
Theoretical and computational aspects of
protein structural alignment

Paweł Daniluk and Bogdan Lesyng

Abstract Computing alignments of proteins based on their structure is one of the
fundamental tasks of bioinformatics. It is crucial in all kinds of comparative anal-
ysis as well as in performing evolutionary and functional classification. Whereas
determination of sequence relationships is well founded in statistical models, there
is still considerable uncertainty over how to describe geometric relationships be-
tween proteins. Continuous growth of structural databases calls for fast and reliable
algorithmic methods, enabling one to effectively compute alignments of pairs and
larger sets of protein molecules. Although such methodologies have been developed
over the past two decades, there exist so-called “difficult similarities” which may in-
clude repeats, insertions or deletions, permutations and conformational changes. A
brief overview of existing methodologies with emphasis on the different approaches
to decomposition of structures into smaller fragments is followed by a presenta-
tion of a formalism of local descriptors of protein structures. A formal definition
of the problem of computing optimal alignments accommodating aforementioned
difficulties is presented along with an analysis of the computational complexity of
its important variants. Examples of “difficult similarities” and practical aspects of
protein structure comparison are discussed.

Paweł Daniluk
Department of Biophysics, Faculty of Physics, University of Warsaw, Żwirki i Wigury 93, 02-892
Warsaw, Poland
Bioinformatics Laboratory, Mossakowski Medical Research Centre, Pawinskiego 5, 02-106 War-
saw, Poland
e-mail: pawel@bioexploratorium.pl

Bogdan Lesyng
Department of Biophysics, Faculty of Physics, University of Warsaw, Żwirki i Wigury 93, 02-892
Warsaw, Poland
Bioinformatics Laboratory, Mossakowski Medical Research Centre, Pawinskiego 5, 02-106 War-
saw, Poland
e-mail: lesyng@imdik.pan.pl

1

pawel@bioexploratorium.pl
lesyng@imdik.pan.pl

2 Paweł Daniluk and Bogdan Lesyng

1 Introduction

Proteins are biopolymers comprising one or more polypeptide chains. There exist
twenty amino-acid residues which occur in proteins encountered in living organ-
isms. Thus a first approximation (primary structure) of a protein is its sequence,
normally represented as a string of letters from a 20 letter alphabet. Sequences
may be compared to reveal genetic, evolutionary relationships between proteins.
Sequence comparison is a variant of a well researched string matching problem
which is usually solved with an ubiquitous Needleman-Wunsch algorithm[35] or
its heuristic counterparts[39, 2]. A polypeptide chain of a protein after synthesis
undergoes a process of folding in which it obtains a well defined characteristic spa-
tial conformation (tertiary structure). Structure is instrumental to the role a given
protein performs in a living organism. With some simplification, one may assume
that a residue sequence determines a spatial structure, which in turn determines a
function. Due to the nature of evolutionary processes it can be observed that struc-
ture is a much more conserved property than sequence. Even remotely homologous
proteins usually have similar tertiary structure. Therefore, comparison of structures,
although more difficult, may provide more information on evolutionary and func-
tional relationships than sequence analysis alone.

Although several methods for protein structure comparison have been devel-
oped during the past two decades, no single “best of all” method exists, and there
are many known cases of so-called difficult similarities, which cannot be correctly
solved by most methods. Relatively little effort has been put into development of
formal theories of this problem, which would enable a thorough analysis of its prop-
erties.

The purpose of this study is to give a brief overview of the existing approaches
and methodologies followed by a formal analysis of several variants of the prob-
lem of computing alignments based on a set of local similarities. Description of a
method based on presented theoretical principles along with a few practical aspects
of comparing protein structures are also provided.

This study is organized as follows. The introduction covers basic definitions,
contains a brief overview of popular methods, outlines potential pitfalls and gives a
short introduction into theory of computational complexity. In the following section
the most popular approaches to defining and comparing structural fragments are
presented. The third and fourth sections are devoted to the problems of computing
an optimal alignment of two or more protein structures and include an analysis of the
computational complexity of several variants of these problems. In the fifth section
we present practical but rarely used techniques which may be useful in similarity
analysis, as well as several case studies.

Theoretical and computational aspects of protein structural alignment 3

1.1 Alignments and superpositions

The notion of an alignment in the context of biological sequences originates from the
concept of introducing gaps into sequences written one below the other, to maximize
the number of columns with identical or similar residues. Alternatively, one may
view an alignment as a renumbering of residues such that equivalent residues have
the same number. In actual applications an alignment with sequence identity of 30%
may be considered significant. Thus, under typical conditions it is impossible to
consider alignments which do not preserve order of residues. They would introduce
more noise (false positives) than can be coped with. It is well known, however,
that structures containing segment swaps or circular permutations may have similar
shapes and perform related functions[30, 18]. Similarities of this kind are virtually
undetectable by conventional sequence analysis.

In this study we place emphasis on this particular issue, and diverge from the
traditional understanding of an alignment. We assume that an alignment may be
any correspondence between residues of aligned structures. We will avoid the use
of terms such as “sequence” or “structure” alignment, which may indicate the basis
of the similarity which an alignment is supposed to maximize, but which have no
connection to the mapping of residues once it has been computed.

Whenever spatial objects like protein structures are being compared, visual rep-
resentation of similarity plays a significant role for the end user. Similar molecules
can usually be isometrically transformed, so that distances between corresponding
residues are minimized and superimposed. In this respect superposition is secondary
to the alignment, since it may be computed only after corresponding residues have
been identified. In extreme cases it may even happen that a biologically correct
alignment results in a visually poor superposition.

1.2 Existing methods

Methodologies of protein structure comparison may be classified into two major
categories – global and local. In the first one an alignment and superposition of
molecules are iteratively improved. Starting with a given alignment, an optimal su-
perposition is computed, then a new alignment is extracted from the superposition
by identifying pairs of residues spatially close to each other. Such methods are ef-
fective, assuming conformational variability is limited and similarity is significant
enough for the process to converge quickly.

Alternatively, computing an alignment may start with identifying a set of local
similarities, which afterwards serve as building blocks for the global alignment.
There are several methods of decomposing structures into smaller fragments. The
most popular are inter-residue distances (SSAP[37], DALI[21], PAUL[50]), sin-
gle continuous segments of the main chain (CE[46]) or secondary structure ele-
ments (SSEs) (VAST[17], SARF[1], MATRAS[26], GANGSTA[19]). Less pop-
ular include Delaunay triangulation (TOPOFIT[22]), spherical polar Fourier rep-

4 Paweł Daniluk and Bogdan Lesyng

resentations (3D-BLAST[31]), and geometric hashing (C
a

-match[4]). Local de-
scriptors of protein structures (see section 2.2) have also been successfully applied
(DEDAL[10]). Global alignment is computed by selecting the largest consistent set
of local similarities. Definitions of consistency and methods for searching the solu-
tion space vary. Usually it is required that correspondences between residues given
by two consistent alignments have to agree on all residues common to both of them.
Sometimes additional criteria are used, such as the similarity of transformations
required to superimpose fragments[4] or the ordering in the protein sequence are
used. The search of the solution space is performed using algorithms for finding
isomorphic subgraphs or cliques, clustering, dynamic programming or other tech-
niques. Some methods use a one-dimensional representation of structure – where
each residue is substituted with a characterization of its local features – and use
dynamic programming to align such artificial sequences (e.g. SHEBA[23]). Due
to the computational complexity caused by the combinatoric size of the solution
space, solutions containing circular permutations or segment swaps are disregarded
even if the method could find them in theory. Such a situation takes place with the
DALI method and its publicly available implementation DaliLite[21, 20]. Some-
times spatial distortions are accommodated by introducing “hinges” (FATCAT[52],
FlexProt[43], ProtDeform[41], FlexSnap[42]).

Method name Year Authors Flexible Segment swaps
SSAP[37] 1989 Orengo and Taylor No No
C

a

-match[4] 1993 Bachar et al No Yes
DALI[21] 1993 Holm and Sander No No1

VAST[17] 1996 Gibrat et al No No
SARF[1] 1996 Alexandrov No Yes
CE[46] 1998 Shindyalov and Bourne No No
SHEBA[23] 2000 Jung and Lee No No
MATRAS[26] 2000 Kawabata and Nishikawa No No
FATCAT[52] 2003 Ye and Godzik Yes No
TOPOFIT[22] 2004 Ilyin et al No No
FlexProt[43] 2004 Shatsky et al Yes No
GANGSTA[19] 2008 Guerler and Knapp No Yes
ProtDeform[41] 2009 Rocha et al Yes No
3D-BLAST[31] 2010 Mavridis and Ritchie No No
FlexSnap[42] 2010 Salem et al Yes Yes
PAUL[50] 2010 Wohlers et al No No
DEDAL[10] 2011 Daniluk and Lesyng Yes Yes

Table 1: Selected methods for computing alignments of two protein structures.

The problem of computing multiple alignments of protein structures is much
harder and less popular. There are two basic approaches to defining and computing
a multiple alignment – searching for a substructure common to all structures com-

1 DALI in principle is capable of computing alignments with segment swaps, but the publicly
available implementation (DaliLite) lacks this feature.

Theoretical and computational aspects of protein structural alignment 5

pared, or searching for all similarities as long as equivalences between residues are
unambiguous (see section 4.1). Existing methods are often generalizations of meth-
ods of computing pairwise alignments. Based on the similarity of all pairs a binary
tree is built. Its leaves correspond to structures, while nodes to multiple alignments
of structures in its descendants, which are computed in a manner similar to aligning
two structures. When computation ends, the root node contains a multiple alignment
of all structures (MUSTANG[28], POSA[53]). Sometimes a strategy similar to hier-
archical clustering is used. Starting with single structures, at each step the two most
similar multiple alignments (or structures) are combined (Matt[33]). There also exist
methods where all structures are considered at the same time. MASS[13] is based
on searching for maximal correspondences between SSEs assuming rigid global
superpositions. On the other hand, MultiProt[44] attempts to align a chosen pivot
structure with all others. This process is repeated for all selections of pivot, and
the best multiple alignment is returned. DAMA[9] – an extension of the DEDAL
method employing an evolutionary algorithm is currently under development.

1.3 Difficult similarities

In many cases, the similarity between protein structures is either obvious or non-
existent. Nevertheless, there exists a “grey area” of so-called difficult similarities. It
comprises cases where similarity between sequences cannot be detected or is mis-
leading, the evolutionary relationship is not obvious, or where there exist significant
distortions that obscure the similarity. These distortions may include repeats, inser-
tions or deletions, permutations or substantial conformational changes.

Repeating motifs involve a significant combinatorial burden, because in princi-
ple all assignments between occurrences of such a motif should be assessed. This is
particularly challenging in case of the so-called propeller folds, which contain struc-
tures similar to a marine propeller. They are composed of 4 to 8 blades resulting in
up to 8! possible assignments of blades and at least 8 equivalent alignments.

Insertions and deletions may be a result of genomic rearrangements. After losing
a segment of a significant length a protein may retain its conformation. Nevertheless
the similarity is obfuscated by size differences, and the fact that some fragments
of the smaller structure usually have a different conformation to fill the gap after
missing residues.

Permutations probably pose the most fundamental challenge since the whole con-
cept of an alignment has to be readjusted. Circular permutations are the most com-
mon example. They may be caused by gene duplication or rearrangements of the
protein chain during folding[49]. Two protein chains are circular permutations of
each other if they can be divided into two subunits (A1�B1 and A2�B2 respec-
tively), such that structures A1�B1 and B2�A2 are similar in the traditional sense
(without permutations). More complex rearrangements (e.g. caused by changes of
the number of residues in loop regions) have been observed[18]. Oligomeric struc-
tures are another example of sequence rearrangements. Sometimes proteins com-

6 Paweł Daniluk and Bogdan Lesyng

posed of several chains are similar despite the fact that chain boundaries are placed
differently or that numbers of chains differ (in such a case, chains cannot be com-
pared separately).

Finally protein structures are not rigid. Many functions they perform involve con-
formational changes[16, 12]. Furthermore experimental methods used to determine
tertiary structure usually involve changing environmental conditions to nonphysi-
ological, which may distort the studied structure (see section 5.3 for an example).
Conformational variability is especially difficult, because assessing structural sim-
ilarity relies on geometrical data. Distinguishing between “natural” flexibility and
dissimilarity may be challenging even to experts.

1.4 Computational complexity

This study presents several results concerning the computational complexity of pro-
tein structure alignment. In this section we provide a brief introduction to the theory
of computational complexity.

