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Abstract

This thesis is a contribution to the field of computational biology. It investigates what
we will call knowledge discovery in gene expression databases. The need for computa-
tional methods and tools to analyse gene expression data is a result of the revolutionary
new technology of microarrays. This technology is capable of measuring the gene ex-
pression level of thousands of genes in one single experiment and thus opens the possi-
bility of doing large-scale gene research. The objective for this research is to reveal the
biological functions of genes. In large scale, the function of ”unknown” genes can be in-
ferred through their similarity to ”known” genes. Consequently, the problem is reduced
to search the gene expression data sets for groups of related genes and to correlate these
groups with existing biological knowledge. Moreover, the analysis can be further im-
proved by inducing models that recognise these groups and that both give us knowledge
about the relationship between genes and groups, and the capability of predicting the
belonging of genes.

The task of searching data sets for natural underlying groups of related objects is known
as unsupervised learning or clustering. Two conceptually different approaches to this
problem exist. The first approach is what we call syntactical clustering. These methods
search blindly for groups of related objects. In the thesis we propose a methodology
for doing syntactical clustering of time series based on indiscernibility and preprocess-
ing tools which include the Haar Wavelet Transformation and discretisation. The other
approach is what we call semantical or knowledge-based clustering. These methods re-
quire a specification of what to search for in advance. One such approach is template-
based clustering in that knowledge about the features of objects belonging to a specific
cluster is encoded in templates. In the thesis we also propose a methodology for doing
template-based clustering in time series.

The task of inducing models from data sets is called supervised inductive learning. In
the biological domain these models need to meet the requirements of both predictive and
descriptive nature. Pawlak’s rough set framework implemented in the ROSETTA system
satisfies these requirements by inducing models consisting of a set of propositional rules.

A detailed investigation and comparison of the different clustering algorithms are pro-
vided and experiences using these methods and modelling on real world gene expression
data sets are described. The work was done in close co-operation with biological experts
and shows how powerful, and necessary, computational tools are in the analysis of gene
expression data.
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Chapter 1

Introduction

This work is a contribution to the field of computational biology. In particular it is con-
cerned with what we will call knowledge discovery in gene expression databases. This
chapter will give an introduction to the field both from a computer science and from a
biological point of view.

Electronic equipment and low cost storage media have the last few decades made experts
able to store large amounts of information. A large part of this information is primitive
raw data. Since our ability to store data seems to exceed our ability to analyse it, a steadily
increasing amount of this collected primitive raw data remains unanalysed. However, the
reason why we collect and store this data is because we assume that it contain interesting
information (knowledge). As a consequence, there is an urgent need for a new genera-
tion of computational theory and tools for extract knowledge from data. This new field
within computers science is called knowledge discovery in databases (KDD). The basic prob-
lem addressed by the KDD process is the one of mapping primitive raw data into a form
that is more compact (a short report, a descriptive model, an approximation of the data,
etc) or more useful (a predictive model for estimating the value of unseen cases).

DNA microarray technology is a classical example of how new methods and new tech-
nology require computational methods for storage and analysis of data. The method is
based upon advanced robotic techniques printing high-density micro chips with DNA
probes and analysis by fluorescence emission. It makes the scientists able to measure
changes in the expression of thousands of genes in a single experiment and results in
huge sets of gene expression data that needs to be analysed and correlated with existing
knowledge. Methods from the KDD field seem like a natural tool in order to analyse gene
expression data.

The objective of gene expression analysis is to find out which genes are responsible for
which biological functions. This research is frequently refered to as functional genomics. A
commonly used method for finding new mappings from genes to functions is to assume
that genes with similar expressions are responsible for similar biological functions. Since
some of the gene’s functions are already known, the problem of finding gene-function
mappings is reduced to finding genes with highly related expression patterns. If a subset
of related genes have known functions, one might find it reasonable to suspect that the
remaining unknown genes map to the same functions. The task of finding groups of
similar objects in large data sets is known as cluster analysis or unsupervised learning
in computer science. A variety of different statistical and mathematical methods already
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2 CHAPTER 1. INTRODUCTION

exist for this purpose. Having found the natural groups of genes in a data set, the analysis
can be improved further by inducing a model that recognises these groups and thus can
be used both to explain the relationships between genes and groups, and to predict the
belonging of new genes. In some cases we have enough information about the known
genes to classify them into groups without the help of clustering analysis. In these cases
a model induced from the known genes can directly be used to predict the function of
unknown genes. One approach in which modelling is used to predict the function of
unknown genes is discussed in [Brown et al., 1999].

The aim of this thesis is to develop a method for computer-based gene expression cluster-
ing. The future target is to integrate this method with tools for modelling and evaluations,
and with an information system that represents existing knowledge (see Figure 1.1). This
will together result in a system that will become a powerful tool for any expert working
with gene analysis. However, it is important to notice that any computer-generated re-
sult needs to be thoroughly interpreted by an expert in order to have a bio-medical value.
The system is thus not an automation of the task of finding gene-function mappings, but
rather an automation of the task of finding similar genes from a set of gene expression
data. Our hypothesis is that the system described herein will make it easier for an expert
to find gene-function mappings than it would be if he or she had to analyse the raw gene
expression data. The main advantages of such a system can be captured in two clauses:

1. The expert can work with groups of similar genes 1 rather than with single genes.
This will make the data more surveyable and will give valuable information about
where to use time and money on more thorough experiments.

2. The expert has access to existing knowledge concerning the genes of current inter-
est. This will become a major time-saving factor compared to searching for this
information elsewhere and can thus be of great help in the search for a bio-medical
interpretation of the clusters.

The system depicted in Figure 1.1 can be understood in an even wider context as shown
in Figure 1.2. This figure shows how the bio-medical domain and computer science are
brought together in order to accomplish the tasks of functional genomics. Data and
knowledge are collected in a large data warehouse including expression data from mi-
croarray experiments, existing knowledge (re-) discovered from the WEB and new knowl-
edge discovered through the KDD process.

Related work is done on similar systems as the one in Figure 1.1 and 1.2. [Moxon, 1998]
discusses some of the same ideas, but no implementation has been done. Also work is
being done at our group on collection, storage and correlation of existing knowledge.
[Jenssen et al., 1999] and [Jenssen et al., 2000] both discuss the challenges of collecting
knowledge from the WEB. In particular it investigates a method in which gene-gene-
relations are mined from textual documents. [Tjeldvoll, 1999] discusses the challenge of
collecting and representing biological knowledge, and to use this knowledge to validate
analysed (clustered) gene expression data. Hence the work described in this thesis and
the work described in [Jenssen et al., 1999] and [Tjeldvoll, 1999] should be seen in the
context illustrated in Figure 1.1 and 1.2.

1This assumes that the system’s definition of similarity between two genes is consistent with the expert’s
intentions. This, of course, demands a close co-operation with biological experts.
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Figure 1.1: A system for doing knowledge discovery in gene expression data: The core activity
in the system is knowledge discovery. Gene expression data is piped into a clustering module.
The output from this module is the same data set now divided into groups (or clusters) of similar
objects (in this case genes). This output can in turn be piped into a model module that outputs
some kind of representation of the gene-cluster function. In this way we do unsupervised learn-
ing on the unlabelled data and then supervised learning on the resulting labelled data. The whole
process is supported by easy access to existing domain knowledge. Hence, the results from the
knowledge discovery activity can constantly be validated against already known facts. In addi-
tion, the results from the knowledge discovery activity can be evaluated by the user. Results from
clustering can be visualised using some kind of graph or diagram. Results from modelling can be
evaluated against some kind of performance measure telling the user how good the model is at
classifying unseen cases.
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DATAWAREHOUSE
KNOWLEDGE DISCOVERY

(Figure 1)

(Re-) discovery of
exisiting knowledge

from the WEB

Gene expression data
from microarray

experiments

Figure 1.2: The context of functional genomics: Data and knowledge are stored in a data ware-
house to back up the KDD process. Data are mainly collected from microarray experiments while
knowledge is collected from the WEB and from the KDD process itself.

This thesis describes a large context in which several contributions have been made by a
number of researchers. The specific technical contributions made by the author includes
implementation of the methodology and execution of the experiments.

1.1 Reader’s guide

This thesis is divided into three parts. The first part defines the problems that we want
to address both from a biological and from a computer science point of view. The second
part describes methods and tools designed to solve these problems, while part three con-
tains some case studies where the methods described in the second part are used on real
world data sets to solve problems described in the first part. The thesis is brought to a
close with discussions, conclusions and indications about future work.

The work was done at the department of computer and information science and accord-
ingly the thesis has been written under the assumption that the reader is familiar with
some basic concepts from computer science. An effort has been made to provide as much
biological knowledge deemed necessary for a computer scientist to understand the the-
sis. A biologist with some basic knowledge in computing should also be able to follow
the thesis.



Part I

Background - Molecular Biology and
Knowledge Discovery
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We address the problems of extracting useful knowledge from gene expres-
sion data using computational methods. In order to do this we need to
understand both the biological and the computer science aspects of this
problem. This part attempts to provide that understanding.





Chapter 2

Molecular Genetics and DNA
Technology

Molecular genetics is define by [Strachan and Read, 1999] as primarily being concerned
with the interrelationship between the information macromolecules DNA (deoxyribonucleic acid)
and RNA (ribonucleic acid) and how these molecules are used to synthesise polypeptides, the
basic components of all proteins. Proteins play important roles in many cellular functions as
enzymes, receptors, storage proteins, transport proteins, transcription factors, signalling
molecules, hormones, etc. Since cells drive the development of the whole organism, it is
needless to say how important it is to understand this relationship in order to gain insight
into how the human organism functions.

This chapter will give a short introduction to molecular genetics and gene technology.
For more detailed descriptions the reader should consult [Strachan and Read, 1999] or
[Sjøberg, 1998].

2.1 DNA Structure

The DNA molecules are found in the chromosomes of the nucleus and in mitochondria in
all eukaryote cells. They consist of a linear backbone of alternating sugar and phosphate
residues, where the sugar, a 5 carbon sugar called deoxyribose, is successively linked
by covalent phosphodiester bonds. Covalently attached to the each sugar residue is a
nitrogenous base, which is either adenine (A), cytosine (C), guanine (G) or thymine (T).
These bases are heterocyclic rings of carbon and nitrogen atoms. A sugar with an attached
base is called a nucleoside. A nucleoside with an attached phosphate group is called a
nucleotide and is the basic repeat unit of a DNA strand. RNA has a similar structure to
DNA except they contain ribose sugar residues in place of deoxyribose and uracil (U)
instead of thymine (T). A protein is made up of one or more polypeptide molecules. Like
DNA and RNA it is a linear sequences of repeating units (in this case these units are
amino acids).

In DNA molecules, each phosphate group links carbon atom 3’ of a sugar to carbon atom
5’ of the neighbouring sugar. The structure of DNA is a double helix in which two DNA
molecules (DNA strands) are held together by weak hydrogen bonds. Hydrogen bond-
ing occurs between laterally opposed base pairs of the two strands of the DNA duplex:

9



10 CHAPTER 2. MOLECULAR GENETICS AND DNA TECHNOLOGY

adenine (A) binds to thymine (T) and cytosine (C) binds to guanine (G). One end of each
DNA strand will have a terminal sugar residue in which carbon atom number 5’ is not
linked to a neighbouring sugar residue, while the other end will have a terminal sugar
residue with a similar absence of a bonding at carbon atom number 3’. These ends are
called the 5’ end and the 3’ end respectively. The 5’ � 3’ direction of one DNA strand in
the two strands of a DNA duplex is always opposite to that of its partner (anti-parallel).
The two strands of a DNA duplex are said to be complementary since the sequence of
bases from one strand can be inferred from its partners. The genetic information in the
DNA is encoded by these linear sequences of bases called the primary structure.

2.2 RNA Transcription and Translation

DNA specifies the synthesis of RNA and RNA specifies the synthesis of polypeptides
(proteins). This DNA � RNA � polypeptide (protein) flow of genetic information has
been described as the central dogma of molecular biology. The first step of this process is
called transcription and occurs in the nucleus of eukaryotic cells. The second step is called
translation and occurs in the ribosomes of cells.

Transcription is the synthesis of RNA using DNA as a template. Normally only one of the
two DNA strands acts as a template for the RNA synthesis since RNA molecules normally
exist as single strands only. During transcription the double-stranded DNA is unwound
and the template strand forms a new double-stranded RNA-DNA hybrid with the growing
RNA chain. The transcript has the same 5’ � 3’ direction and base sequence (except that
U replaces T) as the opposite, non-template strand of the double helix. For this reason the
non-template strand is called the sense strand and the template strand is called the anti-
sense strand. The transcription is catalysed by a large enzyme called RNA polymerase.
This enzyme performs all three steps of the transcription: It unwinds the DNA helix and
starts transcription, it moves along the template strand and binds the RNA nucleotides
together one by one, and it terminates the transcription at the right place. There are
three different main categories of RNA that are all involved in transferring the genetic
information in the protein synthesis. The messenger RNA (mRNA) is a transcript of the
sequence of bases in one part of the DNA and acts as a recipe in the protein synthesis.
The ribosomal RNA (rRNA) helps building the ribosomes in which the protein synthesis
takes place. The transfer RNA (tRNA) brings the correct amino acid to the correct location
during the protein synthesis.

Only a small proportion of all DNA in cells is ever transcribed. Different cells transcribe
different segments of the DNA according to their needs. However, only a very small
portion of all cellular DNA is ever transcribed in any cell. Moreover, only a portion of the
transcribed RNA is translated into polypeptides. Not all RNA molecules are mRNA and
thus do not specify polypeptides directly. Also the transcribed RNA that does specify
polypeptides directly is subject to processing events which discards much of the initial
RNA sequence to give a much smaller mRNA. In addition, only a central part of the
mature mRNA is translated while the rest remains untranslated. The relatively small
segment of DNA which is transcribed into RNA is what we call genes. Thus different
genes code different biological functions carried out by the transcribed RNA.

A ribosome can be seen as a factory for the polypeptide (or the protein) synthesis. Since
the mRNA contains the recipe, the ribosome needs to bind to these mRNA strands in
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order to make polypeptides. When attached to the mRNA the ribosome attracts tRNA
with amino acids. These amino acids bind and form polypeptides.

2.3 Regulation of Gene Expression

A gene that is transcribed and used in protein synthesis is said to be expressed in the
cell. Of course not all of the around 100 000 genes in the human cells are expressed
constantly. Humans have over 200 different types of cells and tissue and only a few genes
are expressed in all cells. Most genes are only expressed in particular cells. Some genes
are expressed only in a short time while others are more or less constantly expressed.
A lot of genes are turned on and off according to the surrounding environment. An
organism’s ability to regulate the expression level of genes is crucial. Cancer is often the
result when these control mechanisms are not working. Also the synthesis of proteins
takes a lot of energy. In order to save energy the cells are totally dependent on only
making proteins that are strictly needed.

An expression level of a gene can be regulated in different ways and at different levels:

1. At transcription level: Only genes that are needed are being transcribed.

2. At mRNA level: A mRNA molecule only exists for a limited amount of time. The
shorter this time is the less protein is being produced.

3. At translation level: Although a gene is transcribed its mRNA needs not be trans-
lated into a protein.

4. At protein level: A protein needs not be active. It is known that, for example, en-
zymes can be turn on and of.

When a protein (gene product) is needed to turn a gene (the transcription) on it is called
positive gene regulation. When a protein is needed to turn a gene off it is called negative
gene regulation.

2.4 Fundamentals of DNA Technology

The fundamentals of DNA technology are largely based on two quite different approaches
to studying specific DNA sequences within a complex DNA population. In DNA cloning
the desired DNA fragments are selectively amplified so that it is purified essentially to
homogeneity. In molecular hybridisation the desired DNA fragments are specifically de-
tected within a complex mixture of many different sequences.

DNA cloning can be done in terms of cell-based DNA cloning or in terms of cell-free DNA
cloning. During cell division the chromosomes in the nucleus are replicated, and this is
utilised in cell-based DNA cloning. The DNA fragment of interest is attached to a DNA
sequence which is capable of independent replication. The recombinant DNA fragment
is then transferred into a suitable host cell where it can be propagated selectively. Cell-
free DNA cloning or polymerase chain reaction (PCR) is a newer form of DNA cloning
which is faster, more sensitive and more robust than cell-based cloning. PCR can be done
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in laboratories, outside of cells, and is based on alternating denaturation (dissociation
of complimentary strands to give single-stranded DNA) and hybridisation (the situation
where two complementary single-stranded DNA molecules form one double-stranded
DNA molecule) of the desired DNA fragment in a mixture of all the needed basic com-
ponents.

Standard DNA hybridisation assays involve using a labelled DNA probe to identify re-
lated DNA (or RNA) molecules (that is, one with a significantly high degree of sequence
similarity) within a complex mixture of unlabelled DNA (or RNA) molecules. The la-
belled DNA probe is isolated by cell-based DNA cloning or by PCR. DNA microarrays
provide a scale-up in hybridisation assay technology because of their huge capacity and
automation. The probes consist of unlabelled DNA printed into the surface of a micro-
scope slide. The target is labelled and in solution. The annealing of a probe DNA strand
and a complementary target DNA strand indicates that the probe-sequence exists in the
target. Thus the method is to use the identified probes to query the target DNA to identify
fragments in the complex target which is related in sequence to the probe.

