment. Also, different algorithms for reduct
computation will be used and compared. The results from these experiments
will be outlined next.

Chapter 7

Experiments and Results

In this chapter we will present the results from the experiments briefly ex-
plained in section 6.3. We will also explain the experiments themselves more
carefully. Next, in chapter 8, we will try to interpret these results and pos-
sibly draw some conclusions.

Two main experiments have been carried out. One that used objects from
the whole range of speeds in both the training and the test set, and one
that used objects from the area around the optimal operating point in both
the training and the test set. In each experiment rule sets, or classifiers,
were induced on the basis of both 5, 10, 20, 30, 40 and 50 objects from each
decision class. In addition, three different algorithms for reduct computation
where used; Johnson algorithm, Genetic algorithm and dynamic reducts with
Johnson algorithm.

7.1 Preprocessing

The computer based measurement system connected to the diesel engine
outputs each object in a separate plain text file together with a lot of other
data not relevant for these experiments. The Perl scripts written to extract
the relevant data and make a decision table out of it can be seen in appendix
A1 and A2.

Two algorithms for discretisation were used subsequently:

45

46 CHAPTER 7. EXPERIMENTS AND RESULTS

a) Boolean reasoning.

b) Equal frequency binning.

In other words, Equal frequency binning was used on the attributes which
were not discretised by Boolean reasoning. The choice of algorithms was
based on both examinations of the cuts generated and on the resulting ac-
curacy obtained by using different algorithms for discretisation and reduct
computation.

7.2 Using Objects from the Whole Range of

Speeds

Experiments using objects from the whole range of speeds both in the training
set and in the test set were carried out in the following manner:

1. The original decision table was imported into ROSETTA and then
divided into a training set and a test set (90% - 10%).

2. The training set was exported out of ROSETTA and a Perl script was
used in order to obtain the right distribution of objects according to the
given experiment. That is, random selected objects were copied when
too few objects were available or discarded when too many objects were
available. The Perl script used for this purpose can be seen in appendix
A4.

3. The training set, now containing an equal amount of objects from each
decision class, was imported into ROSETTA once more.

4. Boolean reasoning and Equal frequency binning were used to discretise
the training set and the resulting cuts were used on the test set.

5. Reducts were computed and rules were generated on the basis of the
training set using Johnson algorithm, Genetic algorithm and dynamic
reducts with Johnson algorithm.

6. The induced rule sets were used to classify the objects in the test set.

7. Step 2 - 6 were repeated with 5, 10, 20, 30, 40 and 50 objects from each
decision class in the training set.

7.2. USING OBJECTS FROM THE WHOLE RANGE OF SPEEDS 47

8. Step 1 - 7 were repeated four times, each time using a different split.

The results from these experiments can be viewed in Table 7.1. The RNG
seed shown in the table is a number used by the random number generator
in ROSETTA to randomly split the data set into a training set and a test
set.

Number of objects from Measure of accuracy
each decision class Split 1 Split 2 Split 3 Split 4 Mean value

5 0.26 0.29 0.45 0.37 0.34
10 0.45 0.26 0.45 0.24 0.35
20 0.45 0.55 0.0.50 0.53 0.51
30 0.66 0.82 0.71 0.68 0.72
40 0.50 0.58 0.47 0.79 0.59

J
oh

n
so

n
al

g.

50 0.61 0.63 0.74 0.74 0.68
5 0.37 0.45 0.58 0.37 0.44
10 0.42 0.34 0.60 0.61 0.49
20 0.53 0.61 0.61 0.55 0.58
30 0.66 0.82 0.71 0.76 0.74
40 0.63 0.63 0.71 0.74 0.68

G
en

et
ic

al
g.

50 0.68 0.61 0.68 0.76 0.68
5 0.32 0.32 0.63 0.50 0.44
10 0.47 0.29 0.61 0.45 0.46
20 0.53 0.66 0.53 0.47 0.55
30 0.61 0.76 0.68 0.74 0.70
40 0.61 0.61 0.61 0.76 0.65

D
y
n
am

ic
re

d
.

50 0.66 0.55 0.71 0.76 0.67
1 2 3 4

RNG seed

Table 7.1: Results from using objects from the whole range of speeds both
in the training set and in the test set.