Traditionally computational complexity theory is applied to so-called decision
problems, which originate from the formalism of recognizing languages by finite-
state automata or Turing machines. In this formalism, instances of a problem are en-
coded as words over a certain alphabet, and words corresponding to instances with
positive answers belong to a language recognized by a machine. Decision problems
have a strict form – “For a given instance I determine whether I satisfies a predicate
P(I).”, which is quite different to an open form of optimization problems which can
be stated as follows “For a given instance I find a solution S which has a maximal
value of property p from all valid solutions of I.”. Any optimization problem, how-
ever, can be transformed to a decision problem of the form “For a given instance
I and a value v does there exist a solution with value of property p greater than or
equal to v.”.

There are two fundamental classes of decision problems. The first one (P) con-
tains problems which can be solved by a Turing machine in polynomial time. This in
practice means, that a polynomial time algorithm for solving such a problem exists,
and can be implemented on any computer. Such problems are considered tractable
or efficiently solvable since computation time for any instance is limited by a poly-
nomial function of its size. The second major class (NP) comprises problems which
can be solved in polynomial time by a non-deterministic Turing machine. This in-
formally means, that given a potential solution to the problem, it is possible to check
if it is valid in polynomial time. All problems from P belong to NP, because if the
solution can be computed in polynomial time, it can also be efficiently checked.
There are, however, problems in NP for which a polynomial time algorithm is not
known. Some of them belong to a subclass of NP-complete problems, which may
be deemed as a collection of the “hardest” problems in NP. It can be proven that, if
there exists a polynomial time solution for any NP-complete problem, all problems

Theoretical and computational aspects of protein structural alignment 7

in NP also have a polynomial time solution, and thus P=NP. Until now finding such
a solution, or proving that it does not exist, remains an open problem.

Problems in NP can be “ranked” by their “difficulty”, with NP-complete prob-
lems being the hardest. In order to prove that a given problem P1 is NP-complete,
it is enough to prove that it belongs to NP and that it is “harder” than a known NP-
complete problem (P2). This is performed by constructing a so-called reduction of
P2 into P1. A reduction is a recipe for converting all instances of P2 into instances
of P1 preserving the decision result (i.e. accepted instances of P2 are converted to
accepted instances of P1 and vice versa). The reduction has to be performed in poly-
nomial time. This proves that if P1 is tractable, any instance of P2 also can be solved
in polynomial time by converting it into an instance of P1 and applying an algorithm
for P1. Therefore, if P1 belongs to P, P2 does also along with all problems in NP.

More information on computational complexity may be found in the seminal
book[15].

2 Fragment-based methods

2.1 Continuous segments, segment pairs

Continuous backbone segments are tremendously popular in all computational ap-
plications of protein structure analysis. They have been successfully applied in pro-
tein structure prediction[8] and are instrumental in structure comparison. They are
small and easy to compare, and thus are a good choice for detecting local similar-
ities which might serve as starting points for a global alignment. Generally only
segments of a certain length (varying from 5 to 15) are considered.

As long as two segments of the same length are compared, there is no need
to consider any non-trivial mapping between their residues. It is sufficient to ap-
ply a distance measure defined on sets of points. Root Mean Square Distance
(RMSD) is the metric of choice. For two sets of points A = {a1,a2, . . . ,an} and
B = {b1,b2, . . . ,bn} of size n (ai,bi 2 R3) it is defined as:

RMSD(A,B) = min
R - rotation in R3

T2R3

s

Ân
i=1 |ai � (Rbi +T)|2

n

This formula corresponds to the process of isometric transformation of B such
that the sum of squares of distances between respective points in A and transformed
points in B is minimized. Although it seems at first glance that computing RMSD is
a difficult optimization problem, there exists an efficient algorithm for this (Kabsch
algorithm [24, 25]). Although, reproducing it in detail is beyond the scope of this
study, we would like to identify one of its relevant features. The preliminary step of
the Kabsch algorithm involves computing geometrical centers of A and B as well as
a matrix M:

8 Paweł Daniluk and Bogdan Lesyng

Mi j =
n

Â
k=1

akibk j

where aki (bki) denotes the ith element of vector ak (bk). One can easily see that M
and geometrical centers can be recycled. Extending sets A and B after computing
their RMSD can be easily implemented, greatly reducing computational complex-
ity (e.g. computing RMSD of segments of length n requires O(n) time, just like
computing distances between all prefixes of A and B). A pair of similar segments is
usually called an aligned fragment pair (AFP).

To our best knowledge all alignment methods using AFP employ some sort of
a global similarity measure. It is necessary because the fact that alignment is built
from APFs does not imply actual similarity of aligned substructures. The inability
to capture spatial relationships between residues distant in the sequence but neigh-
boring in space is the main drawback of continuous segments. It can be amended by
using fragments encompassing at least two disjoint pieces of backbone.

DALI[21], a popular and highly regarded method, uses pairs of continuous seg-
ments of length 6. A similarity measure is based on the distances between points
representing residues. If A = {a1, . . . ,a12} and B = {b1, . . . ,b12} are residues be-
longing to certain pairs of hexapeptides in structures A and B, similarity is computed
as follows:

S =
12

Â
i=1

12

Â
j=1

q �
�

�d(ai,a j)�d(bi,b j)
�

�

where d(a,b) is an Euclidean distance between points a and b, and q is the parame-
ter determining a zero level of similarity. The distance based approach is appealing
because distance maps are invariant under isometric transformations, hence there is
no need to search for a transformation giving the optimal superposition. It is also
easy to implement and fast for small fragments (although its computational com-
plexity is bound by O(N2)).

2.2 Local descriptors of protein structure

Local Descriptor of Protein Structure2 is a small fragment of a protein structure,
which encompasses a physico-chemical environment of a given residue. In princi-
ple it can be defined for any residue in a protein molecule. It is built by identifying
residues the selected (central) residue is in contact with. Then, for each of the iden-
tified residues a 5-residue continuous piece of backbone (element) is added to a
descriptor. Overlapping elements are combined into segments (see Fig. 1).

Substructures chosen with this method may comprise several disjoint segments.
Thus, a descriptor may be viewed as a subset of residues enclosed in an irregular
surface corresponding to the range of physico-chemical interactions of the central
residue with its molecular environment. The radius of a descriptor approximates

2 In the following text we will simply call it a descriptor.

Theoretical and computational aspects of protein structural alignment 9

the range of residue-residue interactions. In contrast to continuous segments, which
are limited to one-dimensional neighborhoods along the protein sequence, local de-
scriptors contain information about the spatial environments of residues. They are
complete, in a sense that they contain all interacting residues, not some arbitrarily
chosen ones. The actual shape (content) of a descriptor depends on a definition of a
contact.

Fig. 1: A descriptor built for residue MET70 of an ASTRAL domain d1lg7a

comprises 9 contacts (dotted lines) between the central residue (red) and residues
being centers of elements. Some of the 5-residue elements ovelap and constitute
longer segments (two b -strands and an a-helix).

2.2.1 Definition

We consider two residues to be in contact, if one of the following conditions is
satisfied:

1. d
a

 6.5Å,
2. d

bx 8Å and d
a

�d
bx � 0.75Å.

In the above d
a

denotes the distance between Ca atoms, and d
bx – a distance be-

tween Cbx points (see Fig. 2), which are computed by extending a Ca �Cbx vector
by 1Å3. Such definition of a contact favors residues whose sidechains “point” to-
3 For glycine we assume Cbx = Ca ; for alanine Cbx = Cb .

10 Paweł Daniluk and Bogdan Lesyng

wards each other, and is convenient to compute, as it does not depend on sidechain
atoms, which may often be missing.

Fig. 2: Histidine with point Cbx (orange); remaining atoms: Ca – green, Cb – yellow,
O – red, N – blue, remaining coal atoms – white.

A protein structure can be viewed as a sequence of residues (a(1)a(2) . . .a(N�1)a(N)).
For a given residue a(p) a descriptor element for a(p) (El(a(p))) is a 5 residue long
segment of a backbone around ap:

El(a(p)) = a(p�2)a(p�1)a(p)a(p+1)a(p+2)

It is convenient to view a descriptor of a residue a as a triple ha,C,Ri, where C
is a set of residues which are in contact with a, and R is a set-theoretical sum of
descriptor elements for a and residues in C. We will say that C is a contact pattern
of a descriptor. One should note that according to this definition residues which
are located close to backbone terminals or gaps do not have descriptor elements,
and thus cannot belong to a contact pattern of a valid descriptor. Nevertheless, such
residues may belong to the set R.

2.2.2 Similarity of local descriptors

Let D1 = ha1,C1,R1i and D2 = ha2,C2,R2i be two descriptors. We will call any
partial function j : C1 !C2 a mapping of contact patterns C1 and C2. A mapping of
contact patterns is valid if it can be unambiguously extended to a function y : R1 !
R2 such that:

1. If j(a(i)) = b(j), then

Theoretical and computational aspects of protein structural alignment 11

y(El(a(i))) = y(a(i�2))y(a(i�1))y(a(i))y(a(i+1))y(a(i+2)) =

= b(j�2)b(j�1)b(j)b(j+1)b(j+2) = El(b(j))

2. y(El(a1) = y(El(a2))

In simple terms, a mapping contains pairs of corresponding contacts. It does
not necessarily cover all contacts in both descriptors, but each contact may have
only one corresponding counterpart in the other descriptor. To be valid a mapping
has to preserve overlapping of elements. Contacts with overlapping elements can
be mapped only to contacts with the same overlap, while non-overlapping contacts
may have only non-overlapping counterparts. We will say that a valid mapping con-
stitutes an alignment of descriptors. One should note that under this definition an
alignment may contain so-called segment swaps (i.e. aligned segments may have
different order in structures they originate from). This is a fundamental difference
between traditional understanding of alignment and our definition.

For two descriptors to be similar, an alignment between them has to exist and
satisfy requirements imposed on its size and the spatial similarity of aligned sub-
structures. The size can be measured with the number of aligned residues, elements
or segments, while spatial similarity may be assessed using a Root Mean Square
Distance (RMSD). This is a two-objective optimization problem, since extending
alignment will most likely increase RMSD between substructures and vice versa.

To reliably solve this problem, we use an extensive search algorithm that finds
alignments satisfying the following conditions:

1. the RMSD of aligned elements must not exceed 1.5Å,
2. for each pair of aligned elements, the RMSD of substructures consisting of these

elements and respective central elements must not exceed 2.5Å (i.e. elements
should have the same position relative to the central element),

3. at least half of the segments must be aligned,
4. the RMSD of aligned residues must not exceed 2.5Å.

The algorithm searches through all alignments satisfying the above conditions. First,
all pairs of elements satisfying conditions 1 and 2 are identified. Then, all possible
assemblies of those pairs are checked for condition 4. If it is not met, they are re-
duced by removing the least fitting pairs of elements, until either condition 4 is met
or condition 3 is no longer satisfied.

2.2.3 Computational complexity of descriptors comparison

In section 1.4 we have briefly explained the main ideas behind the theory of com-
putational complexity. We will demonstrate that the problem of assessing descriptor
similarity is NP-complete. We start by providing a formal definition of the decision
problem for finding an optimal descriptor alignment. The definition will be slightly
simpler than the one used in the previous section in order to avoid technical difficul-
ties.

12 Paweł Daniluk and Bogdan Lesyng

Definition 1. For two descriptors D1, D2 and constants n and T the Optimal Align-
ment of Descriptors (OAD) problem is to determine whether there exists an align-
ment of D1 and D2 covering no less than n residues such that the RMSD between
aligned residues is not greater than T .

Theorem 1. OAD is NP-complete.

Proof. First we notice that it is enough to prove that OAD is NP-complete for one
particular value of T , since, if a problem contains an NP-complete sub-problem it is
NP-complete itself. Thus we will assume that T is large enough for any alignment
to be structurally acceptable (e.g. T = •).

The most common way of proving NP-completeness is to define a so-called re-
duction of a known NP-complete problem to the one being considered. In this case
we will use a well known 3-PARTITION problem[15, problem SP15].