DNA microarrays have proven to be an effective method for gene expression quantifi-
cation. The amount of mRNA in a cell reflects in which degree its respective gene is
expressed. DNA microarrays can be used to identify which mRNA that is expressed in
a given solution and in which degree it is expressed. Equipment for doing microarray
experiments are installed at our university and this thesis is partly a result of the urgent
need for computational methods and tools to analysis data from these experiments. Fig-
ure 2.1 illustrates the steps in a microarray experiment, while Figure 2.2 shows how the
up and down regulation of genes is represented afterwards.

[Schena, 1999] provides a detailed description of microarrays and microarray experi-
ments.

2.5 Computational Biology

The large amounts of data collected from DNA microarrays experiments have made the
biologists aware of the importance of computational methods and tools for data anal-
ysis. The use of computer science in biology, and in particular in the analysis of gene
data, is frequently referred to as computational biology. In the next chapter we will look
at some of the challenges in computer science related to the analysis of gene expression
data collected from DNA microarray experiments.
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Preparation of probes Preparation of samples

The quality of the PCR
product is tested and the
length and amount of each
DNA-fragment is decided

The slides are prepered
for printing

The DNA-fragments are
printed on the slides and
are now called probes

The mixture used in the
PCR amplification is
removed and the DNA is
resolved in a mixture
favourable for
hybridisation

The double-stranded DNA-
fragments are made
single-stranded through
denaturation

Sybr-green is a fluorescent
chemical group that binds
to a specific DNA. This is
done in order to control
the quality of the printing.

The RNA is purified to
ensure good quality

The quality of the RNA is
tested and the amount of
RNA to be used is decided

The RNA is labelled using
fluorescent chemical
groups (Cy3 and Cy5)

The labelled sample-RNA
is mixed with the probes
printed on the slide

A laser-scanner measures
the fluorescence-signals
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bound to the probes
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Figure 2.1: The steps in a DNA microarray experiment. The diagram is provided by Kristin
Nørsett.
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Figure 2.2: The image shows a typical result from sample-RNA being hybridised to the microar-
ray. According to some reference it shows genes whose mRNAs are suppressed as green spots and
genes whose mRNAs are expressed as red spots. Yellow spots represent genes whose expression
do not change.



Chapter 3

Knowledge Discovery in Gene
Expression Databases

3.1 Knowledge Discovery

Knowledge Discovery in Databases (KDD) has been defined by [Fayyad et al., 1996] as the
non-trivial process of identifying valid, novel, potentially useful and ultimately understandable
patterns in data. The KDD process has a highly interdisciplinary nature having evolved
from fields like machine learning, pattern recognition, databases, statistics, AI, knowl-
edge acquisition for expert systems, data visualisation and high-performance computing.
A related field is data warehousing which refers to the popular business trend of collecting
and cleaning data to make them available for analysis and decision support. In many
ways we can say that data warehouses set the stage for KDD. KDD is really a process and
involves the following basic steps:

1. Identifying the goal of the KDD process.

2. Creating a target data set.

3. Data cleaning and preprocessing.

4. Data reduction and projection.

5. Matching the goals of the KDD process (step 1) to a particular data mining method.

6. Choosing the data mining algorithm(s) and selecting method(s) to be used for search-
ing for data patterns.

7. Data mining.

8. Interpreting the mined patterns.

9. Acting on the discovered knowledge.

Data mining is a step in the KDD process that consists of applying data analysis and
discovery algorithms that produce a particular enumeration of patterns (or models) over
the data. The goals of the KDD process are very much decisive for which method to use.

15
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They can either be verification of some hypothesis or discovery of new patterns. Discovery
can further be subdivided into prediction, that is, predicting the future value of unseen
cases, or description, that is, finding patterns for presentation in a human-understandable
form. Data mining involves the task of fitting models to observed data. This requires a
model representation language, a model evaluation criterion and a search method to find
the optimal model with the optimal parameters. Classically either statistical or logical
formalisms are used for representing models. Most data mining methods can be classified
in one of the following categories:

� Classification: learning a function that maps a data item into one of several prede-
fined classes.

� Regression: learning a function that maps a data item to a real-value prediction
variable.

� Clustering: identifying a finite set of categories or clusters to describe the data.

� Summarisation: finding a compact description for the data.

� Dependency modelling: finding a model that describes significant dependencies
between variables.

� Change and deviation detection: discovering the most significant changes in the
data from previously measured or normative values.

One should notice that many of the above mentioned methods are based on heuristic
approximations because of the expenses of searching for optimal solutions.

Some of the most interesting challenges within KDD today includes large databases with
high dimensions, overfitting when learning models, assessing of statistical significance,
changing data and knowledge, missing and noisy data, complex relationships between
data fields, understandability of patterns, user interaction and prior knowledge, and in-
tegration with other systems.

3.2 Knowledge Discovery in Gene Expression Databases

Analysing gene expression data is primarily a clustering task, although modelling can
also be used as explained in Chapter 1. We want to identify a finite set of natural groups
or clusters that describes the data. We then want to present the clusters with all avail-
able domain (biological) knowledge in order to make the job of interpretation as easy as
possible for the domain expert (biologist). Alternatively we could compare the obtained
clusters with domain knowledge automatically. This, however, requires that the domain
knowledge is strictly formalised, something which is never easy to do when faced with
human knowledge which tends to be both subjective, partly inconsistent and almost al-
ways incomplete.

With reference to the above discussion we will dived the task of knowledge discovery in
gene expression databases into three main steps; clustering, evaluation and validation (see
also Figure 1.1). The actual clustering algorithms will be thoroughly discussed later. This
chapter is only meant to be an introduction to the problem. By evaluation we mean the
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task of measuring the correctness or the goodness of the clusters. Of course, this strongly
depends on what we mean by a ”natural grouping”. In our case this normally boils down
to finding groups of genes with similar expression patterns. Evaluation is most usually
done through visualisation, although this is a very inexact measure which also requires
manual inspection. There exist better metrics and these will be discussed later. For now,
consider the following simple example.

EXAMPLE 3.2.1 (CLUSTERING AND EVALUATION THROUGH VISUALISATION)
Consider the table below to be a data set resulting from a microarray experiment (these
data sets tend to consist of thousands of genes and tens of attributes, but as an example
this data set is large enough).

Gene Attribute 1 Attribute 2
A 1 0.75
B 0.75 1
C 1.25 1
D 1.75 1.75
E 1.5 2.25
F 2 2

Given a partitioning �� � ������� and �� � ����� �� of the data set (using some
clustering algorithm), we would like to visually evaluate the clusters goodness. Since
this is a two-dimensional case the data set can easily be represented in a diagram.
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The conclusion in this case seems to be that the obtained clusters match our intuition of
a natural grouping well. However, in many cases, the natural grouping does not come
as easy as in this example and thus we have to make some kind of pragmatic decision in
order to arrive at a grouping that is good enough. �

The genes in a gene expression data set are normally categorised into known genes and
unknown genes. Loosely we define “known genes” to be genes with a known function.
Of course, the function of a gene is to code RNA (mRNA, tRNA or rRNA) which in turn is
involved in the synthesis of proteins. What we really mean about the function of a gene is
the function of the protein that this gene codes. To make it even more complicated, a pro-
tein’s function can be carried out in different biological processes. A biological process is
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a series of events that may involve more than one cell. In this thesis we will frequently
refer to the search of the function of unknown genes as the ultimate goal of knowledge
discovery in gene expression databases. However, equally important is the task of de-
scribing the known genes with respect to process in the specific biological setting that we
are studying.

In order to interpret computer generated results we need to validate our clusters against
biological knowledge. Biological knowledge can be organised in an ontology. An ontol-
ogy is a tree where the leaf nodes are known genes and the parent nodes are clusters of
genes with similar functions. Thus an ontology is a formalised piece of domain knowl-
edge, in this case the function of a set of genes. Given a set of clusters resulting from
applying some kind of clustering algorithm to a set of gene expression data, we now
want to verify these clusters against the domain knowledge contained in the ontology.
Typically some of the genes we have clustered are unknown and thus do not exist in the
ontology. Hopefully there is a significant overlap between our clusters and the clusters
existing in the ontology. What we are looking for are unknown genes that appear in
clusters with significant overlap with clusters in the ontology. Inductively we might con-
clude that these unknown genes are connected to the other known genes in the cluster
(for example by having the same function). This is because the overlap with the cluster
in the ontology indicates that this cluster is biologically relevant. The inductive assump-
tion that the function of unknown genes can be inferred from their similarity to known
genes most be used with caution. The similarity could be due to measurement errors or
could simply be a coincident. If all the other clusters more or less overlap with a cluster
in the ontology that definitely strengthens the hypothesis. If the biologists find the result
interesting they might want to investigate it more thoroughly.

The correlation between similarity in gene expression profiles and the similarity in gene
function has been discussed in various articles. Two examples are [Eisen et al., 1998] and
[Pellegrini et al., 1999].

EXAMPLE 3.2.2 (CLUSTERING AND VERIFICATION)
Figure 3.1 shows an example of a clustered set of gene expression data and a correspond-
ing ontology. This ontology describes genes involved in the different stages of the cell
cycle. Note that gene N and O are not in the analysed set of gene expression data. Also
note that gene R and S are unknown genes and thus do note exist in the ontology. Clus-
ters C1 and C4 both match clusters G4 and G0 respectively while gene G seems to have
been misplaced in cluster C2 instead of cluster C3. Gene S has the properties we are look-
ing for. This gene is unknown and are clustered together with three genes all belonging
to the same cluster in the ontology. This might be an interesting case for the biologist to
study further? �

3.3 Related Research

In the following section we will look at some examples of published work done in the
field of gene expression data analysis.
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Figure 3.1: The process of matching a set of clusters to formalised domain knowledge (an ontol-
ogy). The Figure is taken from [Tjeldvoll, 1999].
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3.3.1 The Transcriptional Program in the Response of Human Fibroblast to
Serum

This article ([Iyer et al., 1999]) studies the human fibroblasts response to serum which
appears to be related to the physiology of wound repair. The temporal changes in mRNA
level of 8613 human genes were measured at 12 times ranging from 0 minutes to 24 hours
after serum stimulation. A subset of 517 genes whose expression changed substantially
in response to serum was selected for further analysis (this data set is publicly available
on the WEB: � ���� � 		������� 			

�������
���	
�����).

The subset of 517 genes was clustered hierarchical into groups on the basis of the sim-
ilarity of genes expression profiles over the full 24 hours. Ten clusters were identified
containing 452 of the 517 genes. These cluster were presented by their average expres-
sion profiles and a biological interpretation was given.

Measurements done at different time points results in a set of values for each gene called
a time series. Unlike normal measurements which represent a point in the �-dimensional
space, time series can easily be represented as a function of time in two-dimensions. Also
time series analysis differs from other data analysis in that we are looking for similarity
in terms of curve-similarity. This often requires some kind of transformation of the data
into gradients or even components using mathematical transformations.

The ”fibroblast data” data set will be thoroughly analysed and discussed in Part III.

3.3.2 Broad patterns of gene expression revealed by clustering analysis of tu-
mor and normal colon tissues probed by oligonucleotide arrays

This article ([Alon et al., 1999]) investigates the expression profile of over 6500 genes in
40 tumour and 22 normal colon tissue samples (this data set is publicly available on the
WEB: � ���� � 					
������
���������
���	����������). A subset of 2000 genes with
the highest minimal intensity across the samples was analysed.

The data was clustered both with respect to genes and with respect to tissue. The method
used was the one of organising the data sets into a binary tree where genes are near each
other one the ”gene tree” if they show a strong correlation across experiments, and tissue
are near each other on the ”tissue tree” if they have similar gene expression profiles. In
this way they were able to classify genes into functional groups and to classify tissue
based one gene expression.

Note that in this example the data already has a known classification; tumour tissue and
normal tissue. Thus we can use another data mining method, classification, where we
learn the function that maps the gene expressions into one of these predefined classes
(tumour tissue or normal tissue). This could be useful when looking for genes with pre-
dictive capabilities.

The “tumour and normal colon tissues” data set will also be analysed in Part III.
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3.3.3 Large-scale temporal gene expression mapping of central nervous sys-
tem development

This article ([Wen et al., 1998]) investigates the expression profile of 112 genes in the rat
central nervous system and is another example of time series data sets. The data set is
clustered on the basis of similarity in the time series’ slopes and shows that the functional
classes clearly map to particular expression profiles.

3.4 Our Task

From a computer science point of view knowledge discovery in gene expression databases
includes many of the classical challenges in KDD listed earlier. We are faced with large
databases that most probably contain noise. We are faced with knowledge that is con-
stantly changing as a result of new discoveries. And we are also faced with the problem
of integrating domain knowledge into the KDD process. In order to summarise this chap-
ter we will go through the steps of the KDD process specifically with our task in mind:
Our goal for the KDD process will be to discover, or at least set the stage for a biolo-
gist to discover, functions of unknown genes. We will analyse gene expression data sets
collected from microarray experiments. The obvious data mining tool for this task is
clustering algorithms together with different data preprocessing method very much de-
pendent one what kind of data we are going to analyse. Alternatively, we might want
to use modelling method instead of clustering methods or as a supplement to clustering
methods. The minded clusters will be interpreted by biological experts in the light of
existing domain knowledge in order to give them a bio-medical value.





Part II

Cluster Analysis
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Unsupervised learning is the task of learning without feedback. This is
called clustering, because the objective is to reveal the underlying natu-
ral groups in a set of example data. In this part we will examine differ-
ent methods for this purpose, including hierarchical clustering, k-means,
indiscernibility-based clustering, self organising maps, etc. Some of these
methods will later be used in case studies on real-world gene expression
data.





Chapter 4

Knowledge and Learning

Artificial intelligence (AI) was formally initiated as a sub-field of computer science in
1956. However, the definition of intelligence is still not agreed upon. According to
[Russel and Norvig, 1995] definitions vary along two dimensions; whether we measure
success in terms of human performance or in terms of some ideal concept on one hand,
and whether we are concerned with reasoning or behaviour on the other hand. The clas-
sical definition proposed by Alan Turing in 1950 measures intelligence against human
behaviour. The Turing Test states that a computer system is intelligent if a human in-
terrogator can not tell weather it is communicating with a computer or a human being.
Modern approaches to AI are mainly concerned with building entities that act rationally,
that is, do the right thing given their existing knowledge and present input. After all, ev-
ery problem can be formulated as a search problem where the goal is to find a sequence
of actions that take the system from its present state to a predefined goal state. With this
in mind there is no reason to imitate humans in order to build intelligent entities. That
is of course if the primary interest is not at constructing theories about the working of
the human mind itself (cognitive science). Either-way the Turing Test raises interesting
problems that are research areas in AI today. These include natural language processing,
knowledge representation, automated reasoning and machine learning.

Knowledge has a central role in AI as it seems clear that intelligence requires knowl-
edge. Critical to the success of an intelligent entity is its ability to reason with existing,
possibly uncertain, knowledge, to adopt new knowledge from learning and to represent
the knowledge in a way that makes reasoning possible. Our primary goal is to build
entities that extract knowledge from (possibly) large data sets. This requires theories for
learning from examples and for representing extracted knowledge in an appropriate way.
Furthermore it requires the ability to incorporate existing knowledge, often called expert
knowledge or domain knowledge, to help the KDD process. In the following sections we
will look more deeply into knowledge and learning in order to define and understand
these critical aspects of knowledge discovery.

General introduction to AI and further discussions on ”What is artificial intelligence?”
can be found in e.g. [Russel and Norvig, 1995] and [Nilsson, 1998].

27
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4.1 Knowledge

In the same way as intelligence has different and partly conflicting definitions so has
knowledge. Four decades of AI have however taught us that knowledge possesses some
less desirable properties such as being voluminous, hard to characterise and constantly
changing. Also there has been pointed out many ways of categorising knowledge types;
induced knowledge vs. deduced knowledge, causal knowledge vs. diagnostic knowl-
edge, crisp knowledge vs. uncertain knowledge, quantitative knowledge vs. qualitative
(or common-sense) knowledge, etc.

In the context of knowledge discovery in databases it is interesting to see knowledge in
connection with data. Knowledge differs from data in that it is organised. In fact, one can
define knowledge as the ability to organise, or classify, data. This approach was taken by
[Pawlak, 1991] and will be adopted here. Pawlak argued that knowledge is a partition of a
universe, that is, some real or abstract world represented by a finite set of objects. Consider
for example the ability to pick the right wine for the right food. The knowledge required
is the ability to partition the universe of all wines into classes labelled with correct type of
food. Or consider a more complex task as driving a car. Again the knowledge required is
the ability to partition the universe of all situations into classes labelled with the correct
action (”hit the breaks”, ”turn left”, etc).

We already mentioned that knowledge representation is a crucial factor in all intelligent
entities. The object of knowledge representation is to express knowledge in computer-
tractable form. We will adopt the knowledge representation language proposed by Pawlak
in rough set theory ([Pawlak, 1982], [Komorowski et al., 2000a] and [Nguyen and Nguyen, 1996]).
A data set is represented in a table such that each row represents objects and each column
represents some property that can be measured for each object.

DEFINITION 4.1.1 (INFORMATION SYSTEM)
An information system is a pair � � ���� where  is a non-empty finite set of objects
called the universe and � is a non-empty finite set of attributes such that � �  � �� for
every � � �. The set �� is called the value set of �. �

Knowledge contained in an information system can be expressed by an equivalence rela-
tion. An equivalence relation is a binary relation � � � 	� where � is the equivalence
class of � � � if all objects � � � is such that ���. Any equivalence relation is defined
to be reflexive (���), symmetric (if ��� then ���) and transitive (if ��� and ��� then
���). Given an information system � � ���� there is always associated a equivalence
relation ������� with every � � �.

������� � ���� �� � � 
 �� � � ���� � ����� (4.1)

������� is called the B-indiscernibility relation and its classes are denoted ���� .

The available knowledge in an information system is often called the knowledge base and
can be defined as a pair � � ����. Notice that the partition determined by the equiv-
alence relation � gives us atomic sets, that is, objects in these sets are similar with re-
spect to the given attributes and thus can not be discerned. Consequently, knowledge
needs to be defined approximately. Let � � ���� be an information system and let
� � � and � �  . The set � can now be approximated using only the information
in � by constructing the B-lower and B-upper approximations of X. These approximations
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are denoted �� and �� respectively and are defined by �� � ��
���� � �� and
�� � ��
���� �� � ��. The set � is said to be rough if �� ��� is non-empty and crisp
otherwise.

Wine district Main grape variety Vintage Storage temp.
�� Bordeaux Cabernet Sauvignon 1992 12-15
�� Rhône Syrah 1992 �12
�� Chile Cabernet Sauvignon 1995 12-15
�� Bordeaux Merlot 1995 �15
�� Chile Cabernet Sauvignon 1995 12-15
�� Rhône Merlot 1992 12-15
�� Bordeaux Merlot 1995 �15
�� Chile Merlot 1992 �12

Table 4.1: The information system �Example � ����� ��� ���� ���� �Wine district� Main grape variety,
Vintage, Storage temp.��

EXAMPLE 4.1.1 (INFORMATION SYSTEM, KNOWLEDGE BASE, ROUGH SET)
Table 4.1 is an example of a information system that contains information about eight
different wines. Some labelled example-partitions are given here:

����Example��Wine district�� �

����� ��� ���Bordeaux� ���� ���Rhône� ���� ��� ���Chile�
(4.2)

����Example��Main grape variety�� �

����� ��� ���Cabernet Sauvignon� ����Syrah� ���� ��� ��� ���Merlot�
(4.3)

����Example��Vintage�� � ����� ��� ��� ����		�� ���� ��� ��� ����		�� (4.4)

����Example��Storage temp.�� � ����� ��� ��� ��������� ���� ������� ���� ������� (4.5)

Using all the attributes results in the following partition:

����Example��Example� � ������ ����� ���� ���� ���� ���� ����� ����� (4.6)

The available knowledge in the system can be expressed as the knowledge base�Example �
�Example� �Example�, where �Example is the equivalence relation ����Example��� and � is
every subset of �Example.

Now consider for example the set � � ���� ��� ���. This set can be approximated using
the definitions of rough sets:

�Example� � ���� (4.7)

�Example� � ���� ��� ��� ��� ��� (4.8)

From Equation 4.6 we see that �� is indiscernible from �� and that �� is indiscernible from
��. Thus the set � can not be crisply defined given the available data. �
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Often available is classificatory knowledge provided by an expert. This knowledge can
be added as an extra attribute or label to each object.

DEFINITION 4.1.2 (DECISION SYSTEM)
A decision system is any information system of the form � � ��� � ����, where � � �
is the decision attribute. The elements of � are called conditional attributes or simply
conditions. The cardinality of the image ��� � �� 
 ���� � �� � � � is called the rank
of � and is denoted ����. �

The decision � determines a partition ���
���

�
�� 


��

�
��
� � where ��� � �� �  
 ���� �

���� for � � � � ����. Hence we now have a representation of the knowledge first in-
troduced by the expert through the decision � and now retained in the decision table.
However, this knowledge is itself not as powerful as the knowledge possessed by the ex-
pert in that it does not reflect any general classificatory capability. Most often the decision
system contains only a small portion of all thinkable objects. Thus what we want is the
knowledge needed to be able to do the classification, not the knowledge of the classes
themselves. The solution to this problem is to view the available decision table as a set of
training examples. The underlying general knowledge can by learned from these exam-
ples and the learned knowledge can in turn be used to classify unseen objects. Learning
will be discussed in the next section.

Given a decision system � � ��� � ���� and the indiscernibility relation �������
we define the generalised decision in � to be the function Æ� �  � ����� defined by
Æ���� � �� 
 �� �  � ������� � and ���� � ��. If 
Æ����
 � � for any � �  the
decision system is said to be inconsistent (non-deterministic), that is, there exist objects
that are indiscernible but belong to different decision classes. Thus the decision classes
themselves are rough sets and consequently our knowledge given the available data is
approximate. Notice that this will always be the case to some extent since the projection
from the real world to data itself is an approximation.

Wine district Main grape variety Vintage Storage temp. Decision
�� Bordeaux Cabernet Sauvignon 1992 12-15 Drink now
�� Rhône Syrah 1992 �12 Hold
�� Chile Cabernet Sauvignon 1995 12-15 Drink now
�� Bordeaux Merlot 1995 �15 Drink now
�� Chile Cabernet Sauvignon 1995 12-15 Hold
�� Rhône Merlot 1992 12-15 Hold
�� Bordeaux Merlot 1995 �15 Drink now
�� Chile Merlot 1992 �12 Hold

Table 4.2: The decision system �Example � ����� ��� ���� ���� �Wine district� Main grape variety,
Vintage, Storage temp.� � �Decision��

EXAMPLE 4.1.2 (DECISION SYSTEM)
Table 4.2 is an example of a decision system constructed from the information system in
Example 4.1.1 by adding an extra attribute. This additional attribute states whether or
not the wine has been stored for a sufficient period of time and determines a partition of
the wine into two labelled equivalence classes (decision classes):
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Example	Decision � ����� ��� ��� ���Drink now� ���� ��� ��� ���Hold� (4.9)

Let the two decision classes be denoted �Drink and �Hold. As before these classes can be
approximated using rough set theory:

�Example�Drink � ���� ��� ��� (4.10)

�Example�Drink � ���� ��� ��� ��� ��� (4.11)

�Example�Hold � ���� ��� ��� (4.12)

�Example�Hold � ���� ��� ��� ��� ��� (4.13)

Obviously the decision classes can’t be crisply defined and consequently our decision
system is inconsistent. �

4.2 Machine Learning

[Mitchell, 1997] proposes a broad definition of machine learning in that he includes all
computer programs that improves its performance at some task through experience. In
principle all learning can be seen as learning the representation of a function. Take for
example the task of driving a car. The problem is to learn what action to take (”turn left”,
”hit the breaks”, etc.) given different situations. This problem can be reformulated as the
problem of learning the function that maps the input (all possible situations on the road)
to the correct output (actions).

Machine Learning (ML) takes different forms dependent on the degree of feedback and
prior knowledge available. Any situation in which both the input and the correct out-
put are available is called supervised learning. The system is being told the correct output
and evaluates its proposed output against this feedback. On the other hand, reinforcement
learning is the situation where the system receives some evaluation of it output but is
not told the correct output. Learning when there is no hint at all about the correct out-
put is called unsupervised learning. An unsupervised learner can only learn patterns or
relationships among it own input. In addition to the three types of learning situations
mentioned so far (supervised, reinforcement and unsupervised), learning can be either
inductive or analytical. Inductive learning is the task of approximating a function � from a
given set of example-pairs ��� �����. The approximation is called a hypothesis and should
by consistent with all the training examples. In analytical learning, however, the system is
provided with both training examples and a domain theory, and the approximated func-
tion should be consistent with them both. Most existing systems and methods are induc-
tive approaches although additional prior knowledge should help a lot in most learning
situations. The reason is probably the fact that the task of representing human expert
knowledge in a computer system is extremely complex given the problems of knowledge
representation, consistency, reasoning, etc.

A thorough coverage of the field of machine learning can be found in e.g. [Mitchell, 1997].

In this thesis we will be concerned with inductive learning, and in particular with unsu-
pervised learning. Although domain theory (biological knowledge) will be used both for
selecting the most interesting experiments and for evaluating the results, this knowledge
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will not take an active part in the learning task as in analytical learning. In the following
we will discuss unsupervised and supervised inductive learning. We will use the nota-
tions of rough set theory as defined above and also use the rough set framework as an
example of how to do unsupervised and supervised learning. In the next two chapters a
more in depth coverage of unsupervised methods will be provided.

4.2.1 Unsupervised Learning

Given an information system � � ���� the task of unsupervised learning is to search
for ”natural” groups of similar objects called clusters. Thus we want to find a partition
 � ���

���
�
�� 


��

	
� �. In general this requires two things:

� A definition of similarity. What makes two objects similar? This of course is totally
dependent on what we are interested in. Take for example the task of partitioning
all known wines into ”natural” groups. What make two bottles of wine similar?
That they are produced in the same country? That they taste the same? The last
definition even requires an expert in wine tasting to do the job right. These are
typical problems of defining similarity and often require close co-operation with
domain experts in order to make the correct assumptions.

� An algorithm that takes an information system and a definition of similarity as
input and returns a decision system with the decision classes being the obtained
clusters.

EXAMPLE 4.2.1 (UNSUPERVISED LEARNING)
Consider again the information system�Example in Table 4.1 and the following definitions:

� Define two objects to be similar if they satisfy the indiscernibility relation ����Example

��Example�.

� Define the clusters simply to be the classes determined by the defined indiscerni-
bility relation.

Doing unsupervised inductive learning on the data now results in the following group-
ing:

����� ����� ���� ���� ���� ���� ����� ���� (4.14)

Note that this approach to unsupervised learning simply results in clusters that equal the
equivalence classes of the information system (Equation 4.6). �

In the next two chapters we will look more closely at the challenges of doing unsuper-
vised learning and also indicate more advanced similarity measures and algorithms.

4.2.2 Supervised Learning

Given a decision system � � ��� � ���� the task of supervised learning is to find a
representation of the function that maps the set of attributes � to the decision �: � ��� �
��. The rough set theory gives us a sound framework for inducing a set of propositional
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rules that represents this function. We will call a representation of this kind a model. There
exist multiple other methods for modelling these kind of functions including decision
trees, artificial neural networks, Bayesian belief networks, etc.

To show how rules can be induced from a decision system we need to define the concept
of reducts. A reduct of a given decision system � � ��� � ���� is a minimal set of
attributes � � � such that ������� � �������. Finding the set of all minimal reducts
is NP-hard ([Skowron and Rauszer, 1992]), but there exist good heuristics that compute
subsets of all possible reducts in acceptable time. In principle, reducts can be found using
the general scheme of Boolean reasoning ([Brown, 1990]):

DEFINITION 4.2.1 (BOOLEAN REASONING)
Boolean reasoning can be used to solve a problem � by applying the following general
algorithm:

1. Formulate the problem � as a system of Boolean equations.

� �

����
���
�� �  �

...
�� �  �

(4.15)

where �
 and  
 are Boolean functions ���� ��	 � ��� ���.

2. Reduce the equation system to a single Boolean equation �� � �.

�� �

��

��

���
 �  
 	 �
 �  
�

� (4.16)

where ��
 and  �
 are the complements of �
 and  
 respectively.

3. Compute the prime implicants1 of �� .

4. Obtain the solutions to � by interpreting the prime implicants of �� .

�

Given an information system� with � objects, the discernibility matrix of � is given by an
�	 � matrix with entries !
� .

!
� � �� � � 
 ���
� � ������ for �� " � �� 


� � (4.17)

The decision-relative discernibility matrix to a corresponding decision system can be con-
structed from Equation 4.17.

!�
� �

�
� if ���
� � �����

!
� � � otherwise
(4.18)

1A prime implicant can be explained by the following chain of arguments: A literal is a variable or its
negation. A term is a conjunction of literals. An implicant of a Boolean function � is a term � such that if the
value of � is true under an arbitrary valuation � then the value of � under � is also true. A prime implicant
is an implicant of � that ceases to be so if any of its literals are removed.
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The discernibility function �� (respectively decision-relative discernibility function ���) can
now be defined from the discernibility matrix (respectively decision-relative discernibil-
ity matrix)

�

��
� ����� 


� �

�
	� �

��	
!

���

�



 � � " � � � �� !

��

� � �

�
(4.19)

where ��
 � 


� �
�
	 correspond to the attributes ��� 


� �	 and !


���

� � ��� 
 � � !


��

� �.

The set of all prime implicants of � 
��� can be interpreted as the set of all reducts (re-
spectively decision-relative reducts) of �. Thus we have a mathematical machinery for
finding reducts. From the decision-relative reducts we can now construct minimal propo-
sitional decision rules of the form ��� � ��� � ��� � ��� � 


 � ��� � ��� � � � �� by
overlaying the set of attributes in a reduct � over an object � �  and reading off the
values of � for every � � � and decision �. The set of induced rules gives us a representa-
tion (or a model) of the decision system. This model has two properties. Firstly, it holds
descriptive knowledge. It describes the most important underlying patterns and relations
in the data. Secondly, it holds predictive knowledge. We can use the rules in the model to
classify unseen objects.

The ROSETTA system is a toolkit for rough set analysis developed at our group in col-
laboration with Warsaw University ([Komorowski et al., 2000b], [Øhrn et al., 1998] and
[Øhrn, 1999b]). A complete description of rough sets and indiscernibility-based analysis
in medicine can be found in [Øhrn, 1999a]. [Vinterbo, 1999] discusses predictive mod-
els for use in medicine in general. The ROSETTA system can be used in a wide vari-
ety of different classification problem not only related to medicine. Some examples are
[Tjeldvoll et al., 1999], [Hvidsten et al., 1999a] and [Øhrn and Komorowski, 1999].

In order for a model to be descriptive it needs to consist of a reasonable number of rules.
Large models have no descriptive capability in practice since they are too large to be in-
spected by humans. According to the principle of Occam’s razor, the simplest of two
models both consistent with the training examples should be chosen. [Ågotnes, 1999]
and [Løken, 1999] both shows how large propositional rule models can be simplified
while retaining predictive performance. A shorter version of this work can be found in
[Ågotnes et al., 1999]. Some of their work is even implemented in the ROSETTA system.

EXAMPLE 4.2.2 (SUPERVISED LEARNING)
Consider again the decision system in Table 4.2. Notice that �Wine district, Main grape
variety�, �Wine district, Vintage�, �Main grape variety, Vintage� and �Wine district, Stor-
age temp.� are the possible decision-relative reducts. From these reducts we can generate
22 propositional rules depicted in Table 4.3. �

As mentioned earlier, models resulting from inductive supervised learning posses pre-
dictive capabilities in the sense that they can classify unseen objects. By unseen objects
we mean objects that are not a part of the training set. For this reason models are often
called classifiers. A classifier 
� over a decision system � � ��� � ���� is a function that
maps an object � �  to a value in the value set �� of �.


� �  � �� (4.20)

It should be stressed that there are actually two decision systems involved. One decision
system � � ��� � ���� which is the actual true system that we are trying to model



4.2. MACHINE LEARNING 35

M
a
i
n
g
r
a
p
e
v
a
r
i
e
t
y
(
C
a
b
e
r
n
e
t
S
a
u
v
i
g
n
o
n
)

A
N
D

W
i
n
e

d
i
s
t
r
i
c
t
(
B
o
r
d
e
a
u
x
)

�

D
e
c
i
s
i
o
n
(
D
r
i
n
k
n
o
w
)

M
a
i
n
g
r
a
p
e
v
a
r
i
e
t
y
(
S
y
r
a
h
)

A
N
D

W
i
n
e

d
i
s
t
r
i
c
t
(
R
h
ô
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(a subset of this system is what we call the training set), and one decision system � � �

��� � � 
��� which results from using the classifier 
� one the information system � �
����. Given an object � �  we say that 
���� is the predicted decision of x and that ���� is
the actual or true decision of x 2. Of course we want

��� � � 
���� � ���� (4.21)

to be true. Consider as a special case the situation where we have a decision system with
two decision classes �� and ��. The classifier is now called a binary classifier and takes
the following form.


� � 
�
� ��� ��


� ��� �� (4.22)

� is most often a voting algorithm. Given one object to classify, this algorithm scans the set
of rules in 
� and assigns a number of ”votes” to each value in the value set �� � ��� ��. #
is a simple threshold function.

���� �
Number of votes given to decision value 1

Number of votes given all together
(4.23)

#������ �

�
� if ���� � $

� otherwise
(4.24)

We will consider two important concepts that are used to evaluate classifiers. Discrimina-
tion measures how good the classifier is at guessing the correct value ���� when presented
with object �. To understand this, consider a confusion matrix C which is a ����	 ���� ma-
trix where entry !��� "� is the number of objects that really belong to class �, but were
classified by 
� as belonging to class ".


�
0 1

�
0 %� ��
1 �� %�

Here %� is interpreted as “true negatives”, %� as “true positives”, �� as “false neg-
atives” and �� as “false positives”. Three important quantities for discrimination are
sensitivity, specificity and accuracy:

%�	�%� 	 ��� Sensitivity Pr( 
���� � �
���� � ��

%�	�%� 	 �� � Specificity Pr( 
���� � �
���� � ��
�%� 	 %��	�%� 	 %� 	 �� 	 ��� Accuracy

A frequently used graphical representation of discrimination is the receiver operating char-
acteristic (ROC) curve. An ROC curve describes the behaviour of a classifier as the thresh-
old $ (see Equation 4.24) is varied across the full spectrum of possible values. Each point
on the ROC curve represents a different confusion matrix with different sensitivity and
specificity, all defined by the given threshold value. An example of an ROC curve is given

2We should not forget that this value is obtained from an expert and that it too can be wrong or, as
mentioned earlier, inconsistent with other values.
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in Figure 4.1. It is common to interpret the area under the ROC curve, AUC, as the highest
obtainable accuracy, given that the best threshold $ is used.

Calibration is the other concept with which we measure classifiers. It is a measure of
how close the output ���� of a classifier is to the probability Pr����� � � 
 ��. Although
discrimination is the most intuitive measure, calibration is important because human
experts often want to use this value as a decision base rather than trusting the automated
classification given by #.

            

Figure 4.1: An example of an ROC curve

In order to evaluate a classifier we need objects with known decision values. Of course
we can’t use the objects from which we induce the model since these ”testing” objects
are supposed to be unseen. Consequently the classical approach in inductive machine
learning is to split the set of available example-objects into a training set and a test set.
The training set is used to induce the model while the test set is used to evaluate the
model (classifier). Additionally, the training set is further divided into two sets where
one of them is called the hold-out set. The hold-out set is used to fine-tune the parameters
for the learning algorithm. Since different splits of the example-objects could result in
different models with different performance, the procedure described above should be
repeated for a number of times. A systematic approach to this is the so-called k-fold cross
validation in which the set is divided into � different disjunct subsets and where each
of these subsets is used as a test set once. One should always remember that whatever
methodology is used it will fail if the set of available example-objects does not satisfy the
basic assumption of all inductive machine learning; the available data set should reflect
the universe of objects that the system is to be operating on in the future.

4.2.3 The Relationship between Unsupervised Learning and Supervised Learn-
ing

In this chapter we have considered unsupervised learning as being a transformation of
an information system into a decision system. As a consequence we can do supervised
learning on the data set resulting from the unsupervised learning. In this way we do
more than just finding natural groupings in the data set. We also induce a model that
highlights the differences between the obtained groups and that can be used to classify
unseen future objects. This may be useful in many applications and in particular in com-
putational biology as described in Chapter 1 and illustrated in Figure 1.1.
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EXAMPLE 4.2.3 (UNSUPERVISED LEARNING + SUPERVISED LEARNING)
Remember the clusters obtained from the information system in Table 4.1 by applying
the unsupervised learning method in Example 4.2.1:

������ ����� � ���� ���� � ���� ����� ����� � �����

These clusters now determine a decision system � � ����� ��� 


� ���� �Wine district,
Main grape variety, Vintage, Storage temp.� � Cluster� where Cluster is the decision at-
tribute such that Cluster :  � ����������� ��. A wine expert can associate a Drink
now/Hold-label to each of these clusters:

����Drink now� ����Hold� ���� ���Drink now or Hold� ���� ���Drink now� ����Hold� ����Hold

These new corrected labels determine the same decision system as shown in Table 4.2.
Hence we can induce a model as described in Example 4.2.2. This model is shown in
Table 4.3 and holds both descriptive and predictive knowledge as discussed earlier in
this chapter.

In this small example the unsupervised learning seems rather unnecessary. The wine
expert could easily inspect the eight wines without the clusters. However, for large data
sets the advantage of working with groups of similar objects rather than single objects is
vital in order for an expert to inspect and label the data set. �



Chapter 5

Similarity Measures and Syntactical
Clustering

Given an information system � � ����, the objective of unsupervised learning is to
search for ”natural” groups of similar objects called clusters. Consequently, we want to
find a partitioning of the universe  � ���

�� �
�
�� 


��

	
� �. This requires both a similarity

measure, which defines similarity between two objects, and a clustering algorithm, which
specifies how to use the similarity measure in order to obtain good clusters.

Clustering algorithms can take two conceptually different approaches. We will call this
approaches blind or syntactical clustering and knowledge-based or semantical clustering. The
first approach searches blindly for clusters without any predefined knowledge. The sec-
ond approach requires a specification of what to search for in advance. In addition,
we can classify clustering algorithms according to weather they define crisp clusters
or weather they define approximate clusters. Also they can be classified according to
whether they define disjunct clusters or whether they define overlapping clusters. In this
chapter we will be investigating blind algorithms that define crisp disjunct clusters. In
the next chapter we will look into knowledge-based clustering.

Clustering is very much related to pattern recognition and is for this reason often treated
in pattern recognition literature e.g. [Johnson and Wichern, 1998], [Schalkoff, 1992] and
[Ripley, 1996].

5.1 Similarity Measures

Measures of similarity are fundamental to all clustering tasks. Consider an information
system � � ����. The information vector is denoted ������� �� ���� � � � � �, where
� � � and � �  . Remember that that � �  � ��. We want to develop similarity
measures that tell us something about the similarity between two objects � �  and
� �  represented by their information vectors ������� and �������. In general, we
want a similarity measure � that has the following property:

���������� �������� �

�
�&���'� when � and � belong to different clusters
�()�&&� when � and � belong to the same cluster

(5.1)

39
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5.1.1 Similarity Measures in Vector Space

When dealing with numerical values the � 	 � vector ������� can be interpreted as a
point in the �-dimensional space. Hence distance can be interpreted as a measure of
similarity. The Euclidean (straight-line) distance between two objects (represented by their
information vector) is of the form

���������� �������� �

��
���

������ ������ (5.2)

The related ”city-block” distance is given by

���������� �������� �
�
���

������ ������ (5.3)

Actually, both the Euclidean distance and the ”city-block” distance are a special case of
the more general Minkowski metric

����������� �������� �

�
���

����� � ������
����

(5.4)

which for p = 1 becomes the ”city-block” distance and for p = 2 becomes the Euclidean
distance. Commonly, these distances are weighted (weighted distances). One example is

������������ �������� � ��������� ��������
����������� �������� (5.5)

in which � contains weights for the different attributes in �.

According to [Johnson and Wichern, 1998], two other popular distance measures are

Canberra metric: ��	��������� �������� �
�
���


���� � ����


����� 	 �����
(5.6)

Czekanowski coefficient: ������������ �������� � ��
�
�
���)�������� ������
�������� 	 *����

(5.7)

5.1.2 Similarity Measures for Sets and Strings

When dealing with non-numerical values we often need measures for set and string sim-
ilarity. Consider two sets ������� and ������� (Note that these sets, we might call them
information sets, is simply the set of all elements in the information vector: ������� �
����� � � � �� where � � � and � �  ). Some examples of similarity measures dis-
cussed in [Schalkoff, 1992] are

���������� �������� �

������� � �������



������� � �������

(5.8)

���������� �������� �

������� � �������



�������
	 
�������
 � 
������� � �������

(5.9)

����������� �������� � )���
�������
� 
�������
� � 
������� � �������
 (5.10)

����������� �������� is called the Levenshtien distance.

Unlike sets, the ordering of elements is important when comparing strings. Given two
strings + and �, similarity could be based on the following:
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� Inclusion: does string + contain � (or vice versa)?

� Overlap: finding the size of the largest substring in both + and �.

� Variational similarity: determining similarity on the bases of the minimum cost of
”converting” one string into another.

5.1.3 Similarity Measures for Time Series

A �	� information vector ������� can also be interpreted as a time series, that is, each el-
ement is a measurement at time ,
 such that ,
 � ,
��. The vector can now be represented
as a two-dimensional graph. When comparing time series we often want to use similarity
measures that compare gradients. The easiest way to do this is to transform the data into
a language that posses this feature and then use the distance measures discussed above.
One such transformation could simply be the computation of gradients:

������� � � ������� ��� ���� 


� ��� ��� �
�
�

����� ��� ��
������� ������

,� � ,�
�
������� ������

,� � ,�
� 


�

������� ��������

,� � ,���
�

(5.11)

More sophisticated transformations includes various mathematical transformation like
the Fourier Transformation and the Haar Wavelet Transformation ([Struzik and Siebes, 1999]).
In 1822 the French mathematician J. Fourier showed that any periodic function can be
expressed as an infinite sum of periodic complex exponential functions. Later this prin-
ciple was extended also to include discrete periodic functions or time series. The Fourier
Transformation is a transformation from the time-domain to the frequency-domain. This
is often useful in time series analysis since we are interested in the changes of the time
series. However, while no frequency information is available in the time-domain, no time
information is available in the Fourier transformed frequency-domain. This is a problem
because we want to know when the changes occurred, not only which changes that oc-
curred. The wavelet transform is a solution to this problem. It is capable of providing
the time and frequency information simultaneously, hence giving a time-frequency rep-
resentation of the signal. The Haar Wavelet Transformation is explained in more detail
below.

The Haar Wavelet Transformation is an inner product of the time series, � , with a scaled
and translated wavelet -���. This wavelet is most often the �-th derivative of some
smoothing kernel #���. The choice of the smoothing kernel depends on the application
and the desired properties of the wavelet transform. The scaling and translation action
are performed by the scale parameter (, which changes the frequency content, and the
parameter *, which determined the location of the analysing wavelet:

.��(� *� �� ��- � �(� *� �
�

(

�
�

���� -�
�� *

(
� �� (5.12)

Here  is the length of the time series. The Haar Wavelet Transformation decomposes the
time series into Haar components. These components describe the change (frequency) in
the series at different times, and together they add up to the original series. Figure 5.1
shows the decomposition of an example time series. Decomposition is very useful when
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Figure 5.1: A practical application of the Haar Wavelet Transformation: Decomposition of an
example time series into Haar components.
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analysing time series since different components can be weighted differently in the simi-
larity measure. For example, one most likely want to skip the constant component of the
transformation when interested in comparing local slopes of two time series. In the same
way one would certainly want to pay less attention to the high frequency components
than to the low frequency components when designing similarity measures that com-
pare the large trend in two time series. These are just examples of how the Haar Wavelet
Transformation can be used as a tool in order to customise the similarity measure to a
particular task.

Discretisation is also a very useful tool in the analysis of time series. It enables us to skip
details by mapping a set of values with the same interpretation into the same unique
value. One simple example is the sign representation of time series:

������ �

�
� if ����� � ��� � �

�� otherwise
(5.13)

Note that discretisation often results in objects with non-numerical attributes. These cat-
egorical attributes are often represented as strings and thus we might need the similarity
measures for sets and strings discussed above. For a thorough discussion on discretisa-
tion see [Nguyen and Skowron, 1995] and [Nguyen and Nguyen, 1998].

Transformations and discretisation are what we call preprocessing tools. In principle they
could be an integrated part of the similarity measures. However, these calculations can be
done only once since they are independent on which two objects to be compared. Thus in
terms of performance it is better to do these calculations before any clustering algorithm
is applied to the data. Note that by preprocessing we here mean similarity-specific calcu-
lations. Other preprocessing tasks, such as data cleaning etc. discussed in relation with
the KDD process in Chapter 3, are excluded. Note that the ROSETTA system supports a
wide variety of preprocessing tools including different discretisation algorithms.

5.1.4 Boolean Similarity Measures

So far we have discussed similarity measures of the form � �  � � �. However, sim-
ilarity measures can also take the form �� � � � ��� ��. The indiscernibility relation
is one example. This relation views similarity as a yes/no question rather than a task
of assigning a value that represents a degree of similarity. This can be useful, especially
when working with domain experts. They often find it easier to specify what significantly
distinguishes two objects rather than to specify a mathematical measure of ”distance”.
Hence, in many cases it can be easier to include domain knowledge in Boolean similarity
measures than in traditional measures. Of course, a Boolean similarity measure could
alternatively be defined by a “distance” measure � and a threshold $ :

�B��������� �������� �

�
’indiscernible’ if ���������� �������� � $

’discernible’ otherwise
(5.14)
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5.1.5 The Similarity Matrix

Given an information system � � ���� and all pairs of objects �
� �� �  , a similarity
measure � determines a 
 
 	 
 
 similarity matrix with entry (
� :

(
� � ��������
�� ��������� (5.15)

The similarity matrix contains the information of similarity between all pairs of objects
and is used both in the hierarchical clustering algorithms and in the indiscernibility-based
clustering algorithm discussed in the next section.

5.2 Clustering Algorithms

We will define a clustering algorithm to be a strategy for applying a similarity measure to
a data set in order to reveal the underlying natural groups. When developing algorithms
one could always consider the search space. Given an information system � � ����
there are

)�� �

)�
(5.16)

possible partitions of the universe into ) nonempty subsets (clusters). Hence a data set
containing 500 objects represent �����	��� � �
��� 	 ���	� possible ways of partitioning
 into 10 clusters. Clearly, we can rule out any exhaustive search procedure. For this rea-
son a wide variety of clustering algorithms have emerged that find ”reasonable” clusters
without having to look at all configurations.

In this section we will examine algorithms that define crisp disjunctive clusters. We will
divide these algorithms into hierarchical clustering algorithms and non-hierarchical clustering
algorithms. The latter also includes neural and Boolean approaches.

5.2.1 Hierarchical Clustering Methods

Hierarchical clustering techniques proceed by either a series of successive merges or a
series of successive divisions. Agglomerative hierarchical methods start with the individual
objects, while divisive hierarchical methods work in the opposite direction. More precisely,
the former starts with each object being a cluster of its own. Successively the two most
similar clusters a merged until all clusters are fused into a single cluster. The latter starts
with all objects in one cluster and successively divides the clusters into two sub-clusters
such that the objects in one sub-cluster is ”far from” the objects in the other. This process
is continued until each object forms its own cluster. The resulting clusters from both
methods constitute a binary tree where the leaf nodes are single objects, the top node
is a cluster containing all objects and the intermediate nodes are clusters containing the
union of the clusters in the two children nodes. A diagram representing such a binary
tree graphically is called a dendrogram.

Agglomerative hierarchical methods: Given an information system � � ����, the ag-
glomerative hierarchical algorithm proceeds in the following manner:
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1. Start with � � 
 
 clusters, each containing one object, and a 
 
 	 
 
 similarity
matrix / � ��
�� determined by a similarity measure �.

2. Search the similarity matrix for the most similar pair of clusters � and . . Let the
distance between � and . be denoted ��� .

3. Merge clusters � and . , and label the newly formed cluster ��. �. Update the
similarity matrix by (a) deleting the rows and columns corresponding to clusters �
and . and (b) adding a row and a column that define the similarity between �� . �
and the remaining clusters.

4. Repeat Steps 2 and 3 a total of �� � times.

Note that the similarity measures from the previous section only define similarity be-
tween two objects while the algorithm above demands methods for calculating similarity
between clusters. Fortunately , methods for calculating similarity between clusters can
easily be obtained from the ”single-object” similarity measures:

Single linkage: the similarity between two clusters is defined as the similarity between
the most similar pair of objects (the two nearest neighbours) constituted of one ob-
ject from each cluster.

Complete linkage: the similarity between two clusters is defined as the similarity be-
tween the most dissimilar pair of objects constituted of one object from each cluster.

Average linkage: the similarity between two clusters is defined as the average similarity
between all pairs of objects constituted of one object from each cluster.

Divisive hierarchical methods: Given an information system � � ����, the divisive
hierarchical algorithm proceeds in the following manner:

1. Start with a cluster containing all objects in the universe and let this cluster repre-
sent the top node of the future binary tree.

2. Choose a cluster 0 represented by a temporary leaf node (thus this cluster con-
tains more than one object) in the binary tree. Compute a ) 	) similarity matrix
/ � ��
�� determined by a similarity measure � (using one of the linkage methods
defined above). Here each entry is the similarity between two clusters resulting
from splitting 0 in two and ) is thus the possible number of ways of splitting 0
into two non-empty clusters.

3. Search the similarity matrix for the most dissimilar pair of clusters � and . . Let
the distance between � and . be denoted �� � .

4. Divide 0 into � and . such that 0 � � �. .

5. Repeat Steps 2, 3 and 4 a total of �� � times.

Hierarchical clustering provides no methods for reallocation of objects that may have
been incorrectly clustered at an early stage. Consequently, the method is sensitive to noise
and in general the final set of cluster may not be optimal. The agglomerative hierarchical
algorithm is clearly a 1���� method. However, the divisive hierarchical method has no
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way of ”reusing” the similarity matrix from iteration to iteration. The similarity matrix
has to be recalculated each time. Moreover, the size of the similarity matrix required to
split a cluster with � objects into two non-empty clusters becomes ����� � �� 	 ����� �
��. Thus the time complexity of the divisive hierarchical clustering algorithm described
above is exponential. For this reason, other methods are normally used to split each
cluster in two, rather than looking at all configurations. As a conclusion we might say
that the hierarchical clustering strategy is a rather time consuming method and is better
used on relatively small data sets.

Finally, we will look at the Ward’s hierarchical clustering method which can either be imple-
mented as a agglomerative or a divisive hierarchical method. Ward considered hierarchi-
cal clustering procedures based on minimising or maximising the ”loss of information”
from joining or splitting clusters. The ”loss of information” is often interpreted as the sum
of squared error (SSE). Let  � ���

���
�
�� 


� �

	
� � be a partition of the information system

� � ���� and let �
 be the number of objects in cluster � 
�:

�����!
� �
�

�


�
����

�

������� (5.17)

//� �
	�

��

�
����

�

��
���

������ ��!
��� (5.18)

�����!
� is called the centroid of cluster �
�. //� gives us the sum of the total variance
within each cluster of the given partition. It can be shown that for an agglomerative
implementation of the Ward’s hierarchical clustering the smallest increase in //� results
from merging the pair of clusters represented by their centroids �����!
� and �����!��
for which the measure

2
� �
�
��

�
 	 ��

�
���

���!
�� ��!���
� (5.19)

is minimised. Ward’s hierarchical clustering method proceeds in exactly the same manner
as the hierarchical methods defined earlier except for the fact that the //� value is used
to determined the ”similarity matrix” rather than a “normal” similarity measure.

The definition of //� gives us a tool for defining a stop criterion for the hierarchical
algorithm which determines a fixed number of clusters ):

��//�	� //�	��� � $ (5.20)

where � is some function; ���� �� � � � �, ���� �� � �
� , etc. Of course, a value for $ still

needs to be found.

5.2.2 Non-hierarchical Clustering Methods

Non-hierarchical clustering methods start from either an initial partition of objects into
clusters or an initial set of seed points (centroids for the resulting clusters). Normally the
number of clusters is specified in advance. Since the similarity matrix does not have to be
determined, non-hierarchical methods can be applied to much larger data sets than can
hierarchical techniques.
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The K-means algorithm: This is one of the most popular algorithms in which each object
is assigned to the cluster with the nearest centroid. The algorithm is composed of the
following simple steps:

1. Partition the information system into � initial clusters.

2. Scan through the universe of objects and assign each object to the cluster whose
centroid is nearest (using some similarity measure). Recalculate the centroid for all
clusters that received or loosed any objects.

3. Repeat Step 2 until no more reassignments take place.

Equivalently one could start with specifying � initial centroids and then proceed to Step
2.

A neural approach: Self-Organising Maps: Self-Organising Maps ([Kohonen, 1990]) is
a sheet-like artificial neural network where the cells become specifically tuned to various
objects through an unsupervised learning process. Self-Organising Maps bear strong re-
semblance to both the k-means algorithm and to Learning Vector Quantisation(LVQ). The
algorithm consists of the following steps, were each iteration is indexed by �:

1. Select an initial set of centroids and denote them �����!
�.

2. For each object � �  , find the closest centroid (using some similarity measure) and
denote it �����!��.

3. Update �����!����� to form �����!���� 	 �� as follows:

�����!���� 	 �� ������!����� 	 3����� � �����!����� (5.21)
�����!
��� 	 �� ������!
���� for � � ! (5.22)

4. Repeat Step 2 and 3.

Here 3��� is an iteration-dependent parameter, � � 3��� � �, that decreases monotoni-
cally with �. Hence 3��� helps controlling the convergence of the algorithm.

Both the k-means algorithm and the Self-Organising Maps algorithm are iterative algo-
rithms that converge against some stable configuration. However, the final assignment
of objects to clusters will in some degree depend on the initial selection of seed points.
One should always rerun the algorithm with different initial configurations and compare
the results. If the results differ significantly, it might indicate that the data set does not
contain any stable configuration of natural groups. Alternatively, it might indicate that
the selected number of initial seed points is unfavourable. Selecting too many initial seed
points might result in the situation where two or more seed points lie within a single
cluster and thus split an otherwise natural group. On the other hand, too few initial seed
points will produce at least one cluster with very disperse objects. Even if the universe
is known to consist of � natural groups, all these groups may not be represented in the
available information system. For this reason, it is always a good idea to also rerun the
algorithm for different numbers of initial seed points. Since the two non-hierarchical al-
gorithms defined above both are 1���� methods (� being the number of iterations), they
will still have a favourable time consumption compared to the hierarchical methods.
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A Boolean approach: Indiscernibility-based clustering: Given a Boolean similarity mea-
sure (the indiscernibility relation), the indiscernibility-based clustering algorithm takes a
very simple approach to clustering in that it specifies an indiscernibility graph where each
node represents one object and two nodes are connected if the two respective objects are
indiscernible. Now each separate graph in the full indiscernibility graph is considered a
cluster.

The ROSETTA system implements the indiscernibility-based clustering approach and
outputs a graph-specification that can be used together with the graph drawing software
Graphviz (see [Graphviz, 1999]) to draw the indiscernibility graph.

The indiscernibility-based clustering approach somewhat escapes the problem of select-
ing a number of clusters in that the number of clusters follows as a direct consequence
of the defined Boolean similarity measure. If this measure is defined restrictively, only a
few objects will be connected in a few tight clusters accompanied by a large number of
unclustered objects. If the measure is loosely defined, a large number of objects, possibly
all, will be connected in a few big width-spread cluster. Consequently, the challenge is to
define a Boolean similarity measure such that the algorithm results in a favourable num-
ber of distinguishable clusters that together contain a sufficiently large number of objects.
Note that this algorithm not only defines a set of clusters, but also says something about
the relationship between objects within the cluster. To conclude the discussion about
indiscernibility-based clustering we should mention that the time complexity of this al-
gorithm is 1���� since it looks at all possible pair of objects in the universe.

5.3 Discussion: Finding the Best Clusters

Both hierarchical and non-hierarchical clustering algorithms considered in the last section
have the property that not all partitions of the data set are considered. Consequently, they
are attractive in that Equation (5.16) is considerably reduced. However, all the algorithms
discussed also have the property that they can lead to a sub-optimal data set partitioning.
The situation leading to a sub-optimal partitioning is either due to (a) an unfavourable
number of clusters or, of course, (b) a distribution of the objects among the clusters that
is not optimal. Optimising both the number of clusters and the distribution of objects
among the clusters are not trivial since these two criteria are partly conflicting. Note, for
example, that the SSE value (see Equation 5.18) equals zero (minimum) when each object
forms its own cluster. However, this would hardly be considered a good partitioning.
What we desire, of course, is a trade off between the number of clusters and the tightness
of each cluster.

In general, we desire a partition of the objects contained in the information system � �
���� such that a specified clustering function 4 is minimised. Given two competing par-
titions �� and �� we want

4���� � 4���� (5.23)

if �� is considered to be a better partition than ��. Note that SSE has this property. We
can develop an iterative algorithm that incrementally reorganises an initial configuration
of clusters by moving one object � from cluster � 
� to cluster ��� such that 4 is reduced.
This strategy can be used to fine-tune the clusters resulting from one of the algorithms
(hierarchical/non-hierarchical) discussed above.
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Finally, it is worth mentioning that one always should remember that the resulting clus-
ters very much depend on the chosen similarity measure. Thus ”optimal” in this context
is relative to the chosen definition of similarity.

5.4 Case Study: The Party Families in Europe 1970-1992

To illustrate the methods discussed in this chapter we will now use them on an example
data set. The data set, depicted in Table 5.1, reflects the mean electoral support of the ma-
jor party families in 17 different European countries from 1970 to 1992. It is taken from a
book in comparative politics ([Heidar and Berntsen, 1995]) where its properties were dis-
cussed using non-computational methods. We will use three different clustering meth-
ods to find groupings of countries that have had a similar distribution of votes among
the party families in the given period. The three methods considered are (1) the Ward’s
hierarchical clustering algorithm implemented as an agglomerative method, represent-
ing the hierarchical clustering methods, (2) the k-means algorithm, representing the con-
verging non-hierarchical clustering methods and (3) the indiscernibility-based clustering
algorithm.

1. The final assignment of countries to clusters resulting from using the Ward’s hi-
erarchical clustering algorithm can be seen in Figure 5.2. Using the stop criterion
//�	 � //�	�� � ���� we obtain six cluster:

a�: Netherlands, Luxembourg, Belgium and Switzerland

b�: Germany, Austria and Italy

c�: Sweden, Denmark and Norway

d�: Greece and UK

e�: Spain, France and Portugal

f�: Iceland and Finland

Clearly the clustering coincides somewhat with the countries geographical location
and this could indicate that our clusters are fairly good.

2. Using the k-means algorithm with six initial clusters results in the following assign-
ment of countries to clusters:

a�: Netherlands, Luxembourg, Belgium, Germany, Austria and Italy

b�: Switzerland

c�: Sweden, Denmark and Norway

d�: Greece, UK and Spain

e�: France and Portugal

f�: Iceland and Finland

Comparing these clusters to the one obtained from using the hierarchical algorithm
we see that clusters a and b are merged except for Switzerland which now forms a
cluster of its own. Also Spain has moved from cluster e to cluster d.
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3. Using the indiscernibility-based clustering approach we define the similarity mea-
sure to consider two objects to be indiscernible if the Euclidean distance between
them does not exceed ��. The result is graphically displayed as a indiscernibility
graph in Figure 5.3. This graph defines five clusters (alternatively, we could say that
it defines three clusters and leaves two objects unclustered):

a�: Netherlands, Luxembourg, Belgium, Germany, Austria and Switzerland.

b�: Sweden, Denmark, Norway, Iceland, Finland and UK

c�: Portugal, Spain and Greece

d�: Italy

e�: France

Again we see a strong resemblance to the clusters defined by the other algorithms.
We can clearly see how the different algorithms merge and divide the same basic
clusters to constitute clusters specific to this algorithm.

The k-means algorithm was implemented using the Euclidean distance as a similarity
measure, while the hierarchical algorithm used SSE. However, the SSE (recall that SSE is
an abbreviation for the Sum of Square Error) computed for a given cluster is really just the
”sum of the squared Euclidean distances between the cluster’s centroid and each object
in that cluster”. Hence the two algorithms should be well suited for comparison. Also
the indiscernibility-based clustering approach is in this example based on the Euclidean
distance.

The k-means algorithms seemed to alternate between several different cluster configura-
tions for different initial configuration. The clusters listed above are just one of them. This
might indicate that the data set is not very well suited for finding good clusters, that is,
natural groups where the internal distances are short and the distances to other clusters
are long.
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Figure 5.2: Dendrogram showing the resulting partition from applying the Ward’s hierarchical
clustering method to the data set in Table 5.1.
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Figure 5.3: Indiscernibility graph showing the resulting partition from applying the
indiscernibility-based clustering method to the data set in Table 5.1.
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5.5 Time Series Case Study: Party competition

To illustrate the principle of applying clustering algorithms to time series we will now
process the data set depicted in Table 5.2 The data is again taken from a book in com-
parative politics ([Gallagher et al., 1995]) where its properties were discussed using non-
computational methods. This data set reflects the mean number of parties in competition
in 15 European countries over the last four decades. We will apply the indiscernibility-

Countries 1950s 1960s 1970s 1980s
Austria 4 4.5 4 4.5
Belgium 5.7 6 9.3 12.3
Denmark 6.5 7.8 10.6 10.5
Finland 6.3 8 9.3 9.5
France 7 7.3 7.5 7.3
Germany(West) 7.5 4.7 3 4
Iceland 5.3 5 5 7.5
Ireland 5.3 4.3 4 5.3
Italy 8.5 8 8.7 10
Luxembourg 4.3 4.5 6.5 6
Netherlands 7.7 9.5 11.7 8.5
Norway 6 7 8 7
Sweden 5 6.3 6 7
Switzerland 9 9 10.3 10
United Kingdom 3 3 4.8 6

Table 5.2: The fragmentation of the European party system: Mean number of parties in competi-
tion from 1950 to 1990. Includes only those parties polling at least 1 percent.

based clustering method extended to include the following steps:

1. Apply the Haar Wavelet Transformation to the data set:

� � ����
 ��
� � �� � ��� �� � (5.24)

2. Discretise the transformed data using the sign representation below on each at-
tribute � � � for each object � �  :

������ �

���
��
� if ����� � ��� � $

�� if ����� � ��� � �$

� otherwise

(5.25)

In this example $ � �
�

3. Define a suitable indiscernibility relation. In this example the constant Haar compo-
nent was discarded and the relation was defined such that requirements for similar-
ity was stricter for low frequency component than for high frequency components.

4. Use the indiscernibility based clustering algorithm on the transformed discrete data
and display the result as a indiscernibility graph.
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The Haar Wavelet Transformation represent a shift of focus from values to local slopes.
Hence the obtained clusters are groups of countries with a similar evolution in terms of
numbers of competing political parties. The results from applying the above method to
the data set in Table 5.2 can be seen in Figure 5.4. The clusters presented as time series
graphs can be seen in Figure 5.5.

Figure 5.4: Indiscernibility graph showing the resulting partition from applying the
indiscernibility-based clustering method to the data set in Table 5.2.

A political science discussion of the results from this and the previous section is outside
the scope of this thesis.
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Figure 5.5: The clusters in Figure 5.4 were countries in the same clusters are displayed together
as time series graphs in order to show their similarity.



Chapter 6

Knowledge-based Clustering

In Chapter 5 we explored different syntactical clustering approaches that blindly searched
for similar objects in a data set. This approach seems intuitively attractive because of its
generality and its ability to discover existing patterns without having to make any pre-
defined assumptions. However, when co-operating with domain experts we often want
to work by means of hypotheses. Hypotheses can of course be validated against the dis-
covered clusters using methods from Chapter 5, but these clusters often prove difficult to
interpret since they never quite seem to coincide with the expert’s assumption or hypoth-
esis. This problem can in many cases be dealt with by defining what we are looking for in
advance. Using the methods in Chapter 5, domain knowledge can be included as a help
in the search strategy either by defining the number of initial clusters for non-hierarchical
methods, or even defining the locations of the seed points for these clusters, or by defin-
ing the similarity measure. However, even more explicit is the approach of predefining
the features of each cluster and then simply distributing the objects among these clusters
according to their match. We will denote this method knowledge-based or, more specifi-
cally, template-based clustering. A template is simply a piece of encoded biological knowl-
edge that alone or as an element in a set of templates defines or even determines a cluster
in that all objects matching this or these templates belong to the same cluster. One can
argue that this approach is more related to pattern matching or classification than it is to
clustering or unsupervised learning. However, we will use the term “clustering” in this
thesis because in many aspects the knowledge-based clustering approach is an extension
of syntactical clustering approach as argued above.

We again define the data set as an information system � � ���� and additionally con-
sider the following definitions:

Object � �  : The input pattern to the template matching process defined by its infor-
mation vector �������.

Template ,
: The template determining cluster � 

�.

Range �: the extent of � over which the match occurs. This might simply be a subset
of � denoted � � � or a subset of the components resulting from some kind of
transformation used on �.

Given the definitions above the following two candidate metrics indicating mismatch can
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be used:

)��,� �� �
�
�


,� �
 (6.1)

)��,� �� �
�
�

�,� ��� (6.2)

Intuitively, )� and )� will be small when , and � are similar, and large when they are
significantly different. Obviously we would like to define a function that assigns � to
cluster � 
� if )��,
� �� � $ . Of course, the determination of $ is critical. $ needs to be
selected with a view to statistical significance and also with a view to more subjective
issues like at which degree of strictness we want our clusters to be defined.

Template-based clustering is discussed in the literature both in general and in connection
with gene expression analysis. One example is [Carr et al., 1997]. Another example is
[Lowe et al., 1999] which defines a fuzzy template % (to be used in the time series domain)
as a triple

% � �$� /� �%�� 


� %��� (6.3)

where $ is a fuzzy interval defining the starting point of the template, / is a fuzzy seg-
ment and �%�� 


� %�� is a list of � fuzzy sub-templates. Moreover, / is defined as the pair
/ � ��� �� where � is a fuzzy course representing the allowable spread of the signal to be
matched (objects are often called signals in the time series domain) and � is a fuzzy dura-
tion of time over which the segment is defined. The template matching can be performed
via the calculation of a membership function 5 � ��� �� where 5 � � means that the given
signal do not match the fuzzy template to any degree and 5 � � means that the template
is fully matched. Fuzzy approaches to template matching have some advantages in that
they can easily handle incomplete data in terms of vagueness in the definition of intervals
and signal level.

Template-based clustering is most often used in time series domains. This is because a
template intuitively can describe a curve over a sub-time-interval and also that it makes
sense to define such patterns in advance since we often are looking for signals with a
certain response in a certain sub-interval.