48 CHAPTER 7. EXPERIMENTS AND RESULTS

7.3 Using Data from the Region Around the

Optimal Operating Point

Experiments using data from the region around the optimal operating point
both in the training set and in the test set were carried out in almost the same
manner as the experiments using objects from the whole range of speeds.
However, step 1 is slightly different:

1. A Perl script, which can be seen in appendix A.3, was used to extract
the objects situated in the region around the optimal operating point.
Thus a subtable of the original decision table was created. This table
was imported into ROSETTA and divided into a training set and a test
set (10% - 90%).

2 - 8. These steps were carried out in the same manner as for the experiments
using objects from the whole range of speeds.

The results from these experiments can be viewed in Table 7.2.

7.4 Combining the two Methods

We also used a classifier based on objects from the region around the optimal
operating point to classify objects from the whole range of speeds. In this
case a similar experiment as the one explained in section 7.3 was carried out.
However, now the extraction of the objects situated in the region around the
optimal operating point was done after the original decision table was divided
into a training set and a test set. Thus the test set consisted of objects from
the whole range of speeds while the training set only contained objects from
the region around the optimal operating point. Only classifiers based on 30
objects from each decision class was considered. The results can be seen in
Table 7.3.

7.5. USING MEAN VALUE OBJECTS 49

Number of objects from Measure of accuracy
each decision class Split 1 Split 2 Split 3 Split 4 Mean value

5 0.55 0.50 0.41 0.50 0.49
10 0.59 0.59 0.50 0.64 0.58
20 0.59 0.82 0.68 0.86 0.74
30 0.77 0.91 0.86 0.77 0.83
40 0.73 0.91 0.82 0.77 0.81

J
oh

n
so

n
al

g.

50 0.64 0.82 0.86 0.73 0.76
5 0.64 0.59 0.59 0.59 0.60
10 0.73 0.68 0.73 0.73 0.72
20 0.59 0.77 0.73 0.86 0.74
30 0.73 0.86 0.95 0.77 0.83
40 0.68 0.82 0.82 0.77 0.77

G
en

et
ic

al
g.

50 0.68 0.82 1.00 0.73 0.81
5 0.68 0.59 0.59 0.64 0.63
10 0.73 0.82 0.59 0.77 0.73
20 0.68 0.91 0.73 0.86 0.80
30 0.68 0.91 0.86 0.86 0.83
40 0.64 0.91 0.91 0.82 0.82

D
y
n
am

ic
re

d
.

50 0.68 0.91 0.86 0.77 0.81
1 2 3 4

RNG seed

Table 7.2: Results from using objects from the region around the optimal
operating point both in the training set and in the test set.

7.5 Using Mean Value Objects

As an alternative to copying randomly selected objects when too few objects
were available we also tried to use a mean value object and copy this object
when too few objects were available. The mean value object was constructed
as explained in section 6.3.

The experiment was carried out almost in the same manner as the one ex-
plained in section 7.3. That is, objects from the region around the optimal
operating point were used both in the training and in the test set. However,
this time the mean value object was used when too few objects were available
in step 2. The modified Perl script written for this purpose can be seen in

50 CHAPTER 7. EXPERIMENTS AND RESULTS

Number of objects from Measure of accuracy
each decision class Split 1 Split 2 Split 3 Split 4 Mean value

Johnson alg. 30 0.58 0.61 0.63 0.66 0.62
Genetic alg. 30 0.66 0.76 0.74 0.87 0.76

Dynamic red. 30 0.55 0.58 0.61 0.74 0.62
1 2 3 4

RNG seed

Table 7.3: Results from using objects from the region around the optimal
operating point in the training set and objects from the whole range of speeds
in the test set

appendix A5. Again only classifiers based on 30 objects from each decision
class was tested. The result can be viewed in Table 7.4.

Number of objects from Measure of accuracy
each decision class Split 1 Split 2 Split 3 Split 4 Mean value

Johnson alg. 30 0.64 0.68 0.82 0.82 0.74
Genetic alg. 30 0.64 0.82 0.86 0.77 0.77

Dynamic red. 30 0.77 0.73 0.91 0.77 0.80
1 2 3 4

RNG seed

Table 7.4: Results from using objects from the region around the optimal
operating point both in the training set and in the test set. When too few
objects were available, a mean value object was copied until enough objects
were obtained.