Definition 2. For a given set A containing 3m elements, a positive integer B and a
function s : A ! N such that:

^

a2A

1
4

B < s(a)<
1
2

B,

Â
a2A

s(a) = mB,

the problem of 3-PARTITION is to determine whether there exists a partition of A
into m disjoint subsets A1,A2, . . . ,Am such that:

^

1im
Â

a2Ai

s(a) = B

It is easy to see that any subset in such partition must contain exactly three
elements. Our reduction will assign an instance of OAD to any instance of 3-
PARTITION. We will show a method of constructing descriptors D1 and D2 for any
m, B and s. Because we have assumed that the threshold for the RMSD of aligned
residues is infinitely large, we don’t have to deal with providing coordinates. It is
enough to give contact patterns.

A comb of length k (Fig. 3a) is a contact pattern which contains k residues such
that subsequent residues lay one residue apart in the sequence . Let D1 contain 3m
combs (one for each element of A) of lengths given by values of s for corresponding
elements of A. Let D2 contain m combs of length B+4. Finally, let n be equal to the
number of residues in D1 – m(2B+9)+5.

To prove that this reduction is correct, we have to show that D1 and D2 have a
sufficiently large alignment, if and only if there exists a 3-partition of A. Indeed, if
such a partition exists, each subset of A can be mapped to a set of three combs in
D1, which can be aligned to a comb of length B+4 in D2 (see Fig. 3b). Conversely,
if there exists an alignment of D1 and D2, such that all residues in D1 are aligned,
each comb in D1 is aligned to a part of exactly one comb in D2. If a comb is aligned

Theoretical and computational aspects of protein structural alignment 13

(a)

(b)

.

(c)

Fig. 3: (a) A comb of length 6. (b) An alignment of three combs from D1 to a
comb in D2. (c) If one comb is aligned to two combs, at least one residue remains
unaligned.

to two separate combs, at least one residue in the first comb has to remain unaligned
(see Fig. 3c), which leads to a contradiction.

Presented reduction can be computed in polynomial time with respect to mB,
which is acceptable because 3-PARTITION is strongly NP-complete (NP-completeness
is preserved regardless of the method of encoding numbers).

This, and the fact that given an alignment of two descriptors it is possible to
compute its size and RMSD in polynomial time, proves that OAD is NP-complete.

The significance of the presented theorem should be properly understood. The
NP-completeness of aligning two descriptors means that most likely4 any algorithm
will require an exponential time depending on the size of descriptors being com-
pared. Due to limits imposed by the physics of protein molecules the size of a de-

4 Unless P=NP.

14 Paweł Daniluk and Bogdan Lesyng

scriptor is of course strictly limited. Descriptors having more than 15 elements do
not exist or are extremely rare. Therefore, computation time is limited by a constant.
We have also omitted structural aspects of the comparison by choosing an infinite
RMSD threshold. This, to our best knowledge, was required to formulate a theorem,
which could be proven. Encoding the property of being a protein5 in strict mathe-
matical terms is beyond our capacity. Nevertheless this theorem is useful because
it reflects the fact that without identifying a more complex internal structure for a
descriptor the extensive search is justified.

3 From local similarities to global alignments

In this section we describe a generic paradigm of computing alignments of protein
structures based on a set of local similarities. We assume that local similarities,
regardless of their particular definition, constitute mappings between the residues
they encompass. As in the previous chapter we apply the term “alignment” to any
such mapping, despite the fact that it may not preserve ordering of residues in their
respective sequences. We also assume that local alignments should be treated as
indivisible and immutable blocks and may only be included in the resulting solution
as a whole. All mappings in the solution have to belong to at least one block included
in it.

By these assumptions we simplify the problem, without risking loss of general-
ity. In all actual applications one can safely assume that the size of a local similarity
is bound by a constant. The number of subsimilarities which would have to be con-
sidered if local alignments were divisible is therefore also bound. The same applies
to the majority of useful mutations which one might care to explore. Thus the prob-
lem with mutable, divisible blocks, can be converted to a problem where blocks are
immutable, multiplying their number by a constant factor.

The difficulty in building a global alignment in this paradigm lies in the fact
that local similarities cannot be used in the same alignment, if there exists a residue
which they map differently. An alignment may be built from local alignments, which
are all pairwise consistent. This brings into mind the well known NP-complete
clique finding problem, but a careful analysis taking into account actual properties of
local similarities used is required to correctly assess the computational complexity.

The score of a resulting global alignment may solely depend on its size (quality
being assured by local similarities), or there may be some more complex scoring
function (e.g. RMSD). We examine the case where alignment size is to be maxi-
mized regardless of its quality.

For the purpose of this and subsequent sections let S1 and S2 be certain protein
structures, and F be the set of local similarities represented by mappings of residues.

Let x : S1 ! S2 be a mapping of residues. A support of x in F (Supp(x ,F)) is a
subset of mappings from F which are completely included in x .

5 A protein is a polypeptide which under physiological conditions assumes and maintains a certain
native conformation.

Theoretical and computational aspects of protein structural alignment 15

Definition 3. An alignment of S1 and S2 with support in F is a mapping of S1 and
S2, which has a support in F covering all its residues.

According to this definition, every element of F is an alignment of structures it-
self. A support of the alignment contains the set of local similarities, which have to
be combined to build this alignment. They are all consistent, because they are all
completely covered by the same alignment.

Definition 4. For given structures S1 and S2, set F and number k the Optimal Struc-
ture Alignment Problem (OSA) is to determine, whether there exists an alignment
of S1 and S2 with support in F covering at least k residues.

3.1 Computational complexity of Optimal Structure Alignment
Problem

Theorem 2. OSA is NP-complete.

Proof. To prove that OSA is NP-complete we will provide a reduction of another
NP-complete problem to OSA. There is a well known NP-complete problem called
3-DIMENSIONAL MATCHING (3DM)[15, problem SP16].

Definition 5. For a given set M ✓ W ⇥X ⇥Y , where W , X i Y are disjoint sets of
size q, the 3-DIMENSIONAL MATCHING problem is to determine whether there
exists a subset M0 ✓ M such that |M0|= q and elements of M0 are disjoint.

In other words, the task is to choose from a given set of triples (M) a subset
in which every element from sets W , X and Y occurs exactly once. There also ex-
ists a two dimensional version of this problem – 2-DIMENSIONAL MATCHING
(2DM, also called a marriage matching problem) where M ✓ X ⇥Y . Although very
similar surprisingly it can be solved in polynomial time. We will use a slightly mod-
ified version of this problem.

Definition 6. For given sets M ✓ X ⇥Y and G ✓ P(M)6, where X and Y are dis-
joint sets of size q, the RESTRICTED 2-DIMENSIONAL MATCHING (R2DM)
problem is to determine, whether there exists a subset M0 ✓ M such that, |M0| = q,
elements of M0 are disjoint and there exists G0 ✓ G such that

S

G0 = M0.

R2DM may be viewed as a case of the marriage matching where would-be wives
set conditions of the kind: “I will marry you, if Mr. X marries Ms. W and Mr. Q
marries Ms. S”. Such conditions are encoded as elements of the set G. To prove,
that R2DM is NP-complete, we may use a simple reduction of 3DM. Each triple
from M in 3DM is encoded as two pairs in M and a set containing these pairs in G.
Figure 4 contains an example of such transformation. One can easily establish that

6 P(M) denotes a power set of M, i.e. a family of all subsets of M.

16 Paweł Daniluk and Bogdan Lesyng

a solution of an instance of R2DM obtained from 3DM can always be converted to
a solution of the original problem. Furthermore, if the original 3DM instance has a
valid solution, the corresponding instance of R2DM is always solvable.

R2DM is very convenient for proving that OSA is intractable. In the conversion
of an R2DM instance to OSA sets X and Y will correspond to sets residues of S1
and S2; set M – to the set of all pairs of mapped residues in alignments from F and
finally set G – to F itself. Elements of G are sets of pairs from M which have to
be picked together. In the case of alignment with support in F , each pair of aligned
residues has to belong to a local alignment from F . Let S be a set of pairs from
G. S is converted to an alignment, which for each pair in S maps together residues
corresponding to its elements. A subset A0 being a solution of R2DM corresponds
to the alignment covering whole structures. A set G0 corresponds to the support of
this alignment in F .

W = {a,b,c}
X = {A,B,C}
Y = {1,2,3}
M = {ha,A,1i ,hb,B,2i ,hc,C,3i ,ha,B,3i}

M0 = {ha,A,1i ,hb,B,2i ,hc,C,3i}

(a)

X =
�

a,b,c,A0,B0,C0

Y = {A,B,C,1,2,3}

M =

8

>

>

<

>

>

:

ha,Ai , hA0,1i ,
hb,Bi , hB0,2i ,
hc,Ci ,

⌦

C0,3
↵

,
ha,Bi , hB0,3i

9

>

>

=

>

>

;

G =

8

>

>

<

>

>

:

{ha,Ai ,hA0,1i} ,
{hb,Bi ,hB0,2i} ,
�

hc,Ci ,
⌦

C0,3
↵

,
{ha,Bi ,hB0,3i}

9

>

>

=

>

>

;

M0 =

8

<

:

ha,Ai , hA0,1i ,
hb,Bi , hB0,2i ,
hc,Ci ,

⌦

C0,3
↵

9

=

;

G0 =

8

<

:

{ha,Ai ,hA0,1i} ,
{hb,Bi ,hB0,2i} ,
�

hc,Ci ,
⌦

C0,3
↵

9

=

;

(b)

Fig. 4: (a) Sample instance of 3DM. (b) The same instance converted to R2DM.
Each triple is converted to two pairs and an element in set G. Primes are added to
element names to comply with the requirement that sets X and Y are to be disjoint.

To make the reduction possible, local similarities have to allow for sequence
swaps. Otherwise, instances of R2DM for which sets X and Y cannot be ordered
in such a way that all elements in G are ordered on both positions, could not be
converted to an instance of OSA.

Theoretical and computational aspects of protein structural alignment 17

3.2 Important variants of Optimal Structure Alignment problem
and their complexity

In the previous section we have proven the intractability of the Optimal Structure
Alignment problem. The proof presented applies to the most generic version of OSA
where local similarities may be any arbitrary mappings between residues. All “real”
approaches known to us employ local similarities having a well defined structure
(e.g. continuous segments, pairs of segments, local descriptors). If we look back to
the proof of NP-completeness of OSA, it is evident, that it cannot be applied in the
case of local similarities in the form of single continuous segments. It also remains
to be seen whether OSA would remain intractable if it was restricted to alignments
without permutations.

Definition 7. An Optimal Straight Structure Alignment problem (OSSA) is a variant
of OSA in which an alignment satisfying the size threshold cannot contain segment
swaps.

Theorem 3. If the set of local similarities in an instance of OSSA contains only
matchings of single continuous segments, the computation required to solve OSSA
can be performed in polynomial time.

Proof. These sort of cases can easily be solved with the modified Smith-Waterman
algorithm. Algorithms of this sort based on dynamic programming usually have
polynomial complexity. In this particular case a pessimistic estimate of computation
time linearly depends on the number of residues in aligned structures and the size
of F (O(|S1| |S2| |F |)).

Theorem 3 encourages further questions regarding the intractability of OSSA.
Perhaps it is also easy for more complex elements of F .

Theorem 4. A variant of OSSA where the set of local similarities may contain
matchings of three separate continuous segments is NP-complete.

Proof. We will prove NP-completeness by reduction of the popular 3SAT problem
[15, problem LO01].

Definition 8. For a given collection of clauses C on a set of variables U , where each
clause is an alternative of exactly three literals from U (positive or negative) and
each variable is used exactly three times, the 3SAT problem is to determine whether
there exists a truth assignment for U which satisfies all clauses in C.

3SAT is one of the oldest known NP-complete problems. It is useful in proving
the intractability of problems where one can identify a set of “switches” and a certain
pattern they have to achieve. The fact that each variable appears no more than three
times in the collection of clauses is instrumental to our proof. We begin with the
observation that, without any loss of generality, we may assume that every variable
appears at least once in a positive and negative literal. Otherwise (in the case of only

18 Paweł Daniluk and Bogdan Lesyng

positive or only negative appearances), such variables can be easily eliminated by
setting their value to true or false respectively. Let k be the number of variables and
l be the number of clauses in a certain instance of 3SAT. Below, we demonstrate a
conversion of such an instance to an instance of OSSA.

Let S1 be a protein structure which contains segments: v1,v2, . . . ,vk,c1,c2, . . . ,cl ;
and S2 a protein structure containing segments: t1, f1, t2, f2, . . . , tk, fk,c01,c

0
2, . . . ,c

0
l .

In both these structures segments appear in the order given above. All segments in
S1 are disjoint, whereas in S2 ti overlaps fi, and all other segment pairs are disjoint.
All segments are of equal length.

