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Summary

A classifier was developed by Hvidsten et al [6] that predicts the molecular function of a
protein (described by Gene Ontology terms) from its 3-dimensional structure. I evaluated
those predictions in order to find out whether they can assist the biological expert in
finding proteins with missing Gene Ontology annotations and in the search for new
protein functions. A method for systematic evaluation was developed. The method was
applied on incorrect predictions (false positives) in a test set of partly annotated proteins.
In average 6 % of the false positive predictions were evaluated to be actually true
positives. Since the percentage of missing Gene Ontology annotations in the protein set is
estimated to be higher, I can not state that false positive predictions are in general
feasable to find missing annotations.

Many of the incorrectly predicted functions were still not complete nonsense predictions
but had related functions to the actual protein function.

This suggests e.g. that substructures responsible for some functions (for example

adenyl nucleotide binding and guanyl nucleotide binding) are structurally so similar that
the classifier cannot distinguish between them.

In other cases proteins with an incorrect prediction for a certain function bind a
substrate that was similar to the substrate bound by proteins that actually carry out this
function. Those connections between function predicitions and actual functions might
assist the biological expert in the search for new protein functions.



ABBREVIATIONS

Abbreviation Explanation
AUC Area under ROC Curve
EC Enzyme Commision
FN False Negative
FP False Positives
GO Gene Ontology
LCB Linneaus Center for Bioinformatics, Uppsala University
MSD Molecular Structure Database
mt might be true
ND Not Determined
PDB Protein Database
rf related function
t true
TN True Negative
TP True Positive
ROC Receiver Operator Characteristic
ve vague connection
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2 Introduction

Proteins are life’s building blocks. In the tiniest intestinal bacteria, in plants, mice and
men — in all living cells — proteins answer for both form and

function. Naturally, research into proteins is therefore of greatest interest, especially for
scientists wishing to know how things function at the molecular level.

20 amino acids with unique chemical properties are used to build a huge variety of amino
acid chains that are then folded into 3-dimensional structures. The 3-dimensional fold of
each type of protein permits it to carry out a specific molecular function, a molecular tool

for the living cell to carry out functions from cutting DNA to transporting substances.

From the thousands of known proteins, the function is known for only a small number of
them and just the structure or the amino acid sequence is known for others.
Computational methods can help to determine the molecular functions and cellular role
of proteins. The effort to accomplish high-throughput three-dimensional structure
determination and analysis of biological macromolecules (like proteins) with

computational methods is described by the term Structural Genomics. [5]

2.1 Gene Ontology

To make functional knowledge about proteins accessible for computational methods, a
standardized vocabulary is needed to describe the proteins. The Gene Ontology

Consortium provides a vocabulary, the Gene Ontology'(GO) [1], for describing cellular

' Ontology (gr. ontos - to be, logos — word). In computer science, an ontology is the attempt to formulate

an exhaustive hierarchical data structure containing all the relevant entities and their relationships. The
computer science usage of the term ontology is derived from the much older usage of the term in a
branch of metaphysics dealing with the nature of being.
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roles of proteins. It is divided in three subontologies: One ontology contains terms for
describing the function of a protein on molecular level, e.g. the GO terms Protein kinase
activity or Transferase activity >. Each GO term comes with a precise definition of what
function the term describes. E.g. Definition of Protein kinase activity: “Catalysis of the
transfer of a phosphate group, usually from ATP, to a protein substrate”. The other two
ontologies contain terms for describing the biological process a gene or gene product can
be involved in and its location in the cell. To be able to describe the protein function on
different detailed levels, the terms in the ontology are organized in a “parent-child-
relationship” (Figure 1). A child term (more specialized term) can have man parent terms

(less specialized terms).

2 GO terms are written in italics in this report.
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Figure 1 shows the organisation of the structured vocabulary provided by the GO
consortium, examplified on the GO term Protein kinase activity. Catalytic activity is a
parent term of the more specialized child term Protein kinase activity. They belong to the

subontology describing molecular functions.

Proteins in databases, like the Molecular Structure Database (MSD) [13], may be

annotated with the Gene Ontology terms describing their function when the protein is



characterised and knowledge about its function is available in the literature.