Chapter 8

Discussion/Conclusion

In this chapter we will try to draw some conclusions based on the results
outlined in chapter 7. Then we will compare the results with results obtained
using other methods explained in chapter 3. Last, we will look into the future
and try to point out what should be done next.

8.1 Evaluation of the Results

In Figure 8.1 a graphical representation of the data from Table 7.1 and 7.2
can be viewed. One should remember that these cases are based on objects
from the same region both in the training set and in the test set. Accuracy
is shown as a function of the amount of objects used from each decision
class. Now, conclusions can be drawn along three different dimensions. First,
classifiers based on objects from the region around the optimal operating
point and classifiers based on objects from the whole range of speeds should
be compared. Second, classifiers based on different amount of objects should
be compared. Third, different algorithms for reduct computation should be
compared.

As one could expect, classifiers based on objects from the region around
the optimal operating point did considerably better than classifiers based
on objects from the whole range of speeds. This clearly shows that domain
knowledge can be incorporated as a part of ROSETTA. However, this knowl-

51

52 CHAPTER 8. DISCUSSION/CONCLUSION

edge is not explicitly used as in other systems, for example systems based
on fault matrixes. Rather, the knowledge is used implicitly through how the
data is prepared and how ROSETTA is used. In this case we used knowledge
about the special properties of the region around the optimal operating point
to select objects with the best classificatory qualities.

Intuitively, the performance of a given classifier should increase when more
knowledge, in this case more objects, are available. However, the curves in
Figure 8.1 show that as the number of objects from each decision class exceed
the 30 object mark, performance doesn’t get better. Rather, it gets slightly
worse. This could indicate that too much information confuses the classifier,
and that 30 objects from each decision class is the optimal number of objects
to use. However, we should remember that a limited number of objects were
available in the first place. Thus data sets containing more than 30 objects
from each decision class includes a considerable number of identical objects.
It is therefore more reasonable to believe that this phenomenon is caused by
the fact that there is no new information in copied objects.

It is a clear tendency that the Johnson algorithm obtain poorer accuracy for
5 and 10 objects from each decision class, while it competes with the other
algorithms when more objects are used. As we remember from chapter 5, the
Johnson algorithm computes only one reduct from each discernibility func-
tion while the Genetic algorithm computes several. Thus it is reasonable to
believe that the great difference in accuracy when a small number of objects is
used is due to the fact that the Genetic algorithm in some sense extract more
knowledge from each object, and that this property is more visible when few
objects are available. For a larger number of objects the Johnson algorithm
is more attractive than the Genetic algorithm, since the former computes a
considerable smaller rule set. Thus it is easier for a domain expert to ex-
amine the rule set induced by the Johnson algorithm. It is more difficult to
draw any definite conclusions with respect to dynamic reducts. Compared
to the other algorithms they do better for objects collected from the region
around the optimal operating point than they do for objects collected from
the whole range of speeds. However, this difference is hardly significant.

In Figure 8.1 a vertical line is drawn where two thirds of the objects in the test
set are correctly classified. This is due to the fact that domain experts on the
field of rotating machinery consider this to be a very good result. Classifiers
based on objects from the region around the optimal operating point classify

8.1. EVALUATION OF THE RESULTS 53

 ��

Figure 8.1: A graphical representation of the data from Table 7.1 and 7.2

54 CHAPTER 8. DISCUSSION/CONCLUSION

with an accuracy considerably better than 0.67 when more than 5 objects
from each decision class are used. Accuracy better than 0.67 is also obtained
using objects from the whole range of speeds, but only when 30 or more
objects are used from each decision class. Based on this experiment and
these results one can thus conclude that ROSETTA is a strong tool for fault
diagnosis in rotating machinery.

As stated in chapter 2, the main hypothesis behind machine learning methods
is that the data in the training set is representative for the given domain.
Thus one would expect a rather poor result when objects from the region
around the optimal operating point are used to induce rules which in turn
are used to classify objects from the whole range of speeds. However, Table
7.3 shows that this method actually did rather well. In particular, the Genetic
algorithm obtained an accuracy of 0.76, which is slightly better than what was
obtained using objects from the whole range of speeds both in the training
and in the test set (see Table 7.1 or Figure 8.1). This could indicate that
the rules induced from the region around the optimal operating point include
general knowledge which is independent of speed and load.

