'omics data analysis and systems biology Slides: http://www.trhvidsten.com/Teaching.html

Torgeir R. Hvidsten Assistant professor in Bioinformatics Umeå Plant Science Centre (UPSC) Computational Life Science Cluster (CLiC)

'omics data

- > Transcriptomics quantifications of gene expression
- ➤ Proteomics - quantifications of proteins (peptides)
- ➤ Metabolomics - quantifications of metabolites

Analysis of 'omics data

- 1. Preprocessing
- 2. Browsing the data
- 3. Model inference and selection
- 4. Model evaluation
- Genome annotation quality
- Result visualization
- 7. Systems biology

Pre-processing and browsing

'omics preprocessing

- ➤ Background correction. Aims to straighten the lower knee in the IC-curve.
- Saturation correction. Aims to straighten the upper knee in the IC-curve.
- Dye normalization. Aims to put the IC-curves into a common scale (common slope).

Novel transcribed regions Detect regions outside known gene models Outside known gene models Go through whole genome Sliding window or similar Search for regions with high coverage Do semi-de novo transcript assembly

Model inference and selection

Model inference methods

- Unsupervised learning (clustering, class discovery); used to "discover" natural groups of genes/experiments e.g.
 - discover subclasses of a form of cancer that is clinically homogenous
- Supervised learning; used to "learn" a model of a set of predefined classes of genes/experiments e.g.
 - diagnosis of cancer/subclasses of cancer

The machine learning strategy iteratively uses experiments to provide representative examples and computational models to provide experimentalists with new, testable hypotheses • Clustering • Nearest neighbor predictors - evolutionary link - need few examples • Model inducers - more powerful - interpretable models • Unknown • Example: experimentally determined

Clustering analysis

Need to define;

- · measure of similarity
- algorithm for using the measure of similarity to discover natural groups in the data

The number of ways to divide n items into k clusters: $k^n/k!$

Example: $10^{500}/10! = 2.756 \times 10^{493}$

Hierarchical clustering Inter-cluster similarity measures: (a) single linkage, (b) complete linkage and (c) average linkage Cluster distance Cluster distance d₂₄ d₁₅ d₁₅ d₁₅ d₁₅ d₁₅ d₁₅ d₁₅ d₁₅ d₁ d₁ d₁ d₁ d₁ d₁ d₁ d₂ d₂ d₂ d₃ d₁ d₁ d₁ d₂ d₃ d₁ d₁ d₂ d₃ d₁ d₁ d₂ d₃ d₄ d₅ d₁ d₁ d₁ d₂ d₃ d₄ d₅ d₁ d₁ d₁ d₂ d₃ d₄ d₄ d₅ d₁ d₁ d₁ d₂ d₃ d₄ d₁ d₄ d₅ d₁ d₁ d₁ d₂ d₄ d₅ d₄ d₅ d₄ d₅ d₆ d₆ d₇ d₈ d₈ d₈ d₈ d₈ d₈ d₈ d₉ d₉

Example: Decision tree learning

- 1. Data: Observations collected from the real world (e.g. the voting pattern in Sweden). Observations consist of a number of features (e.g. communist votes)
- Examples: Observations labeled with class information (e.g. Sweden belong to group 1).
- Model: A general representation of the data (e.g. the decision tree)

Models are induced!

- 1. Induction: Using specific information/data to arrive at general knowledge (e.g. from examples to a decision tree).
- 2. Deduction: Using general knowledge to say something about a specific case (e.g. using a decision tree to predict the group of a new country).

Models can be predictive and/or descriptive.

Prior Probability

- \triangleright w state of nature, e.g.
 - $-w_1$ the object is a fish, w_2 the object is a bird, etc.
 - $-w_1$ this course is good, w_2 this course is bad
- \triangleright A priori probability (or prior) $P(w_i)$

Class-conditional probability

- \triangleright Observation x, e.g.
 - The objects has wings
 - The 10 minutes of the lecture was interesting
- \triangleright Class-conditional probability p(x|w)

Bayes decision rule

Suppose the priors P(w) and conditional densities p(x|w) are known

Two classes: If $P(w_1 | x) > P(w_2 | x)$ then choose w_1 , else choose w_2

In general: Choose

 $w^* = \arg\max_{i} P(w_i \mid x)$

So, what about the data?

- Use examples to estimate the probability distril:

 - p(x|w): Histogram!

- > One feature: bins are rectangles, Two features: cubes, *n*-features: hyper-cubes.
- ➤ More dimensions/features require more training data: Curse of
 - $-\,$ If we need 10 observations when we have one feature (to get a good histogram), then we need 10^{o} observations when we have n-features!
- \succ If the true probability distributions are known, then Bayes decision rule is optimal (minimizes error rate).

Feature selection

Feature selection is used to deal with the curse of dimensionality

- Ranking methods: compute the discriminatory capability of each feature and select the best ones
- Wrapper methods: select a subset of features, induce a model and use it's prediction performance as fitness. Repeat. Computationally expensive!
- Dimensionality reduction: map your features into a smaller features space (e.g. PCA)

k-nearest neigboor

- > The simplest of all machine learning algorithms
- Each observation is a point in the ndimensional space spanned by the
- An observation is assigned to the class most common amongst its k nearest neighbors.
- "Nearest" can be defined differently: Euclidean distance, correlation, etc.
- Lazy learning where the function is only approximated locally and all computation is delayed until classification.

Linear versus non-linear classifiers

- Linear: Finds a hyperplane that separates the classes In two dimensions: $w_0 + w_{1'}x_1 + w_{2'}x_2$
 - Use the examples x to estimate w
- Non-linear: Support vector machines uses the kernel
 - The kernel maps the observations into a higher sional space where the problem is linearly separable

Artifical neural networks

- ➤ Inspired by how the brain works a mathematical model of the operation of the brain
- ➤ Brain versus computers:
 - serial versus parallell computing
 - even though a computer is much faster in raw swithcing speed, the brain is faster at what it does
- An ANN is a number of nodes (units) connected by links. Each link is associated with a numerical weight.
 - Training set: (x₁, f(x₁)), (x₂, f(x₂)), ..., (x_n, f(x_n))
 - Learning in an ANN is reduced to the process of using the training data to tune the weights so that the network represents the function f

Network structure

- Feed-forward network: all units are connected to all units in the next layer
 - One (sufficiently large) hidden layer can represent any continuous function
 - More hidden layers can even represent discontinuous functions

- Recurrent network: feed back loops, internal states (memory):

Boolean functions

- ➤ Units can represent the basic logical gates
- Thus, units can build networks that can represent any Boolean function

Optimal network structures, overfitting and Occam's razor

- Too small network: the network will be incapable of representing the desired function
- Too large network: the network can memorize all the examples by forming a lookup table: Overfitting!
- Every algorithm involved with classification runs the risk of overfitting the data
 - The alg, learns the errors (noise) in the data as well as the underlying structure of the processes that created the data
 - Occurs because the alg. tries to reduce the classification error on the training data
 - A model X is overfitted if there exists a model Y that do better on the unseen test set, but worse on the training set
- > To identify this phenomenon:
 - Use training/test sets
 - Choose the simples model that explains the data! Occam's razor

Machine learning summary

- ➤ Machine learning allows models with predictive and descriptive capabilities to be induced from examples
- Evaluation: training set, test set, cross validation, ...
- ➤ Different approaches have different strengths and weaknesses
 - Linear versus non-linear
 - Interpretable versus black box
 - Regression versus classification

Machine learning summary cont.

- Overfitting: you select a model A over a model B when A performs better on the training set, but worse on the unseen test set
 - Stop before overfitting occurs (e.g. before the decision tree is to long or when the performance of the neural network no longer improves)
 - Occam's razor: Select the simplest model that explains the data (do not use non-linear methods on a linearly separable problem)
- Course of dimentionality
 - Rule of tumb: You need more observations than features
 - Use dimentionality reduction methods (e.g. PCA) or feature selection (on the traing set!)

ESTs/RNASeq –
A rapid gateway into the genome
Only expressed parts of genes
Necessary for genome annotation
Short and incomplete
Often bad quality and sometimes with cloning artifacts

Network representations

- ➤ Network: nodes connected by edges
- ➤ Nodes represent genes, proteins, metabolites
- > Edges represent relationships
 - Co-expression networks: expression correlation
 - Protein-protein networks: proteins form a functional complex
 - Gene networks: genes affect the expression of other genes
 - Regulatory network: transcription factors regulate genes by binding DNA motifs in the promoter region
- ➤ Network representations are flexible and allow integration of heterogeneous data

Holistic versus reductionistic

- ➤ Traditionally:
 - Can biology be reduced to chemistry?
 - Can chemistry be reduced to physics?
- ➤ Operationally:
 - Are the assumptions/simplifications in the scientific method reasonable?
 - E.g. can the regulatory mechanism of this cluster be found by considering candidate transcription factors one by one?
 - E.g. can the expression difference between slow and fast growing trees be found by finding (individual) differentially expressed genes?

Two types of networks inferred from expression data

- ➤ Gene networks: describe the effect that genes have on the expression of one gene (direct or indirect regulation)
- Regulatory network: describe transcription factors regulating genes by binding DNA motifs in the promoter region (physical regulation)
- Gene networks cannot distinguish direct and indirect effect (e.g. the framework on the two previous slides)
- Regulatory networks describe causality: need to incooperate promoter information and knowledge of transcription factors

Linear versus non-linear models

• Linear model: $y_1 = \alpha + \beta_{12}y_2 + \beta_{13}y_3$

• Non-linear model: $y_1 = \alpha + \beta_{12}y_2 + \beta_{13}y_3 + \beta_{123}y_2y_3$

 $eta_{123} > 0$: synergistic interactions $eta_{123} < 0$: competitive relationship

Overfitting and the course of dimensionality

x = 7y

y = 3 + x Has a unique solution:

x=-3.5, y=-0.5

x = 7y

Has many solutions: z=3, x=-3.5, y=-0.5

y = z + x

z=6, x=-7, y=-1

i.e. we need more samples than genes in order to solve:

$$y_i = \alpha_i + \sum_i \beta_{ij} y_j$$

there are ~45 000 genes in *Populus* ... and even ~2500 transcription factors ...

Summary: Systems biology

- Traditional methods treat and visualize genes as independent entities (reductionistic):
 - Hierarchical clustering
 - Co-expression networks
- Systems biology treat and visualize genes in the context of other genes (holistic)
 - Gene networks
 - Gene regulatory networks

Some freely available tools

- R contains packages for most methods discussed here
- ➤ Hierarchcial clustering: MeV (MultiExperiment Viewer)
- ➤ Machine learning: RapidMiner
- ➤ Networks: Cytoscape