Segments vi correspond to variables, segments ti and fi correspond to assignment
of true and false values to respective variables, and segments ci and c0i correspond to
clauses. For each variable we define two local similarities ji and j i:

ji(s) =

(

ti s = vi

c0p s = cp and clause p contains a positive appearance of ith variable

j i(s) =

(

fi s = vi

c0p s = cp and clause p contains a negative appearance of ith variable

Example 1. Let C be a collection of clauses on U = {u1,u2,u3}:

C = {{¬u1,u2,u3} ,{u1,¬u2,u3} ,{u1,u2,¬u3}}

equivalent to the following formula:

(¬u1 _u2 _u3)^ (u1 _¬u2 _u3)^ (u1 _u2 _¬u3)

This instance of 3SAT could be converted to the following instance of OSSA (as-
suming that all segments are of length 5) (j(a) =? means that a /2 Dom(j)):

S1 =

v1
z }| {

a(1) a(2) a(3) a(4) a(5)

v2
z }| {

a(6) a(7) a(8) a(9) a(10)

v3
z }| {

a(11)a(12)a(13)a(14)a(15)

c1
z }| {

a(16)a(17)a(18)a(19)a(20)

c2
z }| {

a(21)a(22)a(23)a(24)a(25)

c3
z }| {

a(26)a(27)a(28)a(29)a(30)

S2 =

t1
z }| {

b(1)
| {z }

f1

b(2) b(3) b(4) b(5) b(6)

t2
z }| {

b(7)
| {z }

f2

b(8) b(9) b(10)b(11)b(12)

t3
z }| {

b(13)
| {z }

f3

b(14)b(15)b(16)b(17)b(18)

c01
z }| {

a(19)a(20)a(21)a(22)a(23)

c02
z }| {

a(24)a(25)a(26)a(27)a(28)

c03
z }| {

a(29)a(30)a(31)a(32)a(33)

Theoretical and computational aspects of protein structural alignment 19

j1(S1) =

v1
z }| {

| {z }

t1

b(1) b(2) b(3) b(4) b(5)
v2

z }| {

? ? ? ? ?
v3

z }| {

? ? ? ? ?

c1
z }| {

? ? ? ? ?

c2
z }| {

| {z }

c02

b(24)b(25)b(26)b(27)b(28)

c3
z }| {

| {z }

c03

b(29)b(30)b(31)b(32)b(33)

j1(S1) =

v1
z }| {

| {z }

f1

b(2) b(3) b(4) b(5) b(6)
v2

z }| {

? ? ? ? ?
v3

z }| {

? ? ? ? ?

c1
z }| {

| {z }

c01

b(19)b(20)b(21)b(22)b(23)

c2
z }| {

? ? ? ? ?
c3

z }| {

? ? ? ? ?

j2(S1) =

v1
z }| {

? ? ? ? ?

v2
z }| {

| {z }

t2

b(7) b(8) b(9) b(10)b(11)

v3
z }| {

? ? ? ? ?

c1
z }| {

| {z }

c01

b(19)b(20)b(21)b(22)b(23)

c2
z }| {

? ? ? ? ?

c3
z }| {

| {z }

c03

b(29)b(30)b(31)b(32)b(33)

j2(S1) =

v1
z }| {

? ? ? ? ?

v2
z }| {

| {z }

f2

b(7) b(8) b(9) b(10)b(11)

v3
z }| {

? ? ? ? ?

c1
z }| {

? ? ? ? ?

c2
z }| {

| {z }

c02

b(24)b(25)b(26)b(27)b(28)

c3
z }| {

? ? ? ? ?

j3(S1) =

v1
z }| {

? ? ? ? ?
v2

z }| {

? ? ? ? ?

v3
z }| {

| {z }

t3

b(13)b(14)b(15)b(16)b(17)

c1
z }| {

| {z }

c01

b(19)b(20)b(21)b(22)b(23)

c2
z }| {

| {z }

c02

b(24)b(25)b(26)b(27)b(28)

c3
z }| {

? ? ? ? ?

j3(S1) =

v1
z }| {

? ? ? ? ?
v2

z }| {

? ? ? ? ?

v3
z }| {

| {z }

f3

b(13)b(14)b(15)b(16)b(17)

c1
z }| {

? ? ? ? ?
c2

z }| {

? ? ? ? ?

c3
z }| {

| {z }

c03

b(29)b(30)b(31)b(32)b(33)

20 Paweł Daniluk and Bogdan Lesyng

All clauses are satisfied by the assignment:

u1 ! 0,u2 ! 1,u3 ! 1

Therefore, there exists an alignment with support {j1,j2,j3}:

x (S1) =

v1
z }| {

| {z }

f1

b(2) b(3) b(4) b(5) b(6)

v2
z }| {

| {z }

t2

b(7) b(8) b(9) b(10)b(11)

v3
z }| {

| {z }

t3

b(13)b(14)b(15)b(16)b(17)

c1
z }| {

| {z }

c01

b(19)b(20)b(21)b(22)b(23)

c2
z }| {

| {z }

c02

b(24)b(25)b(26)b(27)b(28)

c3
z }| {

| {z }

c03

b(29)b(30)b(31)b(32)b(33)

x is a straight alignment of size 30.

An alignment covering at least (k + l)r residues, where r is the length of seg-
ments, corresponds to an assignment for which all clauses are true. To prove this,
we note that no alignment with support in F = {j1,j1, . . . ,jk,jk} can contain
both ji and j i, because segment vi cannot be aligned to both ti and fi at the same
time. This, in the context of the 3SAT problem, establishes that in no assignment
can a variable be both true and false. If an alignment is supposed to cover (k+ l)r
residues it has to cover all segments in S1. This means that all variables will have an
assignment.

Each clause is an alternative of three literals. It is sufficient for one of them to
have a truth value for the clause to be satisfied. In our reduction this is expressed by
aligning segments cp and c0p. All clauses have to be satisfied for the alignment to be
sufficiently large.

The remaining technical details are omitted for reasons of brevity.

To conclude we demonstrate that OSA is intractable if local similarities are allowed
to comprise at least two continuous segments.

Theorem 5. A variant of OSA where the set of local similarities may contain match-
ings of two separate continuous segments is NP-complete.

Proof. To prove this theorem it suffices to note that a variant of R2DM in which
each element of the set G contains exactly two pairs from A is NP-complete. This
follows directly from the reduction we have used to prove the intractability of
R2DM. All instances of R2DM resulting from it have this feature. Therefore, if
we assume that structures are divided into non-overlapping segments of the same
length, any local similarity in the reduction from R2DM to OSA will consist of no
more than two segments.

This series of theorems is briefly summed up in Fig. 5. Computing straight align-
ments is easier than computing alignments with permutations. Nevertheless, in the
case of moderately complex local similarities with three non-overlapping segments,

Theoretical and computational aspects of protein structural alignment 21

both problems are intractable. The case of OSSA with 2-segment similarities is par-
ticularly interesting since it is the basis of a popular structure alignment method
DALI[21]. Unfortunately, we are not aware of any results concerning its computa-
tional complexity.

s = 1 s 2 s 3 s arbitrarily large

OSA ? �����! NP �����! NP �����! NP
x

?

?

x

?

?

x

?

?

x

?

?

OSSA P �����! ? �����! NP �����! NP

Fig. 5: Computational complexity of OSA and OSSA depending on the maximal
number of segments in local similarities s.

OSA and OSSA are theoretical approximations of actual problems. As in the
previous section, we have disregarded the fact that protein structures have several
properties, which are hard or impossible to describe with a mathematical formal-
ism. Therefore, results shown here may not reflect the actual complexity of these
problems applied to real proteins. Nevertheless, they are useful, since if the fact of
a polypeptide being a protein cannot be described formally, it cannot be used in
the process of designing and proving properties of an algorithm. Knowledge that a
certain variant of OSA is NP-complete indicates that it is very unlikely for an accu-
rate, polynomial time algorithm to exist and thus favors the application of extensive
search or heuristic solutions.

Among numeorus simplifications, we have also disregarded the issue of assess-
ing alignment quality. Introducing a restriction that an alignment has to satisfy some
quality requirement (e.g. RMSD) apart from the size criteria, doesn’t necessarily
make the problem harder. For example, if aligned parts were to have identical shapes
(RMSD equal to zero), only local similarities with zero RMSD could be used,
thereby drastically limiting the size of set F . Nevertheless, theoretical complexity,
which should normally be assessed for all threshold values, would not change.

3.3 Solving Optimal Structure Alignment Problem with local
descriptors

Local descriptors are particularly useful in computing protein structure alignments[10].
Local similarities defined by pairs of descriptors are usually significant, so that
alignments with support in the set of such similarities do not require further verifi-
cation of quality. Therefore, computing an alignment of structures using descriptors
amounts to solving an instance of OSA. Since the problem is NP-complete, there

22 Paweł Daniluk and Bogdan Lesyng

is no disadvantage in applying formalism and experience from another well-known
NP-complete problem.

All similarities in the support of an alignment are required to be consistent. Con-
versely, if all local similarities in a certain set are consistent with each other, such a
set is a support of some valid alignment. The consistency of local similarities can be
described by a graph, with nodes representing similarities. Nodes in this graph are
connected by an edge, if corresponding similarities are consistent. A clique7 in such
a graph may be interpreted as a valid alignment between the structures. As long as
the function used to score the alignments does not decrease with the clique growth,
maximal alignments can be found by looking for the maximal cliques.

Accurate solution – extensive search

Clique searching algorithms are usually designed to find the largest clique in terms
of the number of nodes. In solving the OSA, this might not be enough. The goal is
to find an alignment covering as many residues as possible. The largest clique does
not necessarily have this property, since local similarities in a clique usually overlap,
contributing to the “thickness” of coverage instead its “breadth”. Most likely “thick-
est” coverages should correspond to the best alignments, nevertheless an algorithm
to guarantee the optimal solution has to compute and assess all maximal cliques.

Applying a branch-and-bound strategy to build all possible cliques, while pre-
serving a required number of the highest scoring alignments, is a viable solution.
Each node either belongs to the clique or not. Such decisions can be made sepa-
rately for each node in an arbitrary order assuming that choices which would violate
the clique condition are disallowed. Thus, building all maximal cliques can be per-
formed by traversing a decision tree in which nodes at the kth level correspond to
the decision of including the kth graph node in the subset. It is well known, that such
an approach can be vastly improved by employing a branch-and-bound strategy. In
order to make this computation feasible we introduced two optimizations (cuts).

If a clique in a given branch can be unequivocally expanded with a previously
rejected node, it is abandoned, because it does not contain any maximal cliques
(maximal cliques containing those abandoned belong to another branch of a tree).
This ensures that only maximal cliques are obtained and each is constructed pre-
cisely once.

Since the goal is to compute the largest alignments, branches which do not con-
tain cliques corresponding to sufficiently large alignments may be abandoned. The
lower bound of the size of alignments of interest may be given as a parameter or
gradually increased as alignments are being computed. An upper bound of the size
of a maximal alignment in a given branch can be computed as a sum of the size of
the alignment being constructed, and a number of residues outside this alignment
covered by descriptor pairs which are yet to be considered. This is not an exact size
of the best solution in the branch, because some descriptor pairs are contradictory

7 Clique in a graph is a subset of nodes such that every two nodes in the subset are connected by
an edge.

Theoretical and computational aspects of protein structural alignment 23

and cannot be combined in one alignment, but still such an upper bound is frequently
low enough to discard significant portions of a decision tree.

This strategy can be modified to search for alignments which have a certain prop-
erty. For example, in order to find optimal alignments comprising only one struc-
turally continuous fragment a variant may be used which extends the clique only
if the subalignment which is being added has common residues with the alignment
being extended.

Monte-Carlo approximation

In certain cases extensive search even with the cuts described above is infeasible.
This is caused by a large number of suboptimal alignments which cannot be pruned
from the decision tree. Large structures with a high degree of self-similarity (i.e.
recurring structural motifs) are especially affected. Nevertheless, in these cases cor-
rect alignments are most likely easily identifiable by visual inspection. Therefore,
one might speculate it should be possible to easily detect them without a system-
atic search of the overwhelming solution space. Monte-Carlo methods[34] have a
huge potential in finding most probable states of complex systems. In particular,
a widely recognized Replica Exchange Monte Carlo algorithm[48] can be used to
search for high score alignments. Here we will mention the algorithm for generating
transitions between states, and the energy function. Let Cn = {d1,d2, . . . ,dn} be the
clique defining a state at the nth step. The clique Cn+1 describing the state in the
next step is generated as follows:

1. randomly pick a graph node d not belonging to Cn,
2. take a set Cn+1 containing d and elements from Cn which are connected to d

(one sees it is a clique),
3. if there are graph nodes which belong to every maximal clique containing Cn+1,

add them to Cn+1.