The last experiment were done using a mean value object instead of coping
randomly selected objects when too few objects were available. Table 7.4
shows that this approach didn’t performed quite as good as copying random
objects (See Table 7.2 or Figure 8.1). However, the experiment indicates that
this approach is a rather good alternative.

We can now summarise the above discussion by turning our attention back
to the questions asked in the beginning of chapter 6. It is shown that a
training set consisting of 30 objects from each decision class is enough to
classify data from the given diesel engine with good results. It is also shown
that using data from the region around the optimal operating point not only
reduces the amount of data one have to consider, but also gives considerably
better results. This is also favourable with respect to the fact that the engine
normally works in this region. Thus one can constantly measure the state of
the engine without interfering with its operation.

8.2. COMPARISON TO OTHER METHODS 55

8.2 Comparison to other Methods

It is difficult to compare results obtained in this projects with results obtained
using other methods. In particular, a direct comparison is impossible unless
all methods are used to diagnose exactly the same faults on the same machine.
Since the machines diagnosed with VIBEX, inverse modelling with neural
networks and ROSETTA are completely different, we have to settle with
some general comments.

Domain experts on fault diagnosis in rotating machinery is often more con-
cerned with the likelihood of a fault rather than the absolute accuracy. Thus
in many systems the accuracy is not very good (around 0.50), but the results
give an indication of which fault may be present. How ROSETTA can be
used in the same manner is discussed later.

In [3] there is a discussion of quality of results using inverse modelling and
neural networks. In this particular example, the confidence interval for the
output from the neural network could be set as an error of ±0.2. Thus for
“large faults” with an expected output of 0.85 one should expect an accuracy
better than 0.76 (0.85−0.2

0.85
), for “small faults” with an expected output of 0.30

an accuracy better than 0.33 (0.30−0.2
0.30

) and for “very small faults” with an
expected output smaller than 0.2 no classification is made.

One advantage ROSETTA has over methods like neural networks is its capa-
bility of being more than just a classification tool. In other words, ROSETTA
is considered a white box rather than, as is the case for neural networks, a
black box. This gives the analyst the opportunity both to learn more about
the data and to validate the extracted knowledge.

8.3 Further Work

During the project work, new problems have occurred and new insight has
been gained. We will therefore describe some of the work we think needs to
be done in the future:

• Testing: A new commando-line version of ROSETTA as been released.
This will make it easier to automate experiments in the future. What

56 CHAPTER 8. DISCUSSION/CONCLUSION

this project concerns, more splits should have been used in order to
draw a more definite conclusion.

• Reducing the decision table: It is reasonable to believe that several
of the existing attributes in the used decision table are more or less
redundant. This hypothesis is not thoroughly tested and can thus not
be establish with certainty. However, preliminary results shows that
the decision table can be reduced to six or seven attribute without
much loss of accuracy.

• Pruning the rule sets: Using 30 objects from each decision class, the
number of rules induced for the different algorithms have approximately
the following distribution:

Algorithm Number of rules

Johnson alg. 50
Dynamic reducts
with Johnson alg. 350
Genetic alg. 2000

These numbers could be further reduced by using some algorithm for
rule pruning. A rule set containing below 20 rules could in turn be
validated by a domain expert in order to learn more both about the
given data set and about how ROSETTA behave given this data set.

• Calibration: As mentioned in section 8.2, domain experts are often
more concerned with the likelihood of a fault rather than the absolute
classification. Thus experiments should be done with respect to cali-
bration rather than discrimination. In chapter 5 it is explained that
calibration is a measure of how close the output of the voting process,
certainty(x, β), is to the probability that object x belongs to decision
class β. In ROSETTA this information is available in a log file, thus
a simple script scanning this file could present this information to the
user.

• AUC: As a measure of discrimination, AUC have many advantages
over accuracy. One of them is its independency concerning the distri-
bution of the amount of data from each decision class. Unfortunately,
AUC can only be used in relation with a binary classifier. Thus in
our case a pipeline of binary classifiers as shown in Figure 8.2 must be

8.3. FURTHER WORK 57

created. Each classifier indicates whether an object belongs to a given
decision class or not. The test set is classified six times, and possible
inconsistency is cleared up using a voting algorithm. In this way an
individual threshold can be used for each decision class and one could
therefore expect a better classification altogether.