For example, the gene product cytochrome ¢ can be described by the molecular function
term electron transporter activity, the biological process terms oxidative phosphorylation
and induction of cell death, and the cellular component terms mitochondrial matrix and
mitochondrial inner membrane. Each GO term has an individual GO number, e.g.
GO:0004672 Protein kinase activity. Through annotations the functional knowledge
about proteins can be used for computational methods.

There are several ways a protein in a database can be annotated: Annotation by hand from
curators in the GO consortium or from the scientists themselves who have characterised a
protein or computer generated annotations. However, the GO annotation project is an
ongoing process and it is known from experience that in publicly available databases a

large number of annotations is still missing.

2.2 Databases

Below follows an overview of the databases that contain information about proteins. The
focus lies on those used during the project. A good starting point to get information about
a protein is Uniprot [2] which is crosslinked to various other databases. Some of those
cross-references are also described here, with emphasis on what information can be found
in those databases (catalytic activity, protein family, domains, literature links etc.)

* Uniprot [2]

The UniProt database consists of protein sequence entries. It is a container for protein
sequence and function created by joining the information in the protein databases Swiss-

Prot, TTEMBL and PIR. The joint information provide for each protein entry:
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- core data consisting of sequence data,

- annotation data such as the description of protein function, catalytic activity, domains
and sites, subunits, cofactors etc. and

- cross-references in form of pointers to information related to the protein entry and found
in other data collections than Swiss-Prot. (e.g. the domains of the protein are named in
form of pointers to Interpro and Pfam.)

* Enzyme (Enzyme nomenclature) [4]

Enzyme contains information concerning the nomenclature of enzymes. It describes each
type of characterized enzyme for which an EC (Enzyme Commission) number has been
provided. It describes features that all enzymes of an EC class have in common.
(Cofactors, Catalytic activity)

* Prosite [12]

Prosite is a database of protein families and domains. It contains profiles for protein
domains and families grouped by similarities in their sequence. It aids the identification
of newly sequenced proteins. Each of those profiles come with documentation providing
background information on structure and function of these proteins.

 Pfam (Protein families database of alignments and HMMs) [11]

Pfam is a collection of protein family alignments which were constructed
semiautomatically using hidden Markov models (HMMs). Pfam families contain
functional annotation and cross-references to other databases.

* Interpro (Integrated resource of Protein Families, Domains and Sites) [9]

Interpro is an integrated documentation resource for protein families, domains and sites.

It combines several databases concerned with protein sequence classification like

10



UniProt, PROSITE, PRINTS, Pfam etc.

2.3 Strategies to predict the function of a protein

Predicting function from amino acid sequence and predicting function from protein
structure are two different approaches to determine the molecular functions and cellular
roles for proteins. Such automatic methods are primarily based on detecting proteins that
have diverged evolutionarily from a common ancestor and then on inferring the function
of the uncharacterized protein from its characterized homologues. Since structure is
evolutionarily more highly conserved than sequence, and since only a few residues in
functional sites need to be conserved for the function to remain stable during evolution,

predicting function from structure often is more reliable than prediction from sequence.

Several strategies have been developed to assign a function or to suggest functional
hypothesis for new structures. Martin et al. [8] used E.C. numbers as a measure of
functional relationships and tried to identify the relationship between E.C. number and
SCOP classification [7] or CATH [10] classification (both are databases that sort protein
structure elements into classes, folds and families). Wallace et al. [14] assembled a
database of 3-dimensional templates of active site residues. With this database, groups of
residues in a query structure can be identified that are consistent with those in known
active sites. In other approaches, the physical and chemical natures of proteins
(electrostatic potential etc.) have been used to approach the analysis of a protein’s

function.

11



The basic task in predicting a protein’s function with computational methods is to
identify protein features like shape elements, electrostatic potentials, hydrophobicity
patterns and sequence conservation, that are involved in the protein’s function. Feature-
function- relationships can than be identified and used to infer the function of an

unknown structure.

2.4 Computational methods for prediction

In order to answer the question which molecular function a protein with given features
has, a classifier is needed that can assign the correct class (i.e. protein function) to the
protein. A classifier is a mathematical function (=hypothesis) that was built by learning
from examples. It should be able to predict the class of an object as good as possible
when given the description of the object. The examples are called training set and are a
set of already classified objects. The classifier is trained with cases from the trainings set
and learns rules that connects features of the object (e.g. structure elements,
hydrophobicity patterns etc. of a protein) to a certain class (e.g. a certain protein

function).