Such parameters as number of steps, number of replicas, their temperatures, and
exchange frequency should be adjusted to reproduce accurate results in the shortest
time.

4 Alignments of multiple structures

In contrast to alignments of pairs of structures, which can be defined as mappings
between respective sets of residues, alignments of multiple structures do not have
one canonical definition. Intuitively multiple alignment is some sort of correspon-
dence between residues in several structures. The fundamental question is whether
such correspondence is transitive, i.e. if residue a is structurally equivalent to b,
which is equivalent to c, does it imply that a is equivalent to c. There are three

24 Paweł Daniluk and Bogdan Lesyng

common strategies which are used to compute a score of the multiple alignment of
sequences:

• sum of pairs (SP-score),
• star alignment,
• alignment according to a given phylogenetic tree (tree alignment).

Each of the above has different properties and assumptions. Star alignment,
which aims at finding a sequence most similar to a given set (which may be viewed
as their average) may be interpreted in the context of structure alignment as search-
ing for a core common to all structures. Maximization of the SP-score, on the other
hand, may be understood as searching for similarities within all subsets of struc-
tures. Tree alignment is somewhat in between and can be applied, if there exists a
hypothetical phylogenetic hierarchy based on some external knowledge. No mat-
ter which of these three strategies is used, the problem of multiple alignment of
sequences is NP-hard[14].

When comparing protein structures it is easier to detect a conserved core com-
mon to all structures (if only it exists) than to identify all similarities. Nevertheless,
we focus on the sum of pairs strategy, since it gives more complete information.
We assume that a multiple alignment can be described with a set of alignments of
all pairs of structures. Naturally, not every set of pairwise alignments describes a
multiple alignment. We set out to establish the necessary and sufficient condition
for this.

4.1 Optimal Structural Multiple Alignment Problem

We will define a multiple alignment in a similar fashion as pairwise alignment.
Firstly, we develop a notion of multiple mapping. Let S = {S1,S2, . . . ,SN} be a
set of structures. A multiple mapping of structures in S is a symmetric reflective
relation between all residues belonging to structures in S in which under no cir-
cumstances can two different residues in one structure be transitively aligned with
each other. This property is crucial, since it distinguishes the problem of computing
an optimal multiple alignment from computing optimal alignments between all pairs
of structures. It may happen, that residue a1 2 S1 is mapped to b 2 S2 in the optimal
alignment between these structures, b 2 S2 is mapped to c 2 S3, which in turn is
equivalent to a2 2 S1. In such cases pairwise alignments cannot be directly merged
into a valid multiple alignment, because both a1 or a2 would have to be aligned with
b and c.

Definition 9. An multiple alignment of structures in set S with support in F is a
multiple mapping of structures in S , such that pairwise alignments derived from
it for each pair of structures in S have support in F covering all their residues.
We assert that the aforementioned set of pairwise alignments induces the multiple
alignment.

Theoretical and computational aspects of protein structural alignment 25

This definition is a direct generalization of definition 3. It is easy to see, that if
S contains two structures, their multiple alignment is equivalent to pairwise align-
ment8. For a given multiple alignment there exists exactly one set of pairwise align-
ments inducing it. If a set of pairwise alignments induces a multiple alignment, we
will say that it is consistent. The size of a multiple alignment is the average number
of residues covered by the pairwise alignments which induce it.

Definition 10. For a given set of structures S , set F , and number k the Optimal
Structure Multiple Alignment Problem (OSMA) is to determine whether there exists
a multiple alignment in S with support in F of size no less than k.

4.2 Analysis of computational complexity

Theorem 6. Optimal Structure Multiple Alignment Problem is NP-complete.

Proof. It is easy to see that OSMA contains the problem of computing optimal
pairwise alignments (OSA). Therefore it is NP-hard. It belongs to the NP class
because computing the size of a given multiple alignment can be readily performed
in polynomial time.

Theorem 6 is rather obvious and unfortunately gives little insight into the com-
plexity of the problem. We have already established that although OSA is NP-
complete it can be effectively solved either by accurate algorithms or Monte-Carlo
approximations. If computing multiple alignments was not harder than OSA, most
likely we would be able to use similar approaches to solve it. On the other hand,
computing multiple sequence alignments is NP-complete, although pairwise se-
quence alignments can be performed in polynomial time. Intuitively, one might
argue that “multiplicity” of the alignment introduces intractability. If this was the
case, computing multiple structural alignments would require a different approach.
It may seem that assuming that OSA belongs to P and analyzing the complexity of
OSMA under this assumption would be the simplest way to check this hypothesis.
Unfortunately, assuming that a certain NP-complete problem can be solved in poly-
nomial time is equivalent to assuming that P equals NP (i.e. all NP problems can
be solved in polynomial time). Therefore, we must analyze the complexity of such
variants of OSMA for which all relevant OSA can be solved in constant time.

Theorem 7. For any value of k, a variant of OSMA in which the number of local
similarities in F for each pair of structures does not exceed k is NP-complete.

Before we prove this theorem, let us note that if size of set F in OSA is limited by
a constant, then the number of possible alignments with support in F is limited by

8 We deliberately skip over the fact that multiple alignment is a relation while a pairwise alignment
is a function. The property of being a multiple alignment guarantees that it can be converted to a
function in a trivial way.

26 Paweł Daniluk and Bogdan Lesyng

2k. This means that an extensive search algorithm for finding an optimal alignment
will have a computational complexity of O(2k) = O(1) (because k is constant). In
layman’s terms theorem 7 establishes that pessimistic computation time for OSMA
is exponential with respect to the number of structures9.

Proof. We once more use 3SAT (see Def. 8). Let U = {u1, . . . ,uk}, C = {C1, . . . ,Cl}
be an instance of 3SAT. We will construct three sets of structures corresponding to:
variables (set V), clauses (set K) and assignment of values (set L):

(1) V = {V1, . . . ,Vk}, gdzie Vi = aVi
1 aVi

2 . . .aVi
19aVi

20
10

(2) K = {K1, . . . ,Kl}, gdzie Ki = aKi
1 aKi

2 . . .aKi
14aKi

15
(3) L = {L0}, gdzie L0 = aL0

1 aL0
2 . . .aL0

20aL0
21

To simplify the notation we will define the following segments:

(1) vi = aVi
1 . . .aVi

5 , v0i = aVi
6 . . .aVi

20
(2) ki1 = aKi

1 . . .aKi
5 , ki2 = aKi

6 . . .aKi
10, ki3 = aKi

11 . . .a
Ki
15

(3) t = aL0
1 . . .aL0

5 , f = aL0
2 . . .aL0

6 , l0 = aL0
7 . . .aL0

21

Having structures defined we construct four sets of local similarities corresponding
to: assignment of values to variables (sets F

T and F

F), occurrences of variables in
clauses (set F

K) and kinds of literals(positive vs. negative) occurring in clauses (set
F

L):

(1) F

T =
�

j

T
i : Vi ! L0

�

�1 i k^j

T
i (vi) = t ^j

T
i (v

0
i) = l0

(2) F

F =
�

j

F
i : Vi ! L0

�

�1 i k^j

F
i (vi) = f ^j

F
i (v

0
i) = l0

(3) F

K =

⇢

j

K
i j : Ki !Vp

�

�

�

�

1 i l ^1 j 3^1 p k^j

K
i j (ki j) = vp ^

^up or ¬upoccurs at jth position in clause Ci

�

(4) F

L =

8

>

<

>

:

j

L
i j : Ki ! L0

�

�

�

�

�

�

�

1 i l ^1 j 3^

^j

L
i j(ki j) =

(

t jth position in clause Ci is a positive literal
f jth position in clause Ci is a negative literal

9

>

=

>

;

Finally, a set of local similarities F is the sum of the following:

F = (FT [F

F [F

K [F

L)[(FT [F

F [F

K [F

L)�1

where F

�1 denotes the set of alignments inverse to those in F

11.
An assignment of values which satisfies all clauses exists if and only if there

exists an alignment of S = {L0,V1, . . . ,Vk,K0, . . . ,Kl} with support in F of size
2(20k+10l)

(k+l)(k+l+1) . Furthermore, if F

0 is a support of such an alignment, for every i either
j

T
i 2 F

0 or j

F
i 2 F

0 and an assignment:

9 Unless P=NP.
10 In this proof we abstain from giving residue numbers in upper index.
11 If j : A ! B in an alignment between structures A and B, an inverse alignment is a function
j

�1 : B ! A derived from the same mapping of residues.

Theoretical and computational aspects of protein structural alignment 27

ui !
(

1 j

T
i 2 F

0

0 j

F
i 2 F

0

satisfies all clauses.

Example 2. Let C be a set of clauses over U = {u1,u2,u3}:

C = {{¬u1,u2,u3} ,{u1,¬u2,u3} ,{u1,u2,¬u3}}

corresponding to the formula:

(¬u1 _u2 _u3)^ (u1 _¬u2 _u3)^ (u1 _u2 _¬u3)

The reduction presented above yields the following instance of OSMA:

L0 =

t
z }| {

aL0
1
| {z }

f

aL0
2 aL0

3 aL0
4 aL0

5 aL0
6

l0
z }| {

aL0
7 aL0

8 aL0
9 aL0

10aL0
11aL0

12aL0
13aL0

14aL0
15aL0

16aL0
17aL0

18aL0
19aL0

20aL0
21

V1 =

v1
z }| {

aV1
1 aV1

2 aV1
3 aV1

4 aV1
5

v01
z }| {

aV1
6 aV1

7 aV1
8 aV1

9 aV1
10aV1

11aV1
12aV1

13aV1
14aV1

15aV1
16aV1

17aV1
18aV1

19aV1
20

V2 =

v2
z }| {

aV2
1 aV2

2 aV2
3 aV2

4 aV2
5

v02
z }| {

aV2
6 aV2

7 aV2
8 aV2

9 aV2
10aV2

11aV2
12aV2

13aV2
14aV2

15aV2
16aV2

17aV2
18aV2

19aV2
20

V3 =

v3
z }| {

aV3
1 aV3

2 aV3
3 aV3

4 aV3
5

v03
z }| {

aV3
6 aV3

7 aV3
8 aV3

9 aV3
10aV3

11aV3
12aV3

13aV3
14aV3

15aV3
16aV3

17aV3
18aV3

19aV3
20

K1 =

k1,1
z }| {

aK1
1 aK1

2 aK1
3 aK1

4 aK1
5

k1,2
z }| {

aK1
6 aK1

7 aK1
8 aK1

9 aK1
10

k1,3
z }| {

aK1
11 aK1

12 aK1
13 aK1

14 aK1
15

K2 =

k2,1
z }| {

aK2
1 aK2

2 aK2
3 aK2

4 aK2
5

k2,2
z }| {

aK2
6 aK2

7 aK2
8 aK2

9 aK2
10

k2,3
z }| {

aK2
11 aK2

12 aK2
13 aK2

14 aK2
15

K3 =

k3,1
z }| {

aK3
1 aK3

2 aK3
3 aK3

4 aK3
5

k3,2
z }| {

aK3
6 aK3

7 aK3
8 aK3

9 aK3
10

k3,3
z }| {

aK3
11 aK3

12 aK3
13 aK3

14 aK3
15

j

T
1 (e) =

(

t e = v1

l0 e = v01
j

T
2 (e) =

(

t e = v2

l0 e = v02
j

T
3 (e) =

(

t e = v3

l0 e = v03

j

F
1 (e) =

(

f e = v1

l0 e = v01
j

F
2 (e) =

(

f e = v2

l0 e = v02
j

F
3 (e) =

(

f e = v3

l0 e = v03

j

K
1,1(e) =

n

v1 e = k1,1 j

K
1,2(e) =

n

v2 e = k1,2 j

K
1,3(e) =

n

v3 e = k1,3

28 Paweł Daniluk and Bogdan Lesyng

j

K
2,1(e) =

n

v1 e = k2,1 j

K
2,2(e) =

n

v2 e = k2,2 j

K
2,3(e) =

n

v3 e = k2,3

j

K
3,1(e) =

n

v1 e = k3,1 j

K
3,2(e) =

n

v2 e = k3,2 j

K
3,3(e) =

n

v3 e = k3,3

j

L
1,1(e) =

n

f e = k1,1 j

L
1,2(e) =

n

t e = k1,2 j

L
1,3(e) =

n

t e = k1,3

j

L
2,1(e) =

n

t e = k2,1 j

L
2,2(e) =

n

f e = k2,2 j

L
2,3(e) =

n

t e = k2,3

j

L
3,1(e) =

n

t e = k3,1 j

L
3,2(e) =

n

t e = k3,2 j

L
3,3(e) =

n

f e = k3,3

The following assignment satisfies all clauses:

u1 ! 0,u2 ! 1,u3 ! 1

Therefore, there exists an alignment with support containing
�

j

F
1 ,j

T
2 ,j

T
3

and size
180
21 . The support of this alignment also contains

n

j

K
1,1,j

K
2,3,j

K
3,2,j

L
1,1,j

L
2,3,j

L
3,2

o

,
and an alignment is induced by the following (see also Fig. 6) (j(a) = ? means,
that a /2 Dom(j)):

xV1L0(V1) =

v1
z }| {

| {z }

f

aL0
2 aL0

3 aL0
4 aL0

5 aL0
6

v1
1

z }| {

| {z }

l1

aL0
7 aL0

8 aL0
9 aL0

10aL0
11

v2
1

z }| {

| {z }

l2

aL0
12aL0

13aL0
14aL0

15aL0
16

v3
1

z }| {

| {z }

l3

aL0
17aL0

18aL0
19aL0

20aL0
21

xV2L0(V2) =

v2
z }| {

| {z }

t

aL0
1 aL0

2 aL0
3 aL0

4 aL0
5

v1
2

z }| {

| {z }

l1

aL0
7 aL0

8 aL0
9 aL0

10aL0
11

v2
2

z }| {

| {z }

l2

aL0
12aL0

13aL0
14aL0

15aL0
16

v3
2

z }| {

| {z }

l3

aL0
17aL0

18aL0
19aL0

20aL0
21

xV3L0(V3) =

v3
z }| {

| {z }

t

aL0
1 aL0

2 aL0
3 aL0

4 aL0
5

v1
3

z }| {

| {z }

l1

aL0
7 aL0

8 aL0
9 aL0

10aL0
11

v2
3

z }| {

| {z }

l2

aL0
12aL0

13aL0
14aL0

15aL0
16

v3
3

z }| {

| {z }

l3

aL0
17aL0

18aL0
19aL0

20aL0
21

x K1V1(K1) =

k1,1
z }| {

| {z }

v1

aV1
1 aV1

2 aV1
3 aV1

4 aV1
5

k1,2
z }| {

?????

k1,3
z }| {

?????

x K2V3(K2) =

k2,1
z }| {

?????

k2,2
z }| {

?????

k2,3
z }| {

| {z }

v3

aV3
1 aV3

2 aV3
3 aV3

4 aV3
5

x K3V2(K3) =

k3,1
z }| {

?????

k3,2
z }| {

| {z }

v2

aV2
1 aV2

2 aV2
3 aV2

4 aV2
5

k3,3
z }| {

?????

Theoretical and computational aspects of protein structural alignment 29

x K1L0(K1) =

k1,1
z }| {

| {z }

f

aL0
2 aL0

3 aL0
4 aL0

5 aL0
6

k1,2
z }| {

?????

k1,3
z }| {

?????

x K2L0(K2) =

k2,1
z }| {

?????

k2,2
z }| {

?????

k2,3
z }| {

| {z }

t

aL0
1 aL0

2 aL0
3 aL0

4 aL0
5

x K3L0(K3) =

k3,1
z }| {

?????

k3,2
z }| {

| {z }

t

aL0
1 aL0

2 aL0
3 aL0

4 aL0
5

k3,3
z }| {

?????

L0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? aL0
1 aL0

2 aL0
3 aL0

4 aL0
5 aL0

6 ? ? ? ? ? . . .

V1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? aV1
1 aV1

2 aV1
3 aV1

4 aV1
5 ? ? ? ? ? . . .

V2 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? aV2
1 aV2

2 aV2
3 aV2

4 aV2
5 ? ? ? ? ? ? . . .

V3 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? aV3
1 aV3

2 aV3
3 aV3

4 aV3
5 ? ? ? ? ? ? . . .

K1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? aK1
1 aK1

2 aK1
3 aK1

4 aK1
5 aK1

6 aK1
7 aK1

8 aK1
9 aK1

10 . . .

K2 aK2
1 aK2

2 aK2
3 aK2

4 aK2
5 aK2

6 aK2
7 aK2

8 aK2
9 aK2

10 ? ? ? ? ? aK2
11 aK2

12 aK2
13 aK2

14 aK2
15 ? ? ? ? ? ? . . .

K3 ? ? ? ? ? ? ? ? ? ? aK3
1 aK3

2 aK3
3 aK3

4 aK3
5 aK3

6 aK3
7 aK3

8 aK3
9 aK3

10 ? ? ? ? ? ? . . .

L0 . . . ? ? ? ? ? ? ? ? ? ? aL0
7 aL0

8 aL0
9 aL0

10 aL0
11 aL0

12 aL0
13 aL0

14 aL0
15 aL0

16 aL0
17 aL0

18 aL0
19 aL0

20 aL0
21

V1 . . . ? ? ? ? ? ? ? ? ? ? aV1
6 aV1

7 aV1
8 aV1

9 aV1
10 aV1

11 aV1
12 aV1

13 aV1
14 aV1

15 aV1
16 aV1

17 aV1
18 aV1

19 aV1
20

V2 . . . ? ? ? ? ? ? ? ? ? ? aV2
6 aV2

7 aV2
8 aV2

9 aV2
10 aV2

11 aV2
12 aV2

13 aV2
14 aV2

15 aV2
16 aV2

17 aV2
18 aV2

19 aV2
20

V3 . . . ? ? ? ? ? ? ? ? ? ? aV3
6 aV3

7 aV3
8 aV3

9 aV3
10 aV3

11 aV3
12 aV3

13 aV3
14 aV3

15 aV3
16 aV3

17 aV3
18 aV3

19 aV3
20

K1 . . . aK1
11 aK1

12 aK1
13 aK1

14 aK1
15 ?

K2 . . . ?
K3 . . . ? ? ? ? ? aK3

11 aK3
12 aK3

13 aK3
14 aK3

15 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

Fig. 6: Multiple alignment of structures corresponding to the solution of an instance
of 3SAT in example 2.

As can be seen in this example, an alignment corresponding to a 3SAT solution
contains an assignment of value to each variable (jT

i or j

F
i for every i), a selection

of a variable used to satisfy each clause (jK
i j for all i and j = 1,2,3), and selection

of one of three literals used to satisfy a clause (jL
i j for all i and j = 1,2,3). One can

easily see that for each clause only one of j

L
i j can be used. Same applies to j

K
i j if

all variables have values assigned. Otherwise each of residues aL0
2 aL0

3 aL0
4 aL0

5 would
be aligned to more than one residue in Ki. If an alignment contains local similarities

30 Paweł Daniluk and Bogdan Lesyng

encoding assignment of value for each variable and this assignment satisfies all
clauses, it can easily be extended with respective local similarities encoding choices
of variables and literals for each clause. Elements of FL guarantee that a variable
can be used to satisfy a clause only if it is assigned 1 and occurs in positive literal,
or is assigned 0 and occurs in negative literal. Such an alignment has a required size.

It remains to be proven, that every alignment of size 2(20k+10l)
(k+l)(k+l+1) contains either

j

T
i or j

F
i for each variable. We begin with an observation that local similarities

related to different variables are independent in a way that they cannot cause contra-
diction in an alignment. This means that when searching for an optimal alignment
one can independently deal with sets

n

j

T
i ,j

F
i ,j

K
ip,j

K
iq ,j

K
ir ,j

L
ps,j

L
qt ,j

L
ru

o

, where
p,q,r are the numbers of clauses containing variable i, and s, t,u are positions of
variable i in these clauses. If an alignment does not contain neither j

T
i nor j

F
i it

may contain all of j

K
ip,j

K
iq ,j

K
ir (Only one similarity from FL may be picked for

each clause.). Similarities j

K
ip,j

K
iq ,j

K
ir contribute 30

(k+l)(k+l+1) to the alignment size,
while each of j

T
i ,j

F
i contributes 40

(k+l)(k+l+1) . Therefore any alignment which does
not contain assignments of value for all variables is suboptimal. This concludes the
proof and explains the introduction of seemingly unnecessary segments v0i and l0.
The remaining technical details have been left to the reader.

With the theorem above we have established, that (provided P is not equal to NP)
all algorithms performing multiple alignment of structures have exponential com-
putational complexity with respect to the number of structures. This is due to the
fact that although every multiple alignment can be described with a set of pairwise
alignments, not every set of pairwise alignments induces a proper multiple align-
ment. Conflicts that prevent inducing a multiple alignment may involve alignments
of any number of structures and thus cannot be efficiently resolved by performing
clean-ups on subsets of structures. The last theorem in this section formalizes this
observation. Let us assume that S is divided into two subsets, S1 and S2, and we
have already calculated optimal multi-alignments of these sets. We will consider
computing a multiple alignment of S which contains alignments of S1 and S2.

Definition 11. For a given set of structures S , multiple alignments of its disjoint
subsets S1 and S2 (S1 [S2 = S), set F and number k, the Optimal Alignment of
Multiple Aligments problem (OAMA) is to determine whether there exists a multiple
alignment in S with support in F of size no less than k containing given alignment
of S1 and S2.

OAMA is a natural simplification of OSMA. Very often problems requiring com-
putations on a given set are solved with a “divide and conquer” paradigm in which
data is divided into two or more parts, which are solved independently and their so-
lutions are merged to achieve a solution for the whole dataset. This step is repeated
recursively. OAMA would occur in the merging stage of such an approach.

Theorem 8. OAMA is NP-complete.

This theorem does not require a proof nor a comment, since OAMA contains OSA.

Theoretical and computational aspects of protein structural alignment 31

Theorem 9. OAMA is NP-complete even if its input is extended with optimal align-
ments of all pairs of structures from S1 ⇥S2.

Due to lack of space we will leave this theorem without proof, since it is similar to
the proof of Theorem 7.

In this section we have shown that computing optimal multiple alignments adds
one more level of intractability to an already difficult problem of computing optimal
alignments of two structures. Conflicts that may occur between alignments of pairs
prevent them from being merged into a multiple alignment. Resolving these conflicts
is intractable by itself.

5 Practical aspects of computing structural alignments

In this section we describe certain issues which may arise in comparison of pro-
tein structures. The content of this section pertains mostly to application of local
descriptors to computing alignments, but may be treated as a collection of tips and
tricks to be used elsewhere. We will begin with a fundamental problem of setting
correct thresholds.

5.1 Dealing with uncertainty

Setting thresholds is a common practice in all kinds of parameter dependent mod-
els and theories. Threshold values are usually carefully estimated or derived from
theoretical principles. Nevertheless, whenever we are dealing with physical objects,
which are always measured with some uncertainty, values are rounded, and can-
not be treated as indisputable truth. Therefore, it is in principle impossible to set a
threshold which could be used to classify data into discrete categories. Whenever a
value is close to a threshold, classification cannot be trusted. This issue is usually
dismissed, because a mistake in classifying of values close to the threshold is rather
insignificant, once we realize that all thresholds are somewhat arbitrary.

However, the situation changes whenever a significant result is dependent on an
apparently insignificant difference. This does happen when two local descriptors are
compared. As described in section 2.2.2, there are two thresholds to be satisfied –
alignment quality (RMSD) and alignment size (number of aligned residues, con-
tacts, and segments). RMSD does not cause any doubts, since it is a real number
and any uncertainty may be blamed on inaccuracies of coordinates in experimen-
tally obtained protein structures. Alignment size, on the other hand, is discrete. It
may happen that descriptors are considered dissimilar because one of them lacks
an element the other one may have. This would depend on the thresholds used to
define contacts. It is quite probable that dissimilar descriptors could be made similar
by adding a contact to one of them which just slightly exceeds the threshold.

32 Paweł Daniluk and Bogdan Lesyng

This issue can be solved using a formalism of rough sets [38]. The idea is to
introduce a third logical value – “maybe”. If distances between residues fall within
contact thresholds by a very little margin, such contact is flagged as optional. When
descriptors are aligned, optional contacts which have their counterparts in the other
descriptor are treated normally, while non-aligned optional contacts are disregarded
(i.e. not counted in computation of the descriptor size). This is equivalent to giving
such contacts the benefit of the doubt – they might have a counterpart in the other
protein with a distance slightly too large to qualify as a contact.

It should be noted that equivalent results cannot be achieved by adjusting thresh-
olds. No matter how conservative or liberal the definition of a contact is, pairs of
residues with distances near to the threshold will always exist and descriptors con-
taining them will be susceptible to the described issue.

5.2 Similarity measure

5.2.1 Segment swaps

In chapter 3 we considered methods of computing alignments with or without seg-
ment swaps. However, we did not focus on the nature of segment swaps. Instead we
assumed that any mapping (with a support in a given set) is a valid alignment. In
some cases it may be useful to restrict the number of swaps to a certain value (e.g.
so-called circular permutations contain exactly one swap).

We say that a pair of aligned residues
D

a(k),b(m)
E

is a swap site, if residues a(l)

and b(n), which are the lowest numbered residues in the alignment following a(k)

and b(m) in respective structures, are not aligned together (see Fig. 7).
It is easy to compute the number of swap sites in a given alignment. If it exceeds

the preset limit it is possible to find the largest subalignment with a desired number
of swaps.

5.2.2 Alignment quality

Usually, finding the best structural alignment is a problem of optimization of two
variables – alignment size, and its quality. Root Mean Square distance (RMSD)
[24, 25] is the most popular measure due to its simplicity – it has a compact math-
ematical solution. Other methods (e.g. MaxSub[47]) exist, but did not manage to
achieve popularity. All these methods, however, rely on superimposing aligned
residues and assessing the quality of the superposition bases on distances between
aligned residues. Structures are therefore treated as rigid objects. Nevertheless, it
is commonly accepted that proteins are flexible to some extent. In section 1 we
have suggested that methods of aligning protein structures should take such flexi-
bility into account, and thus quality measures overcoming the rigid-body limitation

Theoretical and computational aspects of protein structural alignment 33
a(k) a(l)

b(m)

b(n)

Fig. 7: Example of a swap site. Axes correspond to residue sequences. Aligned
segments are plotted with diagonal lines.

should be used. The simplest way is to introduce explicit “hinges” which connect
rigid fragments [52].

In this section we will present a solution used in the DEDAL method, which was
designed to allow for flexible rearrangements of loosely coupled substructures (e.g.
domains) and small local distortions, while penalizing deformations significantly
changing the arrangement of interactions which stabilize structures. As in the case
of local descriptors, where inter-residue contacts are used to define the structural
neighborhood of a chosen residue, contacts may be used to detect a network of
interactions responsible for the rigidity of a protein structure. One may imagine that
residues in contact are connected with springs, which have to be somewhat extended
or compressed, if these residues were to be superimposed onto their counterparts in
the other structure. Degree of deformations of such springs may be treated as an
indicator of the structural similarity.

Definition 12. An aligned contact is a pair
DD

a(k),b(m)
E

,
D

a(l),b(n)
EE

, such that

a(k) is aligned to b(m), and a(l) is aligned to b(n) and at least one of
D

a(k),a(l)
E

,
D

b(m),b(n)
E

are in contact. We call an aligned contact proper if it exists in both
structures.

A distortion of a single aligned contact is called local tension and is expressed as
an RMS distance between descriptor elements:

34 Paweł Daniluk and Bogdan Lesyng

(a) (b)

Fig. 8: Similar structures (ASTRAL domains (a) d1d5fa i (b) d1nd7a) com-
prise two differently arranged subdomains. Properly aligned contacts are marked
with green lines. Yellow lines denote aligned contacts which are not preserved in
the other structure. Red lines mark residue pairs not in contact, which are aligned
with residues in contact. In order to superimpose these structures it is necessary to
extend springs corresponding to yellow contacts to lengths of respective red lines.

tens(
DD

a(k),b(m)
E

,
D

a(l),b(n)
EE

)=RMSD((El(a(k))[El(a(l))),(El(b(m))[El(b(n))))

A tension of the alignment x is a square mean of its local tensions computed for
each residue, and then for the whole structure:

tens(x) =

v

u

u

u

u

t Â
a(i)2Dom(x)

Âa(j)2T
a(i)

[tens(hha(i),x (a(i))i,ha(j),x (a(j))ii)]2
|T

a(j) |

|Dom(x)|

where a(j) 2 Ta(i) , if
DD

a(i),x (a(i))
E

,
D

a(j),x (a(j))
EE

is an aligned contact in x .

Theoretical and computational aspects of protein structural alignment 35

5.3 Case studies

To illustrate the issues arising in computing alignments of protein structures we
present three cases of difficult structure alignments not handled effectively by meth-
ods limited by the rigid-body or sequence-dependency constraints.

Saposins

Similarity between saposin and saposin-like “swaposin” domains is one of the first
circular permutations discovered. It was first indicated by sequence analysis[40],
and verified when the crystal structures became available. NK-lysin (SCOP domain
d1nkla) is composed of five a-helices arranged in the “folded leaf” architecture[29].
The “swaposin” domain (d1qdma1) of aspartic proteinase prophytepsin has the
same architecture, but the helices are in a different order[27] (Fig. 9). Nevertheless,
despite the obvious similarity most of the structure comparison methods align the
helices in agreement with their order along the sequence, which results in a visu-
ally poor superposition (Fig. 9a). The similarity of continuous segments commonly
used does not provide enough information concerning the arrangement of helices
and at the same time supports an alignment without swaps (Fig. 9c). It should be
emphasized that, apart from the worse RMS distance, alignments without swaps
incorrectly match cysteine residues forming the disulfide bonds. FlexSnap[42] and
DEDAL[10] identify the similarity correctly (Fig. 9b).

GTPases

Guanine nucleotide-binding proteins (G proteins) are important cellular regulators.
They act as binary switches, and use the GTP-GDP-GTP cycle to flip between the on
and off states. GTPase domains they contain are responsible for the GTP/GDP bind-
ing. The GTPase activity depends on the set of five conserved sequence motifs[36].
An alternative circularly permuted GTPase structure (cpGTPase)[45] which con-
tains all five motifs in a different order also exists(Fig. 10a and 10b). Despite a dif-
ferent topology the cpGTPase domains retain the GTP binding activity, and have the
same architecture as GTPases. Although the crucial motifs are highly conserved and
identifiable by sequence analysis[3], many structure comparison methods are un-
able to correctly align residues which form the GTP/GDP binding site. CE[46] and
DALI[21] yield 36% accuracy, while FlexSnap[42] and C

a

-match[4] have 90% ac-
curacy (reference alignment contains residues responsible for GTP binding). In con-
trast, DEDAL[10] yields an entirely accurate superposition in this region (Fig. 10c
and 10d).

36 Paweł Daniluk and Bogdan Lesyng

(a) (b)

d
1
n
k
l
a
_

d1qdma1

(c)

Fig. 9: The Saposin domain of NK-lysin (SCOP domain d1nkla) and the “swa-
posin” domain of prophytepsin (d1qdma1). Despite differing topologies these two
domains have the same architecture and identical disulfide bonds. (a) Methods in-
capable of handling segment swaps wrongly align cysteine residues (figure shows
alignment computed by DALI). (b) DEDAL correctly identifies the best superpo-
sition and the disulfide bond network. (c) Alignments shown in (a) (red) and (b)
(green) are plotted against local similarity of single segments of length 5 (yellow).
It can be observed that similarity of continuous segments is insufficient to discover
the correct alignment.

Theoretical and computational aspects of protein structural alignment 37

N

C

G1

G4
G5

(a)

N

C

G1

G4

G5

(b)

(c) (d)

Fig. 10: Topologies of (a) the Dynamin A GTPase (SCOP domain d1jwyb) and
(b) cpGTPase domain from the YjeQ protein (d1u0la2). Aligned SSEs are indi-
cated by lighter colors. (c) DEDAL superposition of the GTPase and the cpGTPase
domains (yellow and blue, respectively). For clarity, only the aligned parts of the
structures are shown. (d) View of the binding site in the same superposition show-
ing residues participating in the GDP/GTP binding (red) and the GDP molecule.
Despite significant topological differences, DEDAL effectively handles all alignable
SSEs and correctly superimposes the active sites. The sequence identity of the su-
perimposed regions is 24.2%.

38 Paweł Daniluk and Bogdan Lesyng

Cyanovirin-N

(a) (b)

(c)

Fig. 11: Conformation of the Cyanovirin-N dimeric form depends on the molec-
ular environment. (a) X-ray (d1l5ba) and (b) NMR (d1l5ea) structures have
different conformations of the “hinge” region (PRO51-ASN53) (c). To fully ana-
lyze the similarity of the two structures it is necessary to abandon the rigid-body
approach. The regions on both sides of the “hinge” have to be superimposed sepa-
rately. DEDAL accomplishes this by extending local similarities in both regions and
effectively defining the “hinge” as the boundary between them.

Cyanovirin-N is a potent HIV-inactivating protein, which exists in both monomeric
and domain-swapped dimeric forms. Although the monomeric form is predominant
in solution, and was determined first[7], the metastable dimeric form is also present.

Theoretical and computational aspects of protein structural alignment 39

The dimeric form is stabilized in the crystalline state[51] and eventually its struc-
ture was also obtained by NMR[5]. For the dimeric form, it can be observed that the
X-ray (SCOP domain d1l5ba) and NMR (d1l5ea) structures exhibit a slightly
different arrangement of subdomains (Fig. 11a and 11b), and that the local confor-
mations of all residues except for the hinge region (PRO51-ASN53, Fig. 11c) are
identical. Nevertheless, the similarity between the two structures cannot be easily
determined by the rigid-body techniques, which are capable of aligning only one
subdomain. Surprisingly FlexSnap[42], although in principle capable of handling
conformational variability, gives only 50% accuracy with the reference alignment.

6 Conclusions

Computing protein structure alignments is one of the most commonly performed
tasks in computational structural biology. Most knowledge about proteins and their
functions which is not gathered experimentally is inferred from properties of se-
quentially or structurally analogous proteins. Therefore, despite the maturity of this
field, similarity measures and efficient methods of computing alignments are sub-
jects of ongoing research.

In this study we have concentrated on structure alignment methods based on so-
called local fragments. This is probably the most prominent approach. Being based
on local similarities, it also has the capability to build alignments containing seg-
ment swaps and deal with spatial distortions. These features are crucial in detecting
“difficult” similarities, some of which were presented.

One of the reasons for the lack of a “golden standard” structure alignment method
is the fact that under most circumstances the problem of computing the optimal
alignment is intractable. Therefore, all computationally feasible methods have ei-
ther to be heuristic or be based on a simplified similarity measure. In particular, we
have shown that the problem of computing an optimal alignment based on similar-
ities comprising three disjoint segments is NP-complete even if segment swaps are
forbidden. If segment swaps are allowed, the problem is also intractable for two seg-
mented similarities. We have described algorithms that could be used for computing
such alignments, and presented a particularly effective formalism of local similari-
ties – Local Descriptors of Protein Structure. This method has been implemented,
tested, and is publicly available (DEDAL[10]).

Computing multiple alignments is even harder. It is NP-complete since it contains
an intractable problem of pairwise alignment, but just like in the case of sequence
alignments, even if computing pairwise alignments was effectively solved, comput-
ing an optimal multiple alignment would require time exponential with respect to
the number of structures.

Nevertheless, despite all theoretical difficulties there exists a plethora of success-
ful methods. Most of them overcome inherent intractability by disallowing segment
swaps, using a rigid-body quality measure, and using simple local similarities (e.g.
single segments). One of the reasons for their success is that reference databases

40 Paweł Daniluk and Bogdan Lesyng

of structural alignments which could be used to benchmark them have not yet been
developed. At the same time, they generally performed well enough to allow for
a proper similarity analysis by a human expert. Traditionally, alignment methods
were ranked by the number of residues they aligned under certain quality thresh-
olds. Although this seems to be a valid and fully objective method, it by no means
takes into account the biological meaning of the computed similarities. This is akin
to the concern frequently raised in the protein structure prediction community, that
models with correct prediction of an overall topology (fold) may be less relevant
than models correctly predicting conformation of an active site.

In recent years, studies evaluating alignment algorithms on human curated bio-
logically significant alignments have emerged[32, 6] giving a basis for more relevant
benchmarks. DEDAL[10] – a method based on the principles presented in this re-
view and employing local descriptors – outperforms established methods despite
its simplicity, especially when tested on the most difficult cases. DAMA[9] – its
prototype extension carrying out multiple structural alignments, has already been
announced.

One of the underexplored directions of research (in authors’ opinion) are heuris-
tics based on relaxation. Computing an alignment is by its nature a discrete combi-
natorial problem. Nevertheless, there are successful applications of techniques con-
verting a discrete problem into an easier continuous one with the aim of obtaining
an approximate solution. This technique might be of use in efficiently computing
multiple alignments (private communications, unpublished work).

As the number of known protein structures and high quality models increases,
computing biologically relevant alignments is becoming a serious option in the area
traditionally reserved to genome-wide sequence searches. It is generally accepted
that a sequence of residues implies a spatial structure, which in turn determines
atomic functional motions and other properties of a molecule. Therefore conclusions
inferred from the structure comparison are in general more reliable than ones based
on sequence alignments.

One should note that although causal relations between sequence, structure,
atomic motions and function are often discussed in biological literature, until now
such relations do not have any formal, consistent mathematical framework. Nev-
ertheless, during the past few years, based on methodologies developed for com-
plex systems in economy and neurophysiology, a prototype of causal analysis for
biomolecular systems has been proposed12. In particular, applying the presented
methodology to trajectories obtained from molecular dynamic simulations can help
to elucidate the actual logic of its functioning. The development of such formalism
for causal relations is one of the challenging tasks in structural biology and bioin-
formatics.

12 For an overview and references related to this topic see[11].

Theoretical and computational aspects of protein structural alignment 41

Acknowledgements

This study was supported by the Biocentrum-Ochota Project (POIG.02.03.00-00-
003/09), the research grant (DEC-2011/03/D/NZ2/02004) of the National Science
Centre, and partially by BST/BF funds of the University of Warsaw. Figures 1, 10
and 11 are reproduced from an earlier study by the same authors[10].

References

[1] Alexandrov N (1996) SARFing the PDB. Protein Engineering 9(9):727
[2] Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lip-

man DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein
database search programs. Nucleic Acids Res 25(17):3389–402

[3] Anand B, Verma SK, Prakash B (2006) Structural stabilization of GTP-binding
domains in circularly permuted GTPases: implications for RNA binding. Nu-
cleic Acids Res 34(8):2196–205

[4] Bachar O, Fischer D, Nussinov R, Wolfson H (1993) A computer vision based
technique for 3-D sequence-independent structural comparison of proteins.
Protein Eng 6(3):279–88

[5] Barrientos LG, Louis JM, Botos I, Mori T, Han Z, O’Keefe BR, Boyd
MR, Wlodawer A, Gronenborn AM (2002) The domain-swapped dimer of
cyanovirin-N is in a metastable folded state: reconciliation of X-ray and NMR
structures. Structure 10(5):673–86

[6] Berbalk C, Schwaiger CS, Lackner P (2009) Accuracy analysis of multiple
structure alignments. Protein Sci 18(10):2027–35

[7] Bewley CA, Gustafson KR, Boyd MR, Covell DG, Bax A, Clore GM, Gronen-
born AM (1998) Solution structure of cyanovirin-N, a potent HIV-inactivating
protein. Nat Struct Biol 5(7):571–8

[8] Bystroff C, Baker D (1998) Prediction of local structure in proteins using a
library of sequence-structure motifs. J Mol Biol 281(3):565–77, DOI 10.1006/
jmbi.1998.1943

[9] Daniluk P, Lesyng B (2011) DAMA: a novel method for aligning multiple
protein structures. In: Multi-Pole Approach to Structural Biology Conference,
Warsaw, Poland

[10] Daniluk P, Lesyng B (2011) A novel method to compare protein struc-
tures using local descriptors. BMC Bioinformatics 12(1):344, DOI 10.1186/
1471-2105-12-344

[11] Daniluk P, Dziubiński M, Hallay-Suszek M, Rakowski F, Walewski L, Lesyng
B (2012) From experimental structural probability distributions to the theoret-
ical causality analysis of molecular changes. CAMES (In press)

[12] Dobbins S, Lesk V, Sternberg M (2008) Insights into protein flexibility:
The relationship between normal modes and conformational change upon

42 Paweł Daniluk and Bogdan Lesyng

protein–protein docking. Proceedings of the National Academy of Sciences
105(30):10,390

[13] Dror O, Benyamini H, Nussinov R, Wolfson H (2003) MASS: multiple struc-
tural alignment by secondary structures. Bioinformatics 19 Suppl 1:i95–104

[14] Elias I (2006) Settling the intractability of multiple alignment. J Comput Biol
13(7):1323–39, DOI 10.1089/cmb.2006.13.1323

[15] Garey MR, Johnson DS (1979) Computers and intractability: a guide to the
theory of NP-completeness. A Series of books in the mathematical sciences,
W. H. Freeman, San Francisco

[16] Gerstein M, Echols N (2004) Exploring the range of protein flexibility, from
a structural proteomics perspective. Current opinion in chemical biology
8(1):14–19

[17] Gibrat JF, Madej T, Bryant SH (1996) Surprising similarities in structure com-
parison. Curr Opin Struct Biol 6(3):377–85

[18] Grishin NV (2001) Fold change in evolution of protein structures. J Struct Biol
134(2-3):167–85

[19] Guerler A, Knapp EW (2008) Novel protein folds and their nonsequential
structural analogs. Protein Sci 17(8):1374–82

[20] Holm L, Park J (2000) DaliLite workbench for protein structure comparison.
Bioinformatics 16(6):566–7

[21] Holm L, Sander C (1993) Protein structure comparison by alignment of dis-
tance matrices. J Mol Biol 233(1):123–38

[22] Ilyin VA, Abyzov A, Leslin CM (2004) Structural alignment of proteins by a
novel TOPOFIT method, as a superimposition of common volumes at a topo-
max point. Protein Sci 13(7):1865–74

[23] Jung J, Lee B (2000) Protein structure alignment using environmental profiles.
Protein Eng 13(8):535–43

[24] Kabsch W (1976) A solution for the best rotation to relate two sets of vectors.
Acta Crystallographica Section A 32(5):922–923

[25] Kabsch W (1978) A discussion of the solution for the best rotation to relate
two sets of vectors. Acta Crystallographica Section A 34(5):827–828

[26] Kawabata T, Nishikawa K (2000) Protein structure comparison using the
markov transition model of evolution. Proteins 41(1):108–22

[27] Kervinen J, Tobin GJ, Costa J, Waugh DS, Wlodawer A, Zdanov A (1999)
Crystal structure of plant aspartic proteinase prophytepsin: inactivation and
vacuolar targeting. EMBO J 18(14):3947–55

[28] Konagurthu AS, Whisstock JC, Stuckey PJ, Lesk AM (2006) MUSTANG: a
multiple structural alignment algorithm. Proteins 64(3):559–74, DOI 10.1002/
prot.20921

[29] Liepinsh E, Andersson M, Ruysschaert JM, Otting G (1997) Saposin fold re-
vealed by the NMR structure of NK-lysin. Nat Struct Biol 4(10):793–5

[30] Lindqvist Y, Schneider G (1997) Circular permutations of natural protein se-
quences: structural evidence. Curr Opin Struct Biol 7(3):422–7

Theoretical and computational aspects of protein structural alignment 43

[31] Mavridis L, Ritchie D (2010) 3D-blast: 3D protein structure alignment, com-
parison, and classification using spherical polar fourier correlations. In: Pacific
Symposium on Biocomputing, vol 2010, pp 281–292

[32] Mayr G, Domingues FS, Lackner P (2007) Comparative analysis of protein
structure alignments. BMC Struct Biol 7:50

[33] Menke M, Berger B, Cowen L (2008) Matt: local flexibility aids protein mul-
tiple structure alignment. PLoS Comput Biol 4(1):e10, DOI 10.1371/journal.
pcbi.0040010

[34] Metropolis N, Rosenbluth A, Rosenbluth M, Teller A, Teller E (1953) Equa-
tion of state calculations by fast computing machines. The Journal of Chemical
Physics 21(6):1087

[35] Needleman SB, Wunsch CD (1970) A general method applicable to the
search for similarities in the amino acid sequence of two proteins. J Mol Biol
48(3):443–53

[36] Niemann HH, Knetsch ML, Scherer A, Manstein DJ, Kull FJ (2001) Crys-
tal structure of a dynamin GTPase domain in both nucleotide-free and GDP-
bound forms. EMBO J 20(21):5813–21

[37] Orengo CA, Taylor WR (1996) SSAP: sequential structure alignment program
for protein structure comparison. Methods Enzymol 266:617–35

[38] Pawlak Z (1991) Rough Sets: Theoretical Aspects of Reasoning About Data.
Theory and decision library: System theory, knowledge engineering, and prob-
lem solving, Kluwer Academic Publishers

[39] Pearson W, Lipman D (1988) Improved tools for biological sequence compar-
ison. Proceedings of the National Academy of Sciences 85(8):2444

[40] Ponting CP, Russell RB (1995) Swaposins: circular permutations within genes
encoding saposin homologues. Trends Biochem Sci 20(5):179–80

[41] Rocha J, Segura J, Wilson RC, Dasgupta S (2009) Flexible structural
protein alignment by a sequence of local transformations. Bioinformatics
25(13):1625–31

[42] Salem S, Zaki M, Bystroff C (2010) FlexSnap: Flexible Non-sequential Protein
Structure Alignment. Algorithms for Molecular Biology 5(1):12

[43] Shatsky M, Nussinov R, Wolfson HJ (2004) FlexProt: alignment of flexible
protein structures without a predefinition of hinge regions. J Comput Biol
11(1):83–106

[44] Shatsky M, Nussinov R, Wolfson HJ (2004) A method for simultaneous align-
ment of multiple protein structures. Proteins 56(1):143–56, DOI 10.1002/prot.
10628

[45] Shin DH, Lou Y, Jancarik J, Yokota H, Kim R, Kim SH (2004) Crystal struc-
ture of YjeQ from Thermotoga maritima contains a circularly permuted GT-
Pase domain. Proc Natl Acad Sci U S A 101(36):13,198–203

[46] Shindyalov IN, Bourne PE (1998) Protein structure alignment by incremental
combinatorial extension (CE) of the optimal path. Protein Eng 11(9):739–47

[47] Siew N, Elofsson A, Rychlewski L, Fischer D (2000) MaxSub: an automated
measure for the assessment of protein structure prediction quality. Bioinfor-
matics 16(9):776–785

44 Paweł Daniluk and Bogdan Lesyng

[48] Swendsen RH, Wang JS (1986) Replica Monte Carlo simulation of spin
glasses. Phys Rev Lett 57(21):2607–2609

[49] Vogel C, Morea V (2006) Duplication, divergence and formation of novel pro-
tein topologies. Bioessays 28(10):973–8, DOI 10.1002/bies.20474

[50] Wohlers I, Domingues FS, Klau GW (2010) Towards optimal alignment of
protein structure distance matrices. Bioinformatics 26(18):2273–80

[51] Yang F, Bewley CA, Louis JM, Gustafson KR, Boyd MR, Gronenborn AM,
Clore GM, Wlodawer A (1999) Crystal structure of cyanovirin-N, a potent
HIV-inactivating protein, shows unexpected domain swapping. J Mol Biol
288(3):403–12

[52] Ye Y, Godzik A (2003) Flexible structure alignment by chaining aligned frag-
ment pairs allowing twists. Bioinformatics 19 Suppl 2:ii246–55

[53] Ye Y, Godzik A (2005) Multiple flexible structure alignment using partial order
graphs. Bioinformatics 21(10):2362–9, DOI 10.1093/bioinformatics/bti353

	Theoretical and computational aspects of protein structural alignment
	Paweł Daniluk and Bogdan Lesyng
	Introduction
	Alignments and superpositions
	Existing methods
	Difficult similarities
	Computational complexity

	Fragment-based methods
	Continuous segments, segment pairs
	Local descriptors of protein structure

	From local similarities to global alignments
	Computational complexity of Optimal Structure Alignment Problem
	Important variants of Optimal Structure Alignment problem and their complexity
	Solving Optimal Structure Alignment Problem with local descriptors

	Alignments of multiple structures
	Optimal Structural Multiple Alignment Problem
	Analysis of computational complexity

	Practical aspects of computing structural alignments
	Dealing with uncertainty
	Similarity measure
	Case studies

	Conclusions
	References