YES

YES

YES

YES

YES

YES

RESULTING
CLASSIFICATION

TEST SET: X

CLASSIFIER:
"normal?"

CLASSIFIER:
"insufficient

air?"

CLASSIFIER:
"insufficient air
& misfiring in
cylinder 4?"

CLASSIFIER:
"insufficient

cooling?"

CLASSIFIER:
"insufficient

cooling &
misfiring in
cylinder 4?"

CLASSIFIER:
"misfiring in
cylinder 4?"

X

X

X

X

X

X

VOTING

Figure 8.2: Using binary classifiers

Bibliography

[1] Torulf Mollestad. A rough set approach to data mining: Extracting a
logic of default rules from data. PhD thesis, University of Trondheim,
The Norwegian Institute of Technology, 1997.

[2] Maurice F. White. Expert systems for fault diagnosis of machinery.
Measurement, Journal of the International Measurement Confederation,
Vol9, No4, 1991.

[3] E. Cholewa and M. F. White. Inverse modelling in rotordynamics for
identification of unbalance distribution. Machine Vibration, Springer
Verlag, Vol. 2, No. 3, 1993.

[4] S.Russel and P. Norvig. Artificial intelligence - a modern approach.
Prentice-Hall International, Inc., 1995.

[5] T.M.Mitchell. Machine Learning. McGraw-Hill Companies, Inc., 1997.

[6] E. Lihovd and M. Rasmussen. Neural networks in conditioning moni-
toring and diagnosis on rotating machinery. 10th Ship Control Systems
Symposium in Ottawa, Canada, 1993.

[7] C. Steinebach. Knowledge based systems for diagnosis of rotating ma-
chinery. PhD thesis, University of Trondheim, The Norwegian Institute
of Technology, 1993.

[8] C. Steinebach and M. F. White. Vibex (part1) - an intelligent knowledge
based system for fault diagnosis in turbomachinery. NATO ASI Series,
Vibration and Wear in High Speed Rotating Machinery, Ed. J.M. Mon-
talvao e Silva & F.A. Pina da Silva, Kluwer Academic Publishers, Vol.
174:759 – 772, 1990.

59

60 BIBLIOGRAPHY

[9] Jan Komorowski, Zdzislaw Pawlak, Lech Polkowski, and Andrzej
Skowron. A rough set perspective on data and knowledge.

[10] Alexander Øhrn. ROSETTA, Technical Reference Manual. http://
www.idi.ntnu.no/∼aleks/rosetta, 1999.

Appendix A

Preprocessing scripts

A.1 konvert.prl

Data from the computer based measurement system connected to the diesel
engine comes in binary files. A program exists, konvert.exe, which converts
one binary file at a time into a plain text file. The following Perl script
creates a program, KONV.BAT, which in turn can be run in Windows NT
and which automatically converts every binary file in the directory.

#!/store/bin/perl

Reads current directory and creates an IFOF.0XX for each BGL0216.0XX-file.

Adds "cat IFOF.0XX | KONVERT.EXE" in KONV.BA.

Run KONV.BAT under NT to convert the files (double click the bat-file icon).

opendir(DIRH, ".") || die "opendir failed";

Change this line if the files don’t start with "BGL"

@bglfiles = grep(/^BGL/, readdir(DIRH));

open(BAT, ">KONV.BAT") || die "open failed";

foreach (@bglfiles) {

tr/A-Z/a-z/;

61

62 APPENDIX A. PREPROCESSING SCRIPTS

($firstname, $lastname) = split(/\./);

$lastname = $lastname +50;

open(IFOF, ">IFOF.$lastname");

print IFOF "$_\n$lastname.txt";

close(IFOF);

print BAT "type IFOF.$lastname | KONVERT.EXE

\n";

}

print BAT "del IFOF*";

close(BAT);

A.2 make table.prl

Each object is situated in a separate plain text file. This Perl script builds a
decision table from these text files.

#!/local/bin/perl

Converts data from files delivered by Division of Marine

Engineering into a format which Rosetta can read.

@directory = (normal,in_air,in_air_misfiring,in_cooling,

in_cool_misfiring,misfiring);

@dir0 = readpipe "ls $directory[0]/*TXT";

@dir1 = readpipe "ls $directory[1]/*TXT";

@dir2 = readpipe "ls $directory[2]/*TXT";

@dir3 = readpipe "ls $directory[3]/*TXT";

@dir4 = readpipe "ls $directory[4]/*TXT";

@dir5 = readpipe "ls $directory[5]/*TXT";

@dir = ([@dir0],[@dir1],[@dir2],[@dir3],[@dir4],[@dir5]);

A.2. MAKE TABLE.PRL 63

@diagnosis = ("normal","\"insufficient air\"",

"\"insufficient air & misfiring in cylinder 4\"",

"\"insufficient cooling\"",

"\"insufficient cooling & misfiring in cylinder 4\"",

"\"misfiring in cylinder 4\"");

@diagnosis = (1,2,3,4,5,6);

open (DATA, $dir0[0]);

open (NEWDATA, ">Test/data.txt");

Read attributes from file

for ($i = 1; $i < 13; $i++) {

readline *DATA;

}

for ($i = 1; $i <15; $i++) {

read (DATA, $dummy, 2);

read (DATA, $attr[$i], 25);

readline *DATA;

}

readline *DATA;

read (DATA, $dummy, 2);

read (DATA, $attr[15], 25);

readline *DATA;

Write attributes and formats to file

for ($i = 1; $i <16; $i++) {

print NEWDATA "\"$attr[$i]\"";

}

print NEWDATA "Diagnosis";

print NEWDATA "\n";

64 APPENDIX A. PREPROCESSING SCRIPTS

for ($i = 1; $i <16; $i++) {

print NEWDATA "float(4)";

print NEWDATA " ";

}

print NEWDATA "string";

close (DATA);

Write objects to file

for ($k = 0; $k < ($#diagnosis+1); $k++) { # For each diagnosis

for ($j = 0; $j < ($#{$dir[$k]}+1); $j++) { # For each object

open(DATA, @{$dir[$k]}[$j]);

for ($i = 1; $i < 13; $i++) {

readline *DATA;

}

for ($i = 1; $i < 15; $i++) {

read (DATA, $dummy, 37);

read (DATA, $value[$i], 10);

readline *DATA;

}

readline *DATA;

read (DATA, $dummy, 37);

read (DATA, $value[15], 10);

readline *DATA;

Copying objects with rare diagnosis

$copy = 1;

if ($k == 0) {$copy = 1;} # diagnosis = normal

if ($k == 1) {$copy = 1;} # diagnosis = in_air

if ($k == 2) {$copy = 1;} # diagnosis = in_air_misfiring

if ($k == 3) {$copy = 1;} # diagnosis = in_cooling

A.3. OPERATE30.PRL 65

if ($k == 4) {$copy = 1;} # diagnosis = in_cool_misfiring

if ($k == 5) {$copy = 1;} # diagnosis = misfiring

for ($c = 1; $c < ($copy+1); $c++) {

print NEWDATA "\n";

for ($i = 1; $i <16; $i++) {

print NEWDATA $value[$i];

print NEWDATA " ";

}

Diagnosis

print NEWDATA $diagnosis[$k];

}

close (DATA);

}

}

close (NEWDATA);

A.3 operate30.prl

This Perl script creates a subtable of the original decision table containing
only objects from the region around the optimal operating point.

#!/local/bin/perl

Reads all objects for one fault class and finds

those objects which is within 30% of maximum operating point.

@tables = ("Test/table1.txt","Test/table2.txt","Test/table3.txt",

"Test/table4.txt","Test/table5.txt","Test/table6.txt");

open (OPERATE30, ">Test/operate30.txt") || die "open failed";

for ($f = 0; $f < ($#tables + 1); $f++) {

66 APPENDIX A. PREPROCESSING SCRIPTS

open (DATA, $tables[$f]) || die "open failed";

@line = <DATA>;

if ($f == 0) {

print OPERATE30 $line[0];

print OPERATE30 $line[1];

}

$maxload = 0;

$minspeed = 999999999999;

for ($i=2; $i < ($#line+1); $i++) {

($attrib1[$i-2],$attrib2[$i-2],$attrib3[$i-2],$attrib4[$i-2],

$attrib5[$i-2],$attrib6[$i-2],$attrib7[$i-2],$attrib8[$i-2],

$attrib9[$i-2],$attrib10[$i-2],$attrib11[$i-2],$attrib12[$i-2],

$attrib13[$i-2],$attrib14[$i-2],$attrib15[$i-2],$attrib16[$i-2])

= split /\s+/,$line[$i],16;

if ($maxload < $attrib2[$i-2]) {

$maxload = $attrib2[$i-2];

$max_opr_speed = $attrib1[$i-2];

}

if ($minspeed > $attrib1[$i-2]) {$minspeed = $attrib1[$i-2];}

}

@data = ([@attrib1],[@attrib2],[@attrib3],[@attrib4],

[@attrib5],[@attrib6],[@attrib7],[@attrib8],

[@attrib9],[@attrib10],[@attrib11],[@attrib12],

[@attrib13],[@attrib14],[@attrib15],[@attrib16]);

$decision = $f+1;

print "$decision: Max_opr_speed: $max_opr_speed\n";

$limit = $max_opr_speed-0.3 * ($max_opr_speed - $minspeed);

print "$decision: Limit: $limit\n";

for ($i=0; $i < ($#line-1); $i++) {

A.4. DUPLICATE.PRL 67

if (@{$data[0]}[$i] > $limit) {

for ($j=0; $j < (15); $j++) {

print OPERATE30 @{$data[$j]}[$i];

print OPERATE30 " ";

}

print OPERATE30 @{$data[15]}[$i];

}

}

print "$tables[$f]\n";

print OPERATE30 "\n";

}

A.4 duplicate.prl

This Perl script converts a decision table into a new decision table with a
given number of objects from each decision class.

#!/local/bin/perl

Reads training data and duplicate selected objects.

#$NUMBER = $ARGV[0];

@NUMBER = ($dummy,20,20,20,20,20,20);

open (TRAIN, "Test/train.txt") || die "open failed";

open (DUPTRAIN, ">Test/duptrain.txt") || die "open failed";

@line = <TRAIN>;

print DUPTRAIN $line[0];

print DUPTRAIN $line[1];

@faultstart = ($dummy,1,101,201,301,401,501);

@fault = ($dummy,0,0,0,0,0,0);

@data = ($dummy,[@A1],[@A2],[@A3],[@A4],[@A5],[@A6],[@A7],[@A8],[@A9],

68 APPENDIX A. PREPROCESSING SCRIPTS

[@A10],[@A11],[@A12],[@A13],[@A14],[@A15],[@D]);

@attrib;

Read data from file

for ($i = 2;$i < ($#line+1);$i++) {

($attrib[1],$attrib[2],$attrib[3],$attrib[4],$attrib[5],$attrib[6],

$attrib[7],$attrib[8],$attrib[9],$attrib[10],$attrib[11],$attrib[12],

$attrib[13],$attrib[14],$attrib[15],$attrib[16])

= split /\s+/,$line[$i],16;

if ($attrib[16] == 1) {$index = $fault[1]+$faultstart[1]; $fault[1]++;}

if ($attrib[16] == 2) {$index = $fault[2]+$faultstart[2]; $fault[2]++;}

if ($attrib[16] == 3) {$index = $fault[3]+$faultstart[3]; $fault[3]++;}

if ($attrib[16] == 4) {$index = $fault[4]+$faultstart[4]; $fault[4]++;}

if ($attrib[16] == 5) {$index = $fault[5]+$faultstart[5]; $fault[5]++;}

if ($attrib[16] == 6) {$index = $fault[6]+$faultstart[6]; $fault[6]++;}

for ($j=1; $j <17; $j++) {

@{$data[$j]}[$index] = $attrib[$j];

}

}

Duplicate objects in decision classes with

less than $NUMBER objects

for ($i = 1; $i < 7; $i++) {

if ($fault[$i] < $NUMBER[$i]){

for ($j = 1; $j < ($NUMBER[$i] + 1 - $fault[$i]); $j++) {

for ($k = 1; $k < 17; $k++) {

@{$data[$k]}[$faultstart[$i]+$fault[$i]+$j-1] =

@{$data[$k]}[$faultstart[$i]+$j-1];

}

}

}

}

A.5. MEAN DUPLICATE.PRL 69

Write data to file

for ($i = 1; $i < 7; $i++) {

for ($j = 1; $j < ($NUMBER[$i]+1); $j++) {

for ($k = 1; $k < 17; $k++) {

print DUPTRAIN @{$data[$k]}[$faultstart[$i]+$j-1];

if ($k != 16){print DUPTRAIN " ";}

}

}

}

A.5 mean duplicate.prl

This Perl script works in the same way as duplicate.prl, except that when too
few objects from a given decision class exist, a mean value object is copied
instead of a randomly selected object.