When the classifier is constructed, the quality of its predictions need to be evaluated. One
way to accomplish this is to apply the classifier on a test set. A test set contains objects
that have not been used to train the classifier but the class for every object is known. If,
for example, the test set contains proteins with different GO functions, the classifiers

prediction can have four different qualities:
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True Positive (TP): the classifier predicts the GO term correctly.

False Positive (FP): the classifier predicts a GO term where none exists.

False Negative (FN): the classifier predicts no GO term where one exists.

- True Negative (TN): the classifier predicts correctly that no GO term exists.

Now interesting measures of a classifier’s quality can be calculated:

Specifity = TN/(FP+TN)

Sensitivity = TP/(TP+FN)

This measure is also called Coverage and it reflects how well members of the positive
class are identified.

Precision = TP/(TP+FP)

Precision reflects how well members of the negative class are rejected.

A way to asses the prediction quality for a certain class (sometimes the classifier may
predict a certain class better than another) is to calculate an AUC (Area under the ROC?
Curve) estimate value. With small trainings sets, this is done in k-fold cross-validation. In
k-fold cross validation, the trainings set is split up in k subsets of equal size. k-1 of them
are used to train the classifier again and one is used as a test set. This is done k times until
every subset has been used once as test set. The number of FP, FN, TP and TN-

predictions for each GO term are counted. The AUC takes the numbers of FP, FN, TP

3 ROC (Receiver Operator Characteristics) is a graphical plot of the sensivity vs. 1- specifity
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and TN for each GO term prediction into account and rates the classifiers performance in

terms of numbers from 0.5 (no classification capability at all) to 1 (perfect classification).

2.5 The LCB classifier to predict function from structure

In the Linneaus Center for Bioinformatics (LCB), Uppsala, a classifier was developed by
Hvidsten et al. [6]. It predicts GO molecular functions* of a protein from the local
descriptors of its 3-dimensional structure. Local descriptors are short 3-dimensional
sequence fragments. A short summary of how the classifier was build by Hvidsten et al.
follows below:

In the first step of building the classifier, a library of the most common (popular) local
descriptors was created by browsing all available 3-D protein structures in the Protein
Database (PDB) [3] in an automatized manner. In a trainings set of characterized and
annotated proteins, the structure of each protein was searched automatically for local
descriptors. The local descriptors existing for a certain protein were then connected to the

proteins GO molecular function by setting up IF- THEN rules.

IF descriptor 1 AND descriptor 9 THAN GO function x

The large number of rules was reduced by computing the most relevant ones and used to
build the classifier. The exact method will not be discussed here.
Then, the quality of the classifiers prediction performance was measured. This was done

by calculating an AUC estimate value for each GO term in 10-fold cross validation.

4 “GO molecular function” means all GO terms under the molecular function sub ontology.
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The prediction method developed by Hvidsten et al. [6] predicts one or more GO
functions for each protein. In the final step they tested the classifiers ability to identify the
protein functions. It was applied on a test set of unseen proteins that were already partly
annotated. Applied on this test set, the classifier could predict 50% of the new
annotations (coverage equal to 50%) with four FP for each TP (precision equal to 20 %)

for annotations with an AUC higher than 0.70°. For more details see Hvidsten et al. [6]

2.5 Aims

As mentioned, it is known from experience that in publicly available annotations, like in
the test set, a large number of annotations is often missing. The aim of my work was to
develop a method for systematic evaluation of the predictions and to use this method to
evaluate the FP predictions © in the test set. In some cases this GO function just has not
been annotated yet. That means the FP prediction is actually a TP prediction. I wanted to
find out whether protein structure derived predictions could assist the biological expert in

finding missing annotations ’ and in the search for new protein functions.

> Anadvanced classifier is currently under construction that uses more features than structure for

predicition in order to improve those results.

A FP exists when the classifier reports, incorrectly, that it has found a GO function where none exists in
the test set.

i. e. annotations for which information is present in databases or literature, but where this information
has not been used to generate GO annotations.

3
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3 Results

A table with a set of 404 proteins (referred to as test set) with their GO function
annotations and the GO function predictions made by the LCB-classifier for those
proteins was provided by T. Hvidsten, LCB, Uppsala University. Hvidsