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’omics data

» Transcriptomics - quantifications of gene expression
» Proteomics - quantifications of proteins (peptides)

» Metabolomics - quantifications of metabolites

’omics data
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Systems biology

Pre-processing and browsing

Microarray
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Hybridization

Image after scanning

Microarray data

Gene/Expr E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 .. EM
Gl 0,72/0,10 0,57 1,08 0,66 0,39 0,49 0,28 0,50 0,66 ... 0,52
G2 1,58 1,15/1,22 0,54 0,73 0,82 0,82 0,90 0,73 ... 0,75
G3 1,1Q !
G4 0,97 £,00 0,85 0,84 0,72 0,66 0,68 0,47 0,61 0,59 ... 0,65

445 1,44 1,12 1,10 1,15 0,79 0,77 0,78 0,71 0,67 ... 0,36
1,15 1,10 1,00 1,08 0,79 0,98 1,03 0,59 0,57 0,46 ... 0,39
1,321,35 1,13 1,00 0,91 1,22 1,05 0,58 0,57 0,53 ... 0,43
1,011,38 1,21 0,79 0,85 0,78 0,73 0,64 0,58 0,43 ... 0,47
0,85/1,03 1,00 0,81 0,82 0,73 0,51 0,24 0,54 0,43 ... 0,51
N & 10000

2.3/2.4 = “Red/Green”

log-transformation
M < 100

Gene/Expr E1 E2 E3 E4 E5 E6 E7 E8 E9 EI0 .. EM
Gl -0,47 -3,32 -0,81 0,11 -0,60 -1,36 -1,03 -1,84 -1,00 -0,60 ... -0,94
G2 0,66 0,07 020 0,29 -0,89 -0,45 -0,29 -0,29 -0,15 -0,45 ... -0,42
G3 0,14 -0,04 0,15 -0,58 -0,30 -0,18 -0,38 -0,49 -0,81 ... -1,12
G4 -0,04 0,00 -0,25 -0,47 -0,60 -0,56 -1,09 -0,71 -0,76 ... -0,62
G5 0,28 -0,17 -0,18 -0,60 -0,23 -0,58 -0,79 -0,29 ... -0,74
G6 0,54 0,16 0,14 0,20 -0,34 -0,38 -0,36 -0,49 -0,58 ... -1,47

G7 0,00 0,11 -0,34 -0,03 0,04 -0,76 -0,81 -1,12 ... -1,36
G8 0,43 0,18 0,00 -0,14 0,29 0,07 -0,79 -0,81 -0,92 ... -1,22
G9 0,46 0,28 -0,34 -0,23 -0,36 -0,45 -0,64 -0,79 -1,22 ... -1,09

-0,23 0,04 0,00 -0,30 -0,29 -0,45 -0,97 -2,06 -0,89 -1,22 ... -0,97

N = 10000

log(2.3/2.4) = log(“Red/Green”)

IC-curve and MA plot

Non-differentially
expressed genes (NDE

IC curve
genes)

MA plot

Differentially expressed
genes (DE genes)

cDNA-microarray experiments where two populations are
compared

— IC curve: In spike-in experiments all RNA-abundances are known: the
IC-curve plots the expected RNA-abundances against the measured
values (Z.e. the concentration)

— MA plot: log-ratios are plotted against the average log-intensities

‘omics preprocessing

» Background correction. Aims to straighten the lowet
knee in the IC-curve.

» Saturation correction. Aims to straighten the upper
knee in the IC-curve.

» Dye normalization. Aims to put the IC-cutves into a
common scale (common slope).




A Without background correction
. Pre-processing affects
down-stream analysis

Microarrays
versus
RNA-Seq

cell type A
!
!

cell type B
RNA extraction }

reverse transcription

<DNA Spotting
Printing or Coupiing Oligos

o wbeiroa
Hepatitis B virus-positive metastatic e i
hepatocellular carcinomas: Two-channel cDNA
P: 65 patients with metastasis microarrays

B. with background correction NP: 22 patients with no metastasis #Chancel furay
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Microarrays versus RNA-Seq RNA-Seq
RNA-Seq advantages: » Tllumina HiSeq2000 -
» Can detect “all” transcribed regions (including small RNA) ~ Read length: 100bp =
» Can be applied to all organisms - :’;ge;o—grgl:cadx 2100 bp
. . o P - 150- p per run
» Broader dynamic range: higher sensitivity and specificity
» Can do much more than just quantifying gene expression (SNP =10 lanes per run (flow cell)
detection, Isoform detection, etc) ~ 75-150 M reads per lanc
il i » Multiplexing (bar-coding): 3 samples per lane
i » 10 - 150 ng of total RNA per wood section requires amplification
H
et Rvems Gt
Mapping reads to reference genome Quantifying expression
Raw data: » Count the number of reads mapped to each gene
@HWI-EAS293:1:1:4:4474#0/1
TTAAAGCGATCCAATGGTCGGATCTATATTTATGGACCTTTTGAGCTGGTACTCTAGTAGTGTGGGTGGAAT Gene 1 Gene 2
@HWI-EAS293:1:1:7:1410#0/1 ’—> ’—b
\T¢ AAATTTC \T/ TGACAGT/ TTTCAT( AGTGAT! TGGTGAGT! AT
samplel — G OO0
One file per sample or lane: 100 M reads, 20GB file _ = = = == -
Gene 1 Gene 2
— —

reference exon exon

Aligned/
Unaligned

= Al

sample2 — [} 000

RPKM = Reads Per Kilobase of exon model per Million mapped reads

Gene 1 Gene 2

Gene 1 Gene 2

Samplel |14reads |5reads

Sample 1

0.18 RPKM | 0.25 RPKM

Sample2 |10reads |2reads

Sample 2

0.25 RPKM | 0.2 RPKM




Novel transcribed regions

» Detect regions outside known gene models

» Go through whole genome
— Sliding window or similar
— Search for regions with high coverage

— Do semi-de novo transcript assembly

Isoform detection (splicing variants)

» Detected by bethods that reconstruct entire transcripts

Gene
—
Reference ——F— [ H I ———
Isoform 1 Isoform 2
— —
I ] I I

Look at your data!

Cluster/Treeview
Hierarchical Clustering Explorer (HCE)
Spotfire
GeneSpring

Hierarchical clustering and
principle component analysis (PCA)

19 melanomas of all 31 cutaneous melanoma samples
(Bitter et al. Nature. 406: 536, 2000)

Model inference and selection

Model inference methods

* Unsupervised learning (clustering, class discovery); used
to “discover” natural groups of genes/experiments e.g.
— discover subclasses of a form of cancer that is clinically
homogenous
* Supervised learning; used to “learn” a model of a set of
predefined classes of genes/experiments e.g.

— diagnosis of cancer/subclasses of cancer




The machine learning strategy ...

Characterized proteins
Uncharacterized proteins

... iteratively uses experiments to
provide representative examples and
computational models to provide
experimentalists with new, testable
hypotheses

¢ Clustering
Nearest neighbor predictors
— cvolutionary link
— need few examples
¢ Model inducers
— more powerful
4 Unknown
— interpretable models

4 Example: experimentally determined

Data representation

Data representation 1

Data representation 2

Clustering analysis
Need to define;

* measure of similarity

* algorithm for using the measure of similarity to

Measure of similarity

What is similar? Euclidean distance

ssev

E2
- ]
discover natural groups in the data | L
i .
XX ,
The number of ways to divide n items x ‘
into k clusters: k"/k! ot ]
: = v
Example: 10500/10! = 2.756 x 10493 R sy . .
: —
' s El
Hierarchical clustering Example of hierarchical clustering:
languages of Europe
i:;i:;illlis;i;;iemilarit)' measures: (a) single linkage, (b) complete linkage and (c) e RS NCUES )
English Dm Dutch  German French  Spanish  ltalian  Polish Hungarian Fir.mia‘h
{E) (Da) (Du) (G) (Fr) (Sp) i 4(2 Hﬂ B (Fi) -
- &
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[ s _ ¥ _meh

= S = \,
If 1 q \‘ dyy+dyy + dys + dyy + dyg + ds
4 6
\\ 5 5/

Distance: Frequency of numbers with different first letter e.g.
din=2 dip, =7 dgy =1

Inter-cluster strategy: SINGEL LINKAGE




Iteration 2
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Iteration 5
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Iteration 7 Iteration 8
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Example: Decision tree learning
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Class knowledge:
Group 1: Nordic countries
Group 2: UK, France, Greece, Spain,
Portugal

Christian Democrats > 16

Group 3: Benelux countries,

Switzetland, Austria, Italy, Germany Group 3 Agrarians >4

Groupl Group2

Example: Decision tree learning

Some concepts:
1. Data: Observations collected from the real world (e.g. the voting pattern

in Sweden). Observations consist of a number of features (e.g.
communist votes)

2. Examples: Observations labeled with class information (e.g. Sweden
belong to group 1).

3. Model: A general representation of the data (e.g. the decision tree)

Models are induced!

1. Induction: Using specific information/data to atrive at general
knowledge (e.g. from examples to a decision tree).

2. Deduction: Using general knowledge to say something about a specific
case (e.g using a decision tree to predict the group of a new country).

Models can be predictive and/or descriptive.

Prior Probability
» w - state of nature, e.g.
— w, the object is a fish, w, the object is a bird, etc.

— w, this course is good, w, this course is bad

— etc.

» A priori probability (ot ptior) P(w)

Class-conditional probability

» Obsetvation x, e.g.
— The objects has wings
— The 10 minutes of the lecture was interesting

» Class-conditional probability p(x| )

Bayes decision rule
Suppose the priors P() and conditional densities p(x| ) are known

likelihood prior
p(x| @;)P(e;)

/ p(x)

posterior evidence

Bayes decision rule:
Two classes: If P(w, |x) > P(,|x) then choose w,, else choose w,.
In general: Choose

W' = argmax P(w; | x)

Example

P(ca_lor!peuzh) P(peach|color)

.’ ‘ . P(color|apple) r . N
/ | . S

P(apple|color)
T~

color

color

» Bayes Decision Rule
— If P(apple | color) > P(peach | color) then choose apple

» Note that the evidence p(color) is only necessary for normalization
purposes; it does not affect the decision rule

So, what about the data?

» Use examples to estimate the probability distril:==
— P()is easy. e

= ]| m): Histogram!

» One feature: bins are rectangles, Two features: cubes, #-features: hyper-cubes.
» More dimensions/features require more training data: Curse of
dimensionality!
— If we need 10 observations when we have one feature (to get a good histogram),
then we need 10” observations when we have #-features!

» If the true probability distributions are known, then Bayes decision rule is
optimal (minimizes error rate).




Feature selection

Feature selection is used to deal with the curse of
dimensionality
— Ranking methods: compute the disctiminatory capability of
each feature and select the best ones
— Wrapper methods: select a subset of features, induce a model
and use it’s prediction performance as fitness. Repeat.
Computationally expensive!
— Dimensionality reduction: map your features into a smaller
features space (e.g. PCA)

k-nearest neigboor

» The simplest of all machine learning
algorithms.

» Each observation is a point in the #-
dimensional space spanned by the
features.

> An observation is assigned to the class
most common amongst its & nearest
neighbors.

» ”Nearest” can be defined differently:
Euclidean distance, correlation, etc.

» Lazy learning where the function is
only approximated locally and all
computation is delayed until
classification.

Linear versus non-linear classifiers

2 "

* Linear: Finds a hyperplane that separates the classes
— In two dimensions: u;, +w,x, + wyx,
— Use the examples x to estimate w

¢ Non-linear: Support vector machines uses the kernel

trick: separating “hyperplan

— The kernel maps the observations into a higher 3

dimensional space where the problem is linearly
separable

Maximum margin

Support veetors ¥

Artifical neural networks

» Inspired by how the brain works — a mathematical model of
the operation of the brain
» Brain versus computers:
— serial versus parallell computing
— even though a computer is much faster in raw swithcing speed, the
brain is faster at what it does
» An ANN is a number of nodes (units) connected by links.
Each link is associated with a numerical weight.
~ Training set: (xy, ), (in S, or (30 f05))
— Learning in an ANN is reduced to the process of using the training
data to tune the weights so that the network represents the function f

Network structure

» Feed-forward network: all units are connected to all units in the next layer
— One (sufficiently large) hidden layer can represent any continuous function

— More hidden layers can even represent discontinuous functions
Output units 0,

Wi

Hidden units 4;

W

Input units Iy

» Recurrent network: feed back loops, internal states (memory):
— E.g. The brain is clearly a recurrent network

Boolean functions
a; = glin)

Input

It Activation
Function "~ Function

Ongpuar

» Units can represent the basic logical gates

» Thus, units can build networks that can tepresent any
Boolean function

Pras P

AND OR NOT




Optimal network structures, overfitting
and Occam’s razor

» Too small network: the network will be incapable of representing the
desired function

v

Too large network: the network can memorize all the examples by
forming a lookup table: Overfitting!

> Every algorithm involved with classification runs the risk of overfitting
the data
— The alg. learns the errors (noise) in the data as well as the underlying
structure of the processes that created the data

— Occurs because the alg. tries to reduce the classification error on the
training data

— A model X is overfitted if there exists a model Y that do better on the
unseen test set, but worse on the training set

» To identify this phenomenon:
— Use training/test sets
— Choose the simples model that explains the data! Occam’s razor

Perceptrons

* Perceptrons: single-layer, feed-forward networks

— Majosty function: outputs 1if a majority of the » inputs are 1 fwould
require a decision treewith C{2%) nodes)

» A perceptron can only represent a function if there is a line that
separates all the white dots {Us) from the black dots (1s), ie

LW o
functions that are linearly separable ! ’
Input Output]
Urits Unit

Single Perceptron

1

1 o

(b) 1, or I, (©

G correct on test set

Perceptrons versus decision trees: Example

Perceptron ——
i Decision tree

06 j //. _,«\./\/\—\/

Perceptron
Decision tree -

% COITECt On test set

04 .
0 10 20 30 40 S0 60 70 80 90 100 0 10 20 30 40 50 60 70 80 S0 100

Training set size Training set size

(a) ()

(a) Majority function | &
(b) Waiting problem ‘ |2

Burger | 3060 |

X | Fer| Yer| ver | ves| |

Ve

Awibuies _ il
Esample o g o Ew || Wilwair
T —
x 1 E o | ¥ Yo | Y

Model evaluation

Method power

You want to find homologous proteins to a specific protein A
using some computational method X:

TP/(TP+FN)
Specificity: TN/ (TN+EP)

All proteins in the database

N

+~— homologous\to A

Homologous to A

Cross validation

Iteration 1 Iteration 2 Iteration 3

Observation 1
Observation 2
. Fold 1
. Fold 2
. Fold 3
Observation n

» k-fold cross validation: 4 iterations

» Leave-one out cross validation: # iterations

10



Evaluation

» Classifications can be

Threshold selection

© Gene with function “protein biosynthesis” sensitivity:

TP/(TP+FN)

@ Gene with a different function

~ "True positives (TP) specificity:
— False negatives (FN) N . TN/(IN+FP,
~ “True negatives (TN) Fraction L )
~ False positives (FP) of votes
» Evaluation measures: for o1l
— accuracy = (IP+TN)/(IP+FN+TN+FP) protein o
— sensitivity = TP/(TP+FN) biosynthesis o
— specificity = TN/(TN+FP) Q o .
» Confusion matrix: " Predicted | | | 7T e e T Threshold 1
| Class0 | Class 1 oo @ @
4 o
w
g om P °
3o —
3
<u ‘; g 8 8 8 8 8 & 8 8 8o 8 812813 Test set
5 FN TP . o
S Sensitivity = 2/3, Specificity=1
ROC analysis and classifier evaluation ROC analysis and classifier evaluation
Perfect discrimination + ROC: Receiver operating Perfect discrimination « Which ROC curve is better?
1 characteristics curve results from 1
plotting sensitivity against . * A dominants B and C and clearly
specificity for all possible has a higher AUC
thresholds
— sensitivity: TP/(TP+FN) * B and C have approximately the
. — specificity: TN/(TN+EP) . same AUC
:g ¢ AUC: Area under the ROC cutve :g « Bis better for some thresholds,
E E C for others
No discrimination No discrimination
0 0

0 1 — specificity 1
False alarm

0 1 - specificity 1

Machine learning summary

» Machine learning allows models with predictive and
descriptive capabilities to be induced from examples

» Bvaluation: training set, test set, cross validation, ...

» Different approaches have different strengths and
weaknesses
— Linear versus non-linear
— Interpretable versus black box

— Regression versus classification

Machine learning summary cont.

» Ovetfitting: you select a model A over a model B when A
performs better on the training set, but worse on the unseen test
set

— Stop before overfitting occurs (e.g. before the decision tree is to long or
when the performance of the neural network no longer improves)

— Occam’s razor: Select the simplest model that explains the data (do not
use non-linear methods on a linearly separable problem)

» Course of dimentionality

— Rule of tumb: You need more observations than features
— Use dimentionality reduction methods (e.g. PCA) or feature selection (on
the traing set!)

11



Genome annotation quality

How to get from here...

Stefan Jansson 2009
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Stefan Jansson 2009

Human genome project timeline

Landmarks in genetics and genomics - o o . J—
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Stefan Jansson 2009

ESTs/RNASeq —
A rapid gateway into the genome

» Only expressed parts of genes
* Necessary for genome annotation
* Short and incomplete

» Often bad quality and sometimes
with cloning artifacts

!UPSC

Stefan Jansson 2009

Whole genome shotgun sequencing

¢ 2,10 and 50 kbp libraries

* Sequenced from both ends
e Sequence “mates”

« 8-fold coverage

¢ NOW: more and more use of

q short reads
UPSC

Stefan Jansson 2009
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Full genome sequencing:
Reconstruct the chromosomes...

! UP 12009

Whole genome assembly and mapping

STS
—r —k Genome

Mapped -
Safilds: T4 T AT T T T CT

f

Scaffold:
" Read peir (mates) Gap (mean & sid. dev. Known)
Contg: ] Consensus
e em T == Reats (of sevensl buplotypes)
« SNPs
— BAC Fragmenis
Fig. 3. Anatomy of whole-g: assembly. Overl ig fragments (red lines) and

internally derived reads from five different individuals (black lines) are combined to produce a
contig and a consensus sequence (green line). Contigs are connected into scaffolds (red) by usin
mate pair information, Scaffolds are then mapped to the genome (gray line) with STS (blue s!ar?

, P physical map information.
UPSC

Stefan Jansson 2009
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Stefan Jansson 2009

Algorithms must be trained for:

« Splice sites

- Exon/intron lengths

- Codon usage

- GC frequencies exons/introns

- Trancription start sites

- Polyadenylation sites

« UTR (untranlated region) lengths

and predicted exons must be joined to genes
(ESTs necessary)

: !UPSC

Stefan Jansson 2009

Annotation:

-« Comparisions to databases

« What is significant similarity (on
protein level or on DNA level)?

«What if the other databases are
wrong? (which they are)

« Thereis no "best database”

: !UPSC

Stefan Jansson 2009

Figure 4 Segmertally dupkcated regions n the Arabicknsis genome. Indvidual segnerts. Sini tuded. Duph ||
1 depiciad a5 hortontal grey 1 a1 e wopi, The scaie s
centrome nect I megabises.

UPSC

Stefan Jansson 2009
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A typical eukaryotic genome

*15-50 000 genes
* Most in dispersed gene families
* Duplications

* Many repetitive sequences
(e g microsatellites of 1-6 base pairs

* Many pseudogenes

* Centromers and telomers

!UPSC

Stefan Jansson 2009

Annotation quality

« 1/3 of all genes are typially "unknown”

For the rest, some kind of function can be
assigned but

* 1/3 has a good annotation

¢ 1/3 has an inprecise annotation

¢ 1/3 has a bad annotation

Curation is needed, but who will do it?

UPSC Stefan Jansson 2009

Classification

« According to function?
* According to biochemical pathway?
* According to Gene Ontology?

EUPSC

Stefan Jansson 2009

Main classes in MIPS

* Metabolism

* Energy

« Cell growth, division and DNA synthesis
e Transcription

* Protein synthesis

* Protein destination

e Transport facilitation

e Cellular transport

« Cellular communication/signal transd.

« Cell rescue defence, death and aging etc.

EUPSC

Stefan Jansson 2009

Biochemical pathways - KEGG

FLAVONOID, STILE BNE AND LIGNIN ESTNTHISE

e . e
Y seupan st ok S

e S e e

on 2009

tp { warw geneorselogy.orgl

BASE 1200 Mg /mwn.. stipopiies) Apsle Mai Amasan  ehay Yahoo! Myheters

23
—] GENE ONTOLOGY CONSORTIUM \‘
Open sl mens What is the Gene Ontology? Dovnload the Ontologies
Silzmap
Homs | ew | EAQ

The goal of the Gene Ontology™ (G0) Consortium is to produce a onirolled vocabulary that can be

‘applied 1o even as knowledge of in cells is

Guneet pecctiees, changing. GO provides thvee structured of defined terms to describe gene product
S0 Ouabme attributes. GO s one of the controlled vocabularies of the Open Bigiogical Onigiogies
G0 Tools
. wia the Curater Requests Tracker ot SourceForge. e wininew seem
= mgcn § Aveeage
e + Send comments and questicns 1o ga@gansantoiogy org.
Cortacl GO
Search GO Terms )
TomyAroctatons
You can aise use one of GO Browsers
Searen -
0
What's New?

those for plarl yeast GOA andhe -

Stefan Jansson 2009
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Result visualization

Example: Hierarchical
clustering
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Almost 20 000 cDNA clones
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Two sub-clusters of DLBCL were
shown to include patients with
significantly different expected survival
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Example: Hierarchical clustering

Expression clusters Functional clusters

Supervised learning: Cricket game

Decision tree:

Overcast

Interpretation:

IF weather = sunny THEN play

IF weather = raining THEN no play
IF weather = overcast AND light = good THEN play
IF weather = overcast AND light = poor THEN no play

Network representations

» Network: nodes connected by edges
» Nodes represent genes, proteins, metabolites
» Edges represent relationships

— Co-expression networks: expression correlation

— Protein-protein networks: proteins form a functional
complex

— Gene networks: genes affect the expression of other genes
— Regulatory network: transcription factors regulate genes by
binding DNA motifs in the promoter region
» Network representations ate flexible and allow
integration of heterogeneous data

15



Co-expression networks versus gene networks

Gl Co-expression network:
Expression of G1 correlates with that of G3
Expression of G2 correlates with that of G3

G3
G2
G1
Gene network:
G The expression of G3 can be predicted
from that of G1 and G2
G2

Co-expression network in aspen trees

Based on a UPSC
collection of over
1000 cDNS

microarrays

A Grénlund, RP Bhalerao, | Karlsson.
Modular gene expression in Poplar: a
multilayer network approach. New
Phytologist, 2009.

Global protein-protein
interactions of apoptosis in
cancerous and normal cells
» (A) Apoptotic protein-protein

interaction network in Hela cells
» (B) Apoptotic protein-protein

interaction network in normal
primary lung fibroblasts

» Two-hybrid data sets, four online
databases and microarray data

Chu and Chen BMC Systems Biology 2008 2:56

Regulatory network in Arabidopsis

J. Carrera, G. Rodrigo , A. Jaramillo and S. F Elena. R psis thaliana
network under changing environmental conditions. Genome Biology, 10:R96, 2009.

Combined profilling in aspen trees A

B
y VO ® @

Three platforms to expfaln regulation in trees:

1. Transcriptomics: Genes and Transcription
Factors

2. Metabolomics: Metabolites

3.__Proteomics: Proteins

Systems biology
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Systems biology

Genome

lu l
Proteome
“ Metabolome

Systems biology
is all about the
arrows!

Jranscriptonie

Holistic versus reductionistic

» Traditionally:
— Can biology be reduced to chemistry?
— Can chemistry be reduced to physics?
» Operationally:
— Are the assumptions/simplifications in the scientific method
reasonable?

— E.g. can the regulatory mechanism of this cluster be found by
considering candidate transcription factors one by one?

— E.g. can the expression difference between slow and fast
growing trees be found by finding (individual) differentially
expressed genes?

Does interactions matter?
- AND logics in regulation

——regulater 2

Correlation between the gene and
regulator 1:
regulator 2:

0.55 (P < 0.06)
0.65 (P < 0.02)

Correlation between gene and model prediction:
Linear model: 0.77 (P < 0.003)
Non-linear model: 0.91 (P < 1.2E-05)

Does interactions matter?
- differential expression
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Gene 1

Genes

Genes

Time series data
Time __  Foreachgenei:

%:ai -0 +Zj:ﬁijyj

where ¢; is its transcription rate,

0; the degradation coefficient,

and f3; is the regulatory effect that gene j has on gene .

Steady state data
Conditions/samples

If B; issignificantly

% =0and 9, =1, thus di
dt
Yi=q; +zﬂijyj

i

e

a=-0.46

Example: Three genes B 043
Bs=0.50

Cond.A 12 arBriz-fyiz | 0594

Yi=a+ LY, +BisYs Cond.B 17 arBorz-Byrs | -0.429

Cond.C 11 @i fura-pyoo | o437

Cond.D 13 wsprizefyne | 0699

CondE 14 a+Brs+ By s | 0842

Cond.F 18 arpois+pyre | 1264

Correlation: 0.78

Choose a, f,,and B, so that the correlation
between observed (y,) and predicted (y,
predicted) expression is maximized!

17



Two types of networks inferred from
expression data

» Gene networks: describe the effect that genes have on the
expression of one gene (direct or indirect regulation)

» Regulatory network: describe transcription factors regulating
genes by binding DNA motifs in the promoter region (physical
regulation)

» Gene networks cannot distinguish direct and indirect effect (e.g.
the framework on the two previous slides)

» Regulatory networks describe causality: need to incooperate
promoter information and knowledge of transcription factors

eTegulatoryne

Promoter Gene (protein

coding region)

ACCCTT j
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= Motif; Motif; Gene G,
g
: @
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g2
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Motif, Mot Gene G,
ACGTTC __ GGGTGG _,—>
Motif, Motif, Gene G,

e o Gene G,

Epigentics Combinatiorics

Gene activity (time/conditions)

e e
Linear versus non-linear models

o Linear model: Y, =a+B,Y,+BsYs

* Non-linear model: Yy, =a+8,Y,+B3Ys+ B, Vs

Pz > 0:synergistic interactions
P < 0:competitive relationship

Linear model:

Non-linear model:
Correlation between gene 1and

gene 2:

gene 3:

= = =yl-pred-lin

== ="yl-prec-nonlin

Correlation between observed and predicted:

a=-0.55
B.=037
,5’[3:(127
Bs=037

0.77

0.91

0.55

0.65

Linear model:
a=-0.46
Bu=0.43
B,;=0.50

Non-linear model:

Linear model:
a=0.59
B.=0.40
B=0.27

Yipredin Non-linear model:

== =yl-prec-nonlin

a=0.64
1
B Bu=0.43
= ,5’[3:(140
Bm=—o.21
Correlation between observed and predicted:
Linear model: 0.85
Non-linear model: 0.96
Correlation between gene 1and
gene 2: 0.72
gene 3: 0.60

XOR - logic

Linear model:

Non-linear model:
Correlation between gene 1and

gene 2:

gene 3:

T e

Correlation between observed and predicted:

a=om
B..=-0.01
B,;=0.03

Biy=-0.56

0.40

0.92

-0.19

-0.39

Linear model:

a=-0.02
B..=-0.10
B,=-030

Non-linear model:
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X=7y

y=3+x Has a unique solution: X=-3.5, y=-0.5
x=T7y Has many solutions: z=3, x=-3.5, y=-0.5
y=2+X

z=6, X=-7, y=-1

i.e. we need more samples than genes in order to solve:

Yi=a; +Zﬁijyj
j

there are ~45 ooo genes in Populus ...
and even ~2500 transcription factors ...

Summary: Systems biology

e Traditional methods treat and visualize genes as
independent entities (reductionistic):
e Hierarchical clustering
» Co-expression networks
» Systems biology treat and visualize genes in the
context of other genes (holistic)
» Gene networks
* Gene regulatory networks
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Some freely available tools

> R contains packages for most methods discussed here
» Hierarchcial clusteting: MeV (MultiExperiment Viewer)
» Machine learning: RapidMiner

» Networks: Cytoscape
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