#!/local/bin/perl

Reads training data and duplicate selected objects.

#$NUMBER = $ARGV[0];

@NUMBER = ($dummy,30,30,30,30,30,30);

open (TRAIN, "Test/train.txt") || die "open failed";

open (DUPTRAIN, ">Test/duptrain.txt") || die "open failed";

@line = <TRAIN>;

print DUPTRAIN $line[0];

print DUPTRAIN $line[1];

@faultstart = ($dummy,1,101,201,301,401,501);

@fault = ($dummy,0,0,0,0,0,0);

@data = ($dummy,[@A1],[@A2],[@A3],[@A4],[@A5],[@A6],[@A7],[@A8],[@A9],

70 APPENDIX A. PREPROCESSING SCRIPTS

[@A10],[@A11],[@A12],[@A13],[@A14],[@A15],[@D]);

@mean = ($dummy,[@A1],[@A2],[@A3],[@A4],[@A5],[@A6],[@A7],[@A8],[@A9],

[@A10],[@A11],[@A12],[@A13],[@A14],[@A15],[@D]);

for ($i = 1;$i < 17; $i++) {

for ($j = 1;$j < 7; $j++) {

@{$mean[$i]}[$j] = 0;

}

}

@attrib;

Read data from file

for ($i = 2;$i < ($#line+1);$i++) {

($attrib[1],$attrib[2],$attrib[3],$attrib[4],$attrib[5],$attrib[6],

$attrib[7],$attrib[8],$attrib[9],$attrib[10],$attrib[11],$attrib[12],

$attrib[13],$attrib[14],$attrib[15],$attrib[16])

= split /\s+/,$line[$i],16;

if ($attrib[16] == 1) {$index = $fault[1]+$faultstart[1]; $fault[1]++;

$f = 1}

if ($attrib[16] == 2) {$index = $fault[2]+$faultstart[2]; $fault[2]++;

$f = 2}

if ($attrib[16] == 3) {$index = $fault[3]+$faultstart[3]; $fault[3]++;

$f = 3}

if ($attrib[16] == 4) {$index = $fault[4]+$faultstart[4]; $fault[4]++;

$f = 4}

if ($attrib[16] == 5) {$index = $fault[5]+$faultstart[5]; $fault[5]++;

$f = 5}

if ($attrib[16] == 6) {$index = $fault[6]+$faultstart[6]; $fault[6]++;

$f = 6}

for ($j=1; $j <17; $j++) {

@{$data[$j]}[$index] = $attrib[$j];

@{$mean[$j]}[$f] = @{$mean[$j]}[$f] + $attrib[$j];

}

}

A.5. MEAN DUPLICATE.PRL 71

#Compute mean value objects

for ($i = 1;$i < 17; $i++) {

for ($j = 1;$j < 7; $j++) {

@{$mean[$i]}[$j] = @{$mean[$i]}[$j]/$fault[$j];

}

}

for ($i = 1;$i < 7; $i++) {

@{$mean[16]}[$i] = "$i\n";

}

Duplicate objects in decision classes with

less than $NUMBER objects

for ($i = 1; $i < 7; $i++) {

if ($fault[$i] < $NUMBER[$i]){

for ($j = 1; $j < ($NUMBER[$i] + 1 - $fault[$i]); $j++) {

for ($k = 1; $k < 17; $k++) {

@{$data[$k]}[$faultstart[$i]+$fault[$i]+$j-1] =

@{$mean[$k]}[$i];

}

}

}

}

Write data to file

for ($i = 1; $i < 7; $i++) {

for ($j = 1; $j < ($NUMBER[$i]+1); $j++) {

for ($k = 1; $k < 17; $k++) {

print DUPTRAIN @{$data[$k]}[$faultstart[$i]+$j-1];

if ($k != 16){print DUPTRAIN " ";}

}

}

}