6.1 Template-based Cluster Analysis in Time Series

In the following section we will look at an approach to template-based clustering in the
time series domain. We will view the matching process as a Boolean function that decides
whether or not an object matches a predefined template. We will define a template to be
a basic curve feature accompanied by a set of requirements that needs to be fulfilled in
order for an object to match this template. As an example, consider the template that
describes the feature of monotonic increase over at least , time point and with a total
increase of $ . Note that our definition does not describe a specific interval over which
the template is defined. Instead we will develop an algorithm that looks at all possible
sub-intervals of the time series. These intervals will together with the set of initially
defined templates determine a set of clusters that describe all the features of all objects.
We will then order the set of intervals according to the number of matches occurring in
this interval. This algorithm consists of the following steps:
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1. Start with the set of time series contained in the information system� � ���� and
a set of templates % . The set of all possible sub-interval of the time series will be
denoted � .

2. Build a new information system �! � �� �� where � is the set of attributes repre-
senting each possible sub-interval such that � �  � % � � for every � � � . Conse-
quently, each entry in the table is the template that matches the given object in the
given time-sub-interval. If no template matches the object in that sub-interval, the
entry is empty.

3. Simplify the new information system�! � �� �� such that:

���� �

�
� if it exists an �"#�$� � � such that �"#�$���� � % and � � �"#�$�

���� otherwise
(6.4)

Consequently, we have discarded any template that matches an object in a sub-
interval of another template that includes the same feature.

4. Denote the ordered set of the intervals ��, and initials it such that ��, � �. As long
as the information system �! � �� �� contains any object:

� Find the interval �%$"� � � in which the most objects matches a template.

� Remove �%$"� from the information system together with every object that no
longer match any template in any sub-interval.

� Add �%$"� to ��,.

5. Now the set of intervals ��, and the set of templates % together determine a set
of overlapping clusters that describe the objects according to the pre-defined tem-
plates.
Note that Step � alternatively can be executed separately for each template. Then
we will end up with a collection of sets of intervals where each set of intervals is
relative to a specified template. Using this strategy, the stop criterion in Step 4 be-
comes “for each template , � % continue as long as the information system contains
any objects matching template ,”. In addition, the information system needs to be
initiated for each new template.

The algorithm explained above gives us a description of the data set� � ���� according
to the pre-defined templates. The set ��, contains all the intervals in which one or more
objects matches a template (after simplification). Since the set is ordered we can pick a
subset of intervals from ��, such that a sufficiently large part of the universe of objects is
described. When a good set of clusters are found, we can add a decision attribute to the
simplified information system�! � �� �� and use the rough set framework described in
Chapter 4 to find minimal sets of intervals that are needed to describe these clusters.

6.2 Time Series Case Study Using Templates: Party competition

We will pick up the thread of the example time series depicted in Table 5.2 (Chapter 5)
and now analyse it using the template based algorithm described in this chapter. We are



60 CHAPTER 6. KNOWLEDGE-BASED CLUSTERING

interested in grouping the countries according to whether they have experienced a signif-
icant change in the number of competing parties or not. Thus we define two templates;
(I) significant increase and (D) significant decrease. We will define “significant” as being
an increase or a decrease in the number of competing parties of at least 1 over a period of
at least two decades.

Table 6.1 shows the different possible sub-intervals of the time series and which templates
matching the different countries in these intervals. Table 6.2 shows the same table after
simplification. Note how the entries for Belgium, Finland and United Kingdom have
changed.

Countries 50s - 70s 50s - 80s 60s - 80s
Austria
Belgium I I I
Denmark I
Finland I I I
France
Germany(West) D
Iceland I
Ireland D
Italy I
Luxembourg I
Netherlands I
Norway I
Sweden
Switzerland I
United Kingdom I I I

Table 6.1: Table shows the different possible sub-intervals and which template matches the coun-
tries in these intervals. ’I’ stands for “increasing” and ’D’ stands for “decreasing”.

Countries 50s - 70s 50s - 80s 60s - 80s
Austria
Belgium I
Denmark I
Finland I
France
Germany(West) D
Iceland I
Ireland D
Italy I
Luxembourg I
Netherlands I
Norway I
Sweden
Switzerland I
United Kingdom I

Table 6.2: Table showing a simplified version of Table 6.1 where all redundant information is
removed. ’I’ stands for “increasing” and ’D’ stands for “decreasing”.

From this analysis we can order the intervals as follows:



6.2. TIME SERIES CASE STUDY USING TEMPLATES: PARTY COMPETITION 61

1. ’50s - 70s’ includes 7 matches

2. ’50s - 80s’ includes 3 matches

3. ’60s-80s’ includes 2 matches

Note that the countries that did not match any template in any interval actually had no
significant change in the number of competing parties from the 50s to the 80s. Thus one
relevant partitioning of countries into clusters would simply be to group the countries
that experienced a significant change in one cluster and to group the countries that did
not experienced a significant change in another cluster. Alternatively, one could split the
cluster containing those countries that experienced a change into those countries who
experienced an increasing number of parties and those countries who experienced a de-
creasing number of parties. An even more fine-tuned partition would be to take into
consideration when the change occurred, that is, to further divide the clusters of countries
that experienced a change into those who experienced the change during the same time
sub-interval.





Part III

Computational Biology Case Studies
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In this part we will apply some of the clustering algorithms described in
Part II on real world gene expression data sets in order to extract useful
knowledge as explained in Part I. In particular, we will use our indiscernibility-
based clustering approach from Chapter 5 together with the template-based
method from Chapter 6 in a detailed analysis of the Fibroblast data ([Iyer et al., 1999])





Chapter 7

The Fibroblast Data

In this chapter we will present a thorough cluster analysis of the Fibroblast data described
in [Iyer et al., 1999]. Two different clustering approaches will be used for this purpose.
The first approach is the syntactical clustering method which we called indiscernibility-
based clustering in Chapter 5. The second approach is the template-based clustering
method described in Chapter 6. The approaches applied to the Fibroblast data are pub-
lished in [Hvidsten et al., 1999b] and [Hvidsten et al., 2000] respectively.

7.1 The Data Set

As briefly described in Chapter 3, [Iyer et al., 1999] studies the human fibroblast response
to serum which appears to be related to the physiology of wound repair. The temporal
changes in mRNA level of 8613 human genes were measured at 12 times ranging from
0 minutes to 24 hours after serum stimulation. A subset of 517 genes whose expression
changed substantially in response to serum was selected for further analysis (this data set
is publicly available on the WEB: � ���� � 		������� 			

�������
���	
�����).

[Iyer et al., 1999] uses an agglomerative implementation of the hierarchical clustering
method to cluster the 517 genes into groups on the basis of the similarity of their ex-
pression profiles over the full 24 hours. Ten clusters were identified containing 452 of the
517 genes.

Figure 7.1 shows a segment, the ten first genes, of the data set. Three different aspects are
worth mentioning about the data itself. Firstly, the data is normalised at time zero. As
a consequence the data set describes the reaction of genes to serum stimulation relative
to their initial expression level. Secondly, the data is logarithmic. Hence, the genes have
the initial value of 1 and always stay above zero. Thirdly, the sampling rate is gradually
reduced with time. Therefore, the interval between two arbitrary measurement points is
not necessarily constant.

It is important to be aware of the uncertainties in the data material. It would be rather
naive to believe that the measurements resulting from a microarray experiment are 100%
exact. In the Fibroblast data there are several genes that are measured more than one
time. Figure 7.2 illustrates the difference in the measured expression level for these genes.
Although the number of measurements in this case is two small to draw any valid sta-
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tistical conclusions, the graphs in Figure 7.2 give us a hint about what kind of noise and
uncertainty we are dealing with.

Gene 0HR 15MIN 30MIN 1HR 2HR 4HR 6HR 8HR 12HR 16HR 20HR 24HR
1 1.00 0.72 0.10 0.57 1.08 0.66 0.39 0.49 0.28 0.50 0.66 0.52
2 1.00 1.58 1.05 1.15 1.22 0.54 0.73 0.82 0.82 0.90 0.73 0.75
3 1.00 1.10 0.97 1.00 0.90 0.67 0.81 0.88 0.77 0.71 0.57 0.46
4 1.00 0.97 1.00 0.85 0.84 0.72 0.66 0.68 0.47 0.61 0.59 0.65
5 1.00 1.21 1.29 1.08 0.89 0.88 0.66 0.85 0.67 0.58 0.82 0.60
6 1.00 1.45 1.44 1.12 1.10 1.15 0.79 0.77 0.78 0.71 0.67 0.36
7 1.00 1.15 1.10 1.00 1.08 0.79 0.98 1.03 0.59 0.57 0.46 0.39
8 1.00 1.32 1.35 1.13 1.00 0.91 1.22 1.05 0.58 0.57 0.53 0.43
9 1.00 1.01 1.38 1.21 0.79 0.85 0.78 0.73 0.64 0.58 0.43 0.47

10 1.00 0.85 1.03 1.00 0.81 0.82 0.73 0.51 0.24 0.54 0.43 0.51
… … … … … … … … … … … … …

Figure 7.1: The ten first genes in the original Fibroblast data.

7.2 Approach 1: Indiscernibility-based Clustering Analysis

The first approach is more or less the same as the one taken by [Iyer et al., 1999] in that
we cluster the genes into a few large clusters one the bases of their similarity over the full
24 hour period. The following method were used:

Linearisation: The data was linearised by applying the logarithmic transformation &6��
to each data point (for results see Figure 7.3). This is due to the fact that linearised
values can be compared on an equal basis anywhere on the value scale.

Haar Wavelet Transformation: This transformation shifts the focus from expression lev-
els to local slopes and makes it easier to customise a similarity measure with the
wanted properties. Note that the Fibroblast data set has 12 attributes (which is not
of the form ��). As a consequence we needed to do some approximations to the
transformation. Two different approaches were used and can be seen in Figure 7.4
and Figure 7.5. The first approach is the most correct since the Haar components
sum up to the original time series. The second approach has lost this property, but
at the same time it possesses the favourable property of having fewer attributes. In
the following analysis the transformation in Figure 7.5 will be used.

Discretisation: The transformed data was discretised using the sign representation be-
low on each time point for each gene:

������ �

���
��
� if ����� � ��� � �
�

�� if ����� � ��� � ��
�

� otherwise

(7.1)

The result can be seen in Figure 7.6.
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Figure 7.2: The difference in expression level for the same gene measured more than one time.
Each set of graphs is marked with the gene’s name and each graph is marked with a number.
This number indicate how close the the different measurements of the same gene were clustered
in [Iyer et al., 1999]. If the numbers are close this indicates that the respective measurements were
clustered in the same cluster. If the numbers are far from each other this indicates that the respec-
tive measurements were clustered in different clusters.
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Indiscernibility relation The Haar Wavelet Transformation and the discretisation enable
us to develop an indiscernibility relation that results in a small set of distinguish-
able clusters by considering only three values (constant, increasing and decreasing)
and by requiring stricter similarity for low frequency component than for high fre-
quency components. In more detail, the relation was designed in the following
manner; The first attribute in Figure 7.5 was skipped. This attribute represents the
constant component of the time series and we were interested in comparing local
slopes. For each of the other attributes the difference between the two genes was
computed. For the first 7 attributes, no difference was accepted if the two genes
should satisfy the indiscernible relation. For the remaining attribute we tolerated a
total difference of 3, but not more than 1 for a single attribute.

Clustering: The indiscernibility-based clustering algorithm was used on the transformed
discrete data, that is, the indiscernibility relation was used on each pair of genes in
the set. The result was displayed as an indiscernibility graph where each node
represents a gene and two nodes are connected if their respective genes are indis-
cernible. The graph can be seen in Figure 7.7 and include 473 of the 517 genes in 40
clusters.

Validation: The clusters were validated through inspection by comparing the expression
graphs of genes belonging to the same cluster. The expression graphs for genes in
the six largest clusters are shown in Figure 7.8. The clusters were also validated
against existing knowledge in co-operation with biological experts.

Gene 0HR 15MIN 30MIN 1HR 2HR 4HR 6HR 8HR 12HR 16HR 20HR 24HR
1 0.00 -0.47 -3.32 -0.81 0.11 -0.60 -1.36 -1.03 -1.84 -1.00 -0.60 -0.94
2 0.00 0.66 0.07 0.20 0.29 -0.89 -0.45 -0.29 -0.29 -0.15 -0.45 -0.42
3 0.00 0.14 -0.04 0.00 -0.15 -0.58 -0.30 -0.18 -0.38 -0.49 -0.81 -1.12
4 0.00 -0.04 0.00 -0.23 -0.25 -0.47 -0.60 -0.56 -1.09 -0.71 -0.76 -0.62
5 0.00 0.28 0.37 0.11 -0.17 -0.18 -0.60 -0.23 -0.58 -0.79 -0.29 -0.74
6 0.00 0.54 0.53 0.16 0.14 0.20 -0.34 -0.38 -0.36 -0.49 -0.58 -1.47
7 0.00 0.20 0.14 0.00 0.11 -0.34 -0.03 0.04 -0.76 -0.81 -1.12 -1.36
8 0.00 0.40 0.43 0.18 0.00 -0.14 0.29 0.07 -0.79 -0.81 -0.92 -1.22
9 0.00 0.01 0.46 0.28 -0.34 -0.23 -0.36 -0.45 -0.64 -0.79 -1.22 -1.09

10 0.00 -0.23 0.04 0.00 -0.30 -0.29 -0.45 -0.97 -2.06 -0.89 -1.22 -0.97
… … … … … … … … … … … … …

Figure 7.3: The ten first genes in the Fibroblast data after the logarithmic transformation ����.

Gene 0 - 24H 0 - 4H 4H - 24H 0 - 30MIN 1H - 4H 6H - 12H 16H - 24H 0HR 15MIN 30MIN 1HR 2HR 4HR 6HR 8HR 12HR 16HR 20HR 24HR
1 -0.99 0.14 -0.14 -0.42 0.42 -0.28 0.28 1.27 0.79 -2.06 -0.38 0.54 -0.17 0.05 0.38 -0.43 -0.15 0.25 -0.10
2 -0.14 0.20 -0.20 0.19 -0.19 0.00 0.00 -0.24 0.42 -0.17 0.34 0.42 -0.76 -0.11 0.06 0.06 0.19 -0.11 -0.07
3 -0.33 0.22 -0.22 0.14 -0.14 0.26 -0.26 -0.03 0.11 -0.08 0.24 0.09 -0.33 -0.02 0.10 -0.09 0.31 0.00 -0.31
4 -0.45 0.28 -0.28 0.15 -0.15 -0.02 0.02 0.01 -0.03 0.01 0.09 0.07 -0.15 0.15 0.19 -0.34 -0.01 -0.06 0.08
5 -0.23 0.30 -0.30 0.15 -0.15 0.07 -0.07 -0.21 0.06 0.15 0.19 -0.09 -0.10 -0.13 0.24 -0.11 -0.18 0.32 -0.13
6 -0.17 0.43 -0.43 0.09 -0.09 0.25 -0.25 -0.35 0.18 0.17 0.00 -0.03 0.03 0.02 -0.02 0.00 0.35 0.27 -0.63
7 -0.33 0.35 -0.35 0.09 -0.09 0.42 -0.42 -0.11 0.09 0.02 0.08 0.19 -0.26 0.22 0.29 -0.51 0.29 -0.02 -0.26
8 -0.21 0.35 -0.35 0.13 -0.13 0.42 -0.42 -0.28 0.12 0.16 0.16 -0.01 -0.15 0.43 0.21 -0.64 0.17 0.07 -0.24
9 -0.36 0.39 -0.39 0.13 -0.13 0.27 -0.27 -0.16 -0.15 0.30 0.37 -0.24 -0.13 0.13 0.03 -0.16 0.25 -0.19 -0.06

10 -0.61 0.48 -0.48 0.07 -0.07 -0.07 0.07 0.06 -0.17 0.11 0.20 -0.11 -0.09 0.71 0.19 -0.90 0.14 -0.19 0.05
… … … … … … … … … … … … … … … … … … … …

Figure 7.4: The ten first genes in the Fibroblast data after the Haar Wavelet Transformation I.
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Gene 0 - 24H 0 - 4H 4H - 24H 0 - 30MIN 1H - 4H 6H - 12H 16H - 24H 0 - 15MIN 15 - 30MIN 1H - 2H 2H - 4H 6H - 8H 8H -12H 16H - 20H 20H - 24H
1 -0.99 0.14 -0.14 -0.42 0.42 -0.28 0.28 1.03 -0.63 0.08 0.19 0.21 -0.02 0.05 0.08
2 -0.14 0.20 -0.20 0.19 -0.19 0.00 0.00 0.09 0.12 0.38 -0.17 -0.03 0.06 0.04 -0.09
3 -0.33 0.22 -0.22 0.14 -0.14 0.26 -0.26 0.04 0.02 0.17 -0.12 0.04 0.01 0.16 -0.16
4 -0.45 0.28 -0.28 0.15 -0.15 -0.02 0.02 -0.01 -0.01 0.08 -0.04 0.17 -0.07 -0.04 0.01
5 -0.23 0.30 -0.30 0.15 -0.15 0.07 -0.07 -0.08 0.11 0.05 -0.10 0.05 0.06 0.07 0.09
6 -0.17 0.43 -0.43 0.09 -0.09 0.25 -0.25 -0.09 0.18 -0.02 0.00 0.00 -0.01 0.31 -0.18
7 -0.33 0.35 -0.35 0.09 -0.09 0.42 -0.42 -0.01 0.06 0.13 -0.04 0.26 -0.11 0.13 -0.14
8 -0.21 0.35 -0.35 0.13 -0.13 0.42 -0.42 -0.08 0.14 0.07 -0.08 0.32 -0.21 0.12 -0.09
9 -0.36 0.39 -0.39 0.13 -0.13 0.27 -0.27 -0.15 0.08 0.07 -0.19 0.08 -0.06 0.03 -0.12

10 -0.61 0.48 -0.48 0.07 -0.07 -0.07 0.07 -0.05 -0.03 0.04 -0.10 0.45 -0.35 -0.03 -0.07
… … … … … … … … … … … … … … … …

Figure 7.5: The ten first genes in the Fibroblast data after the Haar Wavelet Transformation II.

Gene 0 - 4H 4H - 24H 0 - 30MIN 1H - 4H 6H - 12H 16H - 24H 0 - 15MIN 15 - 30MIN 1H - 2H 2H - 4H 6H - 8H 8H -12H 16H - 20H 20H - 24H
1 0 0 -1 1 -1 1 1 -1 0 0 1 0 0 0
2 1 0 0 0 0 0 0 0 1 0 0 0 0 0
3 1 -1 0 0 1 -1 0 0 0 0 0 0 0 0
4 1 -1 0 0 0 0 0 0 0 0 0 0 0 0
5 1 -1 0 0 0 0 0 0 0 0 0 0 0 0
6 1 -1 0 0 1 -1 0 0 0 0 0 0 1 0
7 1 -1 0 0 1 -1 0 0 0 0 1 0 0 0
8 1 -1 0 0 1 -1 0 0 0 0 1 -1 0 0
9 1 -1 0 0 1 -1 0 0 0 0 0 0 0 0

10 1 -1 0 0 0 0 0 0 0 0 1 -1 0 0
… … … … … … … … … … … … … … …

Figure 7.6: The ten first genes in the Fibroblast data after discretisation.
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Figure 7.7: The indiscernibility graph showing the resulting clusters from applying the
indiscernibility-based clustering approach to the Fibroblast data.
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Figure 7.8: Expression level graphs showing the similarity between genes belonging to the same
cluster. The six largest clusters from Figure 7.7 is shown.

The results outlined above show have the indiscernibility-based clustering used together
with discretisation and the Haar Wavelet Transformation is capable of mapping a large
part of the genes in the Fibroblast data into a few clusters. In fact, the six largest clusters
contain 50% of the genes. The expression graphs in Figure 7.8 show how the genes within
the same cluster reflect similar curve properties. The similarity within a cluster is of
course a result of the strictness of the indiscernibility relation. Our goal in this analysis
was to group the genes into a few large clusters. The result, as one might expect, is a
number of small clusters accompanying the larger ones. This is due to the fact that the
natural underlying groups in the data set vary both in size and tightness.

The clusters in Figure 7.7 show a clear similarity to the clusters obtained and presented
in [Iyer et al., 1999]. 80% of the genes in the three largest cluster (corresponding to the
three first clusters in Figure 7.8 going from left to right) belong to the same clusters in
[Iyer et al., 1999]. The remaining 20% belong to one or at most two additional clusters.
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Our bio-medical experts (Astrid Lægreid and Arne Sandvik) found the results interesting.
We were able to present an overview showing what kind of gene expression variations
that were present in the data set and which genes following which type of variation.
However, as the biologists sat down to validate the clusters against the existing knowl-
edge, a number of questions and new challenges appeared. Basically, the problem was
two-folded:

1. A lot of information escapes the clusters due to the requirement of similarity over
the full 24 hour period. Information about genes showing a similar expression pro-
file in shorter periods is not captured.

2. The expression profiles for a cluster do very rarely follow the typical idealised pro-
file for a gene executing a particular function. This makes the results difficult to
interpret.

A solution to problem number one is simply to investigate sub-intervals of the time se-
ries. As a result we should capture similarity in shorter periods, and thus gain knowl-
edge about genes which partly execute the same function and partly execute different
functions. This approach will result in overlapping clusters, that is, one gene occurs in
more than one cluster.

A solution to the second problem seems to be to define idealised profiles in advance and
then group the genes according to their similarity to these profiles. In the next section
these two solutions will be merged into a template-based analysis of sub-intervals.

Before leaving the indiscernibility-based clustering approach we look into alternative
interpretations of indiscernibility. Figure 7.9 shows the indiscernibility graph resulting
from designing the relation in such a way that two genes satisfy it if they have mirrored
expression profiles. The graph was obtained using the same clustering method as before
except for the definition of the relation. Figure 7.10 shows expression graphs for genes
with mirrored expression profiles grouped in four typical clusters. This proves that related
genes not necessarily need to be similar. There is a lot of possibilities when it comes to
defining (biologically) relevant relations between two genes. Finding genes with causally
related expression profiles would for example be (another) natural extension of the anal-
ysis described above.
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Figure 7.9: The indiscernibility graph of the clusters resulting from defining related genes as
being genes with mirrored expression profiles.



76 CHAPTER 7. THE FIBROBLAST DATA

-3.00

-2.00

-1.00

0.00

1.00

2.00

3.00

4.00

0HR 15MIN 30MIN 1HR 2HR 4HR 6HR 8HR 12HR 16HR 20HR 24HR

-3.00

-2.00

-1.00

0.00

1.00

2.00

3.00

0HR 15MIN 30MIN 1HR 2HR 4HR 6HR 8HR 12HR 16HR 20HR 24HR

-2.00

-1.50

-1.00

-0.50

0.00

0.50

1.00

1.50

2.00

0HR 15MIN 30MIN 1HR 2HR 4HR 6HR 8HR 12HR 16HR 20HR 24HR

-3.00

-2.00

-1.00

0.00

1.00

2.00

3.00

4.00

0HR 15MIN 30MIN 1HR 2HR 4HR 6HR 8HR 12HR 16HR 20HR 24HR

Figure 7.10: Four typical clusters containing genes with mirrored expression profiles.

7.3 Approach 2: Template-based Clustering Analysis

This section describes the approach of applying the template-based clustering method
from Chapter 6 to the Fibroblast data. This was done in order to solve some of the prob-
lems revealed using the indiscernibility-based method presented in the last section. The
following method was used:

Templates A set of templates, or idealised expression profiles, were defined that reflect
the basic reactions of a gene to serum (or, in general, to any change in the environ-
ment). The following five templates were defined:

� Constant: A gene matches the constant-template in a given interval if its ex-
pression level does not vary more than 0.2 from the mean expression level in
this interval.

� Increasing: A gene matches the increasing-template in a given interval if its
expression level increases by more than one over the full interval and the in-
crease fulfil the following requirements: (1) The increase during the first and
last “atomic” interval1 in the given full interval most exceed 0.2 and the expres-
sion level should never drop below/above this level later. (2) The expression
level is allowed to decrease during the interval, but never by more than 0.2
during an “atomic” interval.

� Decreasing: The decreasing-template is defined in the similar manner as the
increasing-template.

� Increasing-decreasing: A gene matches the increasing-decreasing-template in a
given interval if the interval can be divided into two sub-intervals such that the

1By an “atomic” interval we mean the interval between a given time point and the nearest following time
point.
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gene matches the increasing-template in the first interval and the decreasing-
template in the second interval. However, the sub-matches do not have to
satisfy the end- and start-requirements of an increase, respectively decrease, of
0.2.

� Decreasing-increasing: The decreasing-increasing-template is defined in the sim-
ilar manner as the increasing-decreasing-template.

Matching table A matching table was defined such that each gene represent a row and
each possible sub-interval represent a column. The entry in this table is the template
that the given gene matches in the given interval. Matches for the increasing- and
decreasing-templates most be defined over at least three time points. The three other
templates most be defined over at least four time points.

Simplification The matching table was simplified in that all redundant matches were
removed. That is, all matches occurring fully within a sub-interval of another match
were removed.

Ordering The intervals were ordered according to how many genes they were describ-
ing. This was done once for each of the five templates so we ended up with five
ordered sets of intervals.

Validation Biological experts were given the ordered sets of intervals and the genes con-
tained in the clusters determined by an interval and its corresponding template.
Since all matches in all sub-intervals are considered, we can clearly call a cluster
determined by a given interval and a given template an atomic cluster. The biologi-
cal experts would be looking for a set of clusters that describe the dynamics of the
Fibroblast data. These clusters would hence be composed of a set of atomic clusters
or be atomic clusters themselves. The largest clusters for each of the five templates
are presented as expression graphs in Figure 7.11.
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Figure 7.11: The largest clusters for each of the five templates presented as expression graphs.
The graphs show, from left to right, (1) genes matching the constant-template from 0 min. to 1H, (2)
genes matching the increasing-template from 12H to 24H, (3) genes matching the decreasing-template
from 2H to 6H, (4) genes matching the decreasing-increasing-template from 2H to 16H and (5) genes
matching the increasing-decreasing-template from 15 min. to 2H.

7.4 Biological Interpretation

Having defined the atomic clusters as described, we can now turned our attention to
the biological interpretation. This includes (1) finding a set of super-clusters describing
the data set, (2) validating these clusters against existing knowledge, that is, investigate
whether the known genes in the data set are clustered in agreement with their function
and (3) describing the different genes’ function on the basis of (1) and (2) and in particular
the function of unknown genes.

The first step was handled using biological knowledge about the different phases of genes
responding to some environmental change. A set of super-intervals were used to cluster
the atomic clusters of each template into super-clusters. The super-intervals used were
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Immediate early: From 0 to 1 hour.

Delayed immediate early: From 1 to 4 hours.

Intermediate: From 4 hours.

Late: From 8 hours.

The second step includes both the collection of knowledge about the known genes in
the data set and the comparison of this knowledge to our obtained clusters. The collec-
tion of existing knowledge was handled partly manually and partly automatic from the
Ashburner gene ontology ([Ashburner, 1999]). This ontology is thorough discussed in
[Tjeldvoll, 1999]. Having placed all known genes in the ontology, the clusters can easily
be validated by investigating how near each-other genes in the same cluster are situated
in the ontology. In the Fibroblast data we selected seven different processes in which
a gene can be involved, and then defined two genes to have “similar functions” if they
appeared in the same process-sub-tree in the ontology. The processes were

� Transcription

� Protein synthesis

� Stress response

� Lipid synthesis

� Organelle biogenesis

� Cell motility

� Re-entry cell cycle

The collection of existing knowledge is still not finished and this reduces our ability to
draw any definitive conclusions. However, the preliminary results are promising and
show a clear mapping between our obtained clusters and the processes listed above.

The third step is difficult since the second step is not yet completed . However, we will
give some general remarks about the biological interpretation of our clusters here. Our
analysis shows a large degree of dynamics in the Fibroblast data. Even after removing re-
dundant matches a large number of intervals are needed in order to capture all gene pro-
files matching the different templates. The table below shows how many genes matched
the different templates, how many times they matched it and how many intervals which
were needed in order to capture all these matches (the number in parenthesises indicates
how many of the intervals that only contained one match):

Template Genes matching Total matches Intervals needed
Constant 195 248 24(7)
Increasing 105 109 38(12)
Decreasing 122 127 39(15)
Increasing - Decreasing 143 156 39(9)
Decreasing - Increasing 211 225 37(8)

The analysis shows that genes matching the same template in a given interval also have
a clear tendency of expressing similar profiles over the full 24 hour period. However,
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we also find clear examples of this not being the case. Hence our hypothesis about loos-
ing significant information when requiring similarity over the full 24 hour period seems
confirmed.

During our analysis of the Fibroblast data we have discovered a number of problems that
make the analysis of gene expression data a big challenge. One problem is the complexity
of biological systems in general. This naturally results in large data sets and complex
dependencies between both objects and attributes in the data set. Also the interpretation
of computer generated results is a big challenge. Take for example the interrelationship
between a gene’s expression level and its corresponding protein. First of all there is a
delay between when a gene starts being expressed, which is what we measure in terms
of mRNA level, and when the protein starts to act, which is our biological interpretation.
Further this delay takes on different lengths from gene to gene. Also a protein’s time-
profile (how the amount of protein vary with time) does not necessarily follow the time-
profile of its mRNA. This is just some of the aspects one needs to take into consideration
when analysing gene expression data.



Chapter 8

Tumour and Normal Colon Tissues

In this chapter we will present a clustering analysis of the “tumour and normal colon tis-
sue” data set described in [Alon et al., 1999]. Moreover, we will use the rough set frame-
work described in Chapter 4 to induce a model that recognises the clusters. Two clus-
tering algorithms taken from the example in Chapter 5 (The Party Families in Europe
1970-1992) will be applied on the data:

1. The Ward’s hierarchical clustering algorithm implemented as an agglomerative method,
representing the hierarchical clustering methods.

2. The k-means algorithm, representing the converging non-hierarchical clustering
methods.

8.1 The Data Set

[Alon et al., 1999] investigates the expression profile of over 6500 genes in 40 tumour
and 22 normal colon tissue samples (this data set is publicly available on the WEB: �
���� � 					
������
���������
���	����������). A subset of 2000 genes with the high-
est minimal intensity across the samples was analysed. The data was clustered both with
respect to genes and with respect to tissue. The method used was the one of organising
the data set into a binary tree where genes are near each other on the ”gene tree” if they
show a strong correlation across experiments, and tissues are near each other on the ”tis-
sue tree” if they have similar gene expression profiles. The binary tree was constructed
by using a divisive implementation of the hierarchical clustering method.

We will use two methods to cluster the data set with respect to tissue. In this way we
can easily measure and compare the results by observing how well the different methods
distinguish tumour tissue from normal tissue. We can also induce the model over the
known partition. Investigating the data with respect to tissue gives us an information
system with 62 objects (patients) and 2000 attributes (genes). A segment of the data is
shown in Figure 8.1. Note that this data set is not time series as analysed in the last
chapter. Thus each patient represents a point in the 2000-dimensional vector space. The
values were normalised such that the sum of the components of each vector was zero and
the magnitude was one. A segment of the normalised data can be seen in figure 8.2. The
results of the analysis are outlined below.

81
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Patient Hsa.3004 Hsa.13491 Hsa.13491 Hsa.37254 Hsa.541 U14973 Hsa.20836 Hsa.1977 Hsa.44472 Hsa.3087 Hsa.1447 … Normal/Tumour
1 8.59E+03 5.47E+03 4.26E+03 4.06E+03 2.00E+03 5.28E+03 2.17E+03 2.77E+03 7.53E+03 4.61E+03 … Tumour
2 9.16E+03 6.72E+03 4.88E+03 3.72E+03 2.02E+03 5.57E+03 3.85E+03 2.79E+03 7.02E+03 4.80E+03 … Normal
3 3.83E+03 6.97E+03 5.37E+03 4.71E+03 1.17E+03 1.57E+03 1.33E+03 1.47E+03 3.30E+03 2.79E+03 … Tumour
4 6.25E+03 7.82E+03 5.96E+03 3.98E+03 2.00E+03 2.13E+03 1.53E+03 1.71E+03 3.87E+03 4.99E+03 … Normal
5 3.23E+03 3.69E+03 3.40E+03 3.46E+03 2.18E+03 2.92E+03 2.07E+03 2.95E+03 3.30E+03 3.11E+03 … Tumour
6 2.51E+03 1.96E+03 1.57E+03 3.07E+03 1.81E+03 1.67E+03 1.29E+03 2.47E+03 1.68E+03 1.31E+03 … Normal
7 7.13E+03 3.78E+03 3.71E+03 6.59E+03 2.46E+03 3.78E+03 2.62E+03 2.05E+03 6.41E+03 3.86E+03 … Tumour
8 4.03E+03 3.16E+03 2.87E+03 4.42E+03 1.85E+03 2.83E+03 1.43E+03 3.39E+03 4.37E+03 3.08E+03 … Normal
9 9.33E+03 7.02E+03 4.72E+03 9.49E+03 5.35E+03 1.56E+03 1.97E+03 2.30E+03 6.88E+03 6.16E+03 … Tumour

10 5.27E+03 4.74E+03 3.32E+03 6.79E+03 2.63E+03 5.45E+03 4.62E+03 3.28E+03 4.49E+03 3.34E+03 … Normal
… … … … … … … … … … … … …

Figure 8.1: The ten first genes and the ten first patients in the original tumour and normal tissue
data set.

Patient Hsa.3004 Hsa.13491 Hsa.13491 Hsa.37254 Hsa.541 U14973 Hsa.20836 Hsa.1977 Hsa.44472 Hsa.3087 Hsa.1447 … Normal/Tumour
1 0.2425 0.0492 -0.0255 -0.0378 -0.1658 0.0377 -0.1552 -0.1178 0.1767 -0.0041 … Tumour
2 0.2386 0.0967 -0.0099 -0.0775 -0.1763 0.0300 -0.0699 -0.1312 0.1140 -0.0146 … Normal
3 0.0486 0.3138 0.1789 0.1228 -0.1756 -0.1414 -0.1622 -0.1499 0.0040 -0.0390 … Tumour
4 0.1551 0.2652 0.1349 -0.0034 -0.1411 -0.1322 -0.1740 -0.1612 -0.0108 0.0674 … Normal
5 0.0204 0.0681 0.0379 0.0444 -0.0875 -0.0113 -0.0991 -0.0086 0.0279 0.0079 … Tumour
6 0.0907 0.0042 -0.0578 0.1792 -0.0195 -0.0410 -0.1012 0.0837 -0.0406 -0.0977 … Normal
7 0.1995 -0.0317 -0.0368 0.1628 -0.1227 -0.0319 -0.1116 -0.1513 0.1501 -0.0263 … Tumour
8 0.0854 0.0013 -0.0263 0.1229 -0.1243 -0.0303 -0.1654 0.0239 0.1186 -0.0060 … Normal
9 0.1992 0.0796 -0.0390 0.2075 -0.0068 -0.2027 -0.1814 -0.1645 0.0725 0.0354 … Tumour

10 0.0609 0.0241 -0.0746 0.1665 -0.1222 0.0733 0.0159 -0.0775 0.0065 -0.0729 … Normal
… … … … … … … … … … … … …

Figure 8.2: The ten first genes and the ten first patients in the tumour and normal tissue data set
after normalisation.

8.2 The Ward’s hierarchical clustering algorithm

The Ward’s hierarchical clustering algorithm was implemented using the SSE (Sum of
Square Error) as the quality measure. Thus the two clusters resulting in the smallest
increase in SSE value were successively merged. Figure 8.3 shows the SSE value and the
average SSE value over the clusters as a function of the number of clusters. These graphs
can often be used as a help to choose a stop criterion for the algorithm, although in this
example no clear break point appears. Because of this we inspected how the algorithm
distinguished normal tissue from tumour tissue by gradually reducing the number of
clusters. The result can be seen in Table 8.1. From this table we see how two clusters
are successively merged. Clearly, four clusters give us a rather good partitioning which
distinguish normal tissue from tumour tissue.

No. of Clusters Normal:Tumour
2 15:14 , 7:26
3 15:14 , 3:11 , 4:15
4 11:3 , 4:11 , 3:11 , 4:15
5 11:3 , 4:11 , 3:11 , 2:6 , 2:9

Table 8.1: The table shows how the Ward’s hierarchical clustering method distinguishes nor-
mal tissue from tumour tissue for different numbers of clusters. Each of the normal:tumour-pairs
indicate how many normal tissues and how many tumour tissues there were in this cluster.
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The average SSE value over the clusters as a function 
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Figure 8.3: The SSE value and the average SSE value over the clusters as a function of the number
of clusters.
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8.3 The k-means algorithm

The k-means algorithm was implemented using the Euclidean distance as a similarity
measure. The data set was initially divided into 4 clusters. The result of four different
initial assignments of objects into clusters can be seen in Table 8.2.

Configuration Normal:Tumour
4a 13:1 , 1:20 , 1:6 , 7:13
4b 1:8 , 7:2 , 12:3 , 2:27
4c 2:8 , 5:10 , 13:3 , 2:19
4d 1:6 , 14:3 , 3:15 , 4:16

Table 8.2: The table shows how the k-means clustering method distinguishes normal tissue from
tumour tissue for different initial configuration using 4 clusters. Each of the normal:tumour-pairs
indicate how many normal tissues and how many tumour tissues there were in this cluster.

Again we see that the results from the k-means algorithm strongly depend on the initial
configuration. But nonetheless it seems to distinguish normal tissue from tumour tis-
sue relatively well. It is interesting to notice that in order to distinguish the two classes
(tumour and normal tissue) we need to divide the data set into more than two clusters.
Using only two cluster really did not work at all. This indicates that the tumour and the
normal tissue classes themselves contain sub-clusters and that some of these sub-clusters
lie closer, in this case in terms of Euclidean distance in the 2000-dimensional space, to
sub-clusters in the other class than to sub-clusters in its own class.

The results from clustering tissue in [Alon et al., 1999] show some of the same problems
as we discussed above. Neither that work is capable of perfectly distinguishing normal
tissue from tumour tissue, that is, some tumour tissues appear in the “normal tissue”-
clusters and some normal tissues appear in the “tumour tissue”-clusters.

Concluding that we are capable of distinguishing tumour from normal tissue, we now
turn our attention to inducing a classifier (supervised learning) that recognises the two
classes. Of course, normally we would not know which objects belong to which class
and would thus have to trust our clustering algorithms. However, biological experts
can use their knowledge to modify, or fine-tune, the clusters, and we will use this as an
explanation to induce the model on the basis of the original partition of the data set.

8.4 Classification: Inducing a Model

Using the rough set framework to induce propositional rules as explained in Chapter 4,
we can obtain a rule set that can classify tumour tissue and normal tissue. We used the
10-fold cross validation approach to split the data set into training sets and test sets. The
data was discretised using the Boolean approach in that the minimal set of cuts that does
not loose knowledge needed to discern tumour tissue from normal tissue is found (sse
[Nguyen and Skowron, 1995]. Then the Johnson algorithm for reduct computation was
used (see [Johnson, 1974]). This algorithm finds one reduct for each object in linear time.
This reduct is capable of discerning this object from all other objects not belonging to the
same class. The whole modelling process is supported by the ROSETTA system.



8.4. CLASSIFICATION: INDUCING A MODEL 85

The 10-fold cross validation method split the data set into ten sub-sets such that one of
the sub-sets act as a test set and the union of the nine other sub-sets act as a training set.
This procedure is repeated ten times such that all sub-sets act as a training set once. The
results can be seen in Table 8.3.

The results show that we are capable of inducing a model that recognises the two classes
relatively well. Remember that the clustering algorithms gave us more than two clusters
and that we concluded that the two classes of normal and tumour tissues themselves
must consist of underlying sub-clusters. As a result, the classifier needs to distinguish
four or five classes rather than two. Given the fact that we have as few as 62 objects
altogether, that is 56 objects in the training set and 6 objects in the test set, this might
explain why the results in terms of accuracy and AUC are not as good as we would have
hoped for. Also the large number of attributes (genes) increases the complexity of the
modelling task.

Given new cases with possible tumour we can now use the classifier to diagnose them.
Moreover, the rules in the classifier, or more correctly the reducts on which the rules are
based, can be used to discover knowledge about which genes are responsible for tumour
and which are not. We will not go into the biological interpretation of this specific data
set. Instead we will stress the usefulness of doing supervised learning on the result of
unsupervised learning as exemplified in this chapter.

Note that the case study in this chapter does not address the problem of mapping genes to
functions in the same way as explained in Chapter 3. To do that we would need to cluster
genes according to their expression level and not tissues according to the measured genes’
expression level.

Split Accuracy AUC
1 0.67 0.67
2 0.83 1.00
3 1.00 0.50
4 0.33 0.44
5 0.83 1.00
6 0.83 1.00
7 0.50 0.67
8 0.83 0.40
9 0.50 0.55

10 0.88 1.00
Average 0.72 0.72

Standard deviation 0.21 0.25

Table 8.3: The table shows the quality of the classifier induced by the ROSETTA system.
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This part discusses the quality of our proposed methodologies and our ex-
periences applying them to real world gene expression data sets. It further
summarises and concludes the work done in this thesis. Finally, it de-
scribes the work that still needs to be done.





Chapter 9

Discussion, Conclusions and Further
Work

In this chapter we will discuss our results and experiences and try to draw our work to a
conclusion.

9.1 Discussion

9.1.1 Syntactical Clustering Methods

The most difficult decision when using the syntactical methods is to select the right num-
ber of clusters. This was also discussed in Chapter 5. Although the hierarchical methods
investigate all possible number of clusters we still need to select one of them. Using a
stop criterion is not easy unless a natural choice emerges from some domain specific in-
terpretation. Plotting the SSE value as a function of the number of clusters like we did
in our analysis of the “tumour and normal tissue” analysis in chapter 8 might be help-
ful. However, if no break in the curve appears, like in Figure 8.3, this is of no help. One
should remember that the “optimal” number of cluster given a data set is relative both
to the choice of similarity measure and to the intentions of the people who analyses the
data. An evaluation of all factors including domain knowledge is often needed to select
the right number of clusters.

The non-deterministic nature of the non-hierarchical clustering algorithms, like the k-
means algorithm, can be a problem. However, the fact that the resulting clusters change
with different initial configurations might be used to select the number of initial clusters
where the final clusters are relatively stable.

The indiscernibility-based clustering approach somewhat avoids the problem of selecting
a number of clusters since this number comes as a result of the definition of the indiscerni-
bility relation. Hence, we can adjust the relation a sufficient number of objects is grouped
in a favourable number of clusters. The biggest challenge using this method is to design
the indiscernibility relation such that the algorithm results in distinguishable clusters.
Often we either cluster very few objects or all objects are related in one big cluster. We
solved this problem in the time series domain by applying the Haar Wavelet Transfor-
mation and discretisation. However, in vector space this problem might be even more

91



92 CHAPTER 9. DISCUSSION, CONCLUSIONS AND FURTHER WORK

difficult to solve.

9.1.2 Semantical Clustering Methods

The introduction of domain knowledge into the KDD process is often important, but also
difficult. In the clustering process, domain knowledge can be introduced at three different
levels:

Similarity measure: Domain knowledge can be introduced in the similarity measure by
defining it in a biological relevant way. This can be done by for example weighting
the different attributes or even introducing new attribute through a transformation.
The Boolean similarity measures might be more suited for the introduction of do-
main knowledge than, for example, distance measures, since they do not have to
be continuous functions. They might therefore be easier to design with respect to
knowledge.

Number of clusters: Domain knowledge can be used to select the resulting number of
clusters. For non-hierarchical algorithms, where an initial configuration of clusters
is selected, domain knowledge might even be used to select a favourable initial
configuration. That is, biological knowledge is used to initially assign the genes to
clusters or to select the seed points. Thus the clustering algorithm just fine-tunes
this initial configuration.

Templates: The biologically relevant features characterising each cluster can be prede-
fined and the objects distributed according to how they match these features.

Introducing domain knowledge in the similarity measure and in selecting the number of
initial clusters can be done also in syntactical clustering. It is when the features of each
cluster are predefined and the clustering algorithm is reduced to pattern recognition or
template matching that we call it semantical clustering or knowledge-based clustering.

The syntactical approaches have clear advantages in that they find the existing patterns
in the data without any predefined assumptions. However, when working with domain
experts they often want to test a specific hypothesis. This can be done more explicitly
be using the hypothesis to define templates rather than using the result of a semantical
clustering algorithm to verify the hypothesis afterwards. We believe that syntactical and
semantical clustering should be viewed as complementary methods rather than compet-
ing methods. The syntactical methods could be used for initial analysis in order to reveal
the patterns hidden in the data. The semantical methods could then be used to test more
advanced hypotheses based on the initial analysis.

9.1.3 Validating clusters

Clusters in the time series domain are in many aspects easy to validate compared to clus-
ters in the vector space domain. Comparing the different objects as a function of time eas-
ily helps us validate whether objects in the same cluster really reflect the similarity we are
looking for. In vector space, drawing dendrogram can help us obtain knowledge about
similar objects by following the evolution of the algorithm as it merges or splits clusters.
Also, the indiscernibility graphs gives us extra information about the relation between
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objects in the same cluster. [Johnson and Wichern, 1998] discuss methods of transform-
ing multivariate data into a low-dimensional space in order to display it preferably in
two or three dimensions.

When working with gene expression data and biological knowledge, the portion of known
genes in the data set can be used to validate the clusters. If all, or a large part of, the
known genes in one cluster are known to have the same biological function, this might
indicate that the cluster are good. However, one should always take account for the dis-
tribution of known genes in the data set. If genes responsible for some specific biological
function are over-represented in the data set, the fact that a large part of one cluster con-
sist of these genes does not have to mean that this cluster is biologically relevant. The
statistical significance of the results should always be investigated carefully.

9.1.4 Supervised vs. Unsupervised Learning

In the beginning of this thesis we stated that our primary goal was to design and use com-
putational methods for finding the function of unknown genes from their similarity to
known genes. We have first of all been concerned with solving this problem through clus-
tering analysis. We have also discussed and demonstrated (in the “tumour and normal
tissue” data set analysis) that modelling can improve this analysis. Clustering methods
assign both known and unknown genes to clusters. Consequently the predictive aspects
of a model alone is less important. However, if the predictive performance of a model is
good, our belief in its descriptive quality tend to increase. A model can give us valuable
descriptive knowledge about the typical features of a gene belonging to a certain cluster.
This kind of information is not available from a clustering method. It simply gives us
the clusters and nothing else. In the same way as we view syntactical and semantical
clustering methods to be complementary, we also consider supervised and unsupervised
learning methods to be complementary methods in the analysis of gene expression data.

When enough information is available about the known genes we can group them into
clusters simply on the basis of this prior knowledge. In these cases we skip the clustering
step in the KDD process and predict the function of unknown genes using a model in-
duced from the classes of known genes. This method seems intuitively appealing since it
avoids the difficulties of unsupervised learning in that it makes use of existing biological
knowledge. As a steadily increasing number of genes becomes known this might be an
even more powerful method in the future. However, one should be aware of the fact that
one gene can be involved in more than one biological process. Hence we need knowledge
not only about the gene itself, but also about this gene in the specific biological setting
that we are studying.

9.1.5 Experiences from our Data Analysis

Our analysis of the Fibroblast data shows how syntactical and semantical methods can
be used iteratively to improve the clustering results in co-operation with biological ex-
perts. It also shows the mutual dependencies between computer scientists and biologists
in order to analyse data. Without computational methods and tools the data sets result-
ing from microarray experiments are simply too large to be analysed manually by the
biologists. On the other hand, the computer-generated results are more or less worthless
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without a biological interpretation. Moreover, the co-operation with biologist throughout
the analysis make us able to iteratively discuss and improve the results.

The biological interpretation of the analysis of the Fibroblast data is still going on. How-
ever, we have already been able to partly compare the results with existing knowledge.
This, and the manual inspection of the clusters done by the biologist, have given us valu-
able information of the dynamics of the data set. A complete biological interpretation of
the results will be presented elsewhere.

The analysis of the “tumour and normal tissue” data give us a glimpse of what can be
done further with a set of validated clusters. The introduction of classifiers for predict-
ing the function of unknown genes and for diagnosing diseases will become even more
important as a steadily increasing number of genes becomes known with respect to bio-
logical function.

9.2 Conclusions

In Chapter 1 we discussed the possibilities of using both clustering methods and mod-
elling methods to infer the function of unknown genes through their similarity (or re-
lation) to known genes. In the thesis we have presented and validated a large variety
of methods based on hierarchical strategies, iterative strategies and Boolean reasoning.
Moreover, we have discussed how clustering and modelling can be used together in gene
expression analysis. This was illustrated in Figure 1.1.

Our use of both clustering methods and modelling methods on real world gene expres-
sion data sets shows how powerful computational methods are in this analysis. In Chap-
ter 1 we stated that the advantages of working with groups of similar genes rather than
single genes would be decisive for the biologist’s possibilities to obtain meaningful re-
sults from the analysis. Moreover, we stated that the access to existing knowledge would
be a major time-saving factor. Our experiences with gene expression analysis in this the-
sis prove that these hypotheses indeed are correct. Our preliminary biological results
show the validity of the clustering results. Also, they show that the amount of existing
biological knowledge is insurmountable without the help of information systems to cor-
relate this knowledge with the clustering results. We also experienced that the approach
of representing knowledge in an ontology enable us to both automatically collect existing
knowledge and to use this knowledge to validate our obtained clusters.

We conclude that the computational methods used in this thesis indeed are capable of
making decisive contributions to the the analysis of gene expression data set.

9.3 Further work

Finally we present some of the problem still to be solved. Some of them are specific to
this thesis while some of them are of more general nature.

A software system for cluster analysis: A system that supports some or all of the fea-
tures depicted in Figure 1.1 in Chapter 1 should be implemented in a similar frame-
work as the ROSETTA system. In fact, the supervised learning is already supported
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by the ROSETTA system. The new system would be a framework in which the dif-
ferent clustering algorithms would be supported by different preprocessing and
validation tools. The algorithms used in this thesis are implemented as Perl pro-
grams with a common library.

The Fibroblast data: Some problems still remain to be solved in the Fibroblast data anal-
ysis. One of them is the appearance of spikes in the data that we think may be
noise. Also, as already discussed, the biological interpretation of the results is not
finished. Thus we can not rule out minor adjustments to the method.

Development of methods searching for optimal clustering parameters: One could, for
example use a genetic algorithm (see e.g. [Vinterbo and Ohno-Machado, 1999]) to
search for optimal definitions of the indiscernibility relation in terms of weighting
the different attributes or in terms of strictness of the definition. Of course, this
requires some measure that balances the number of clusters and the quality of each
cluster. This problem is discussed throughout the thesis and still remains to be
solved.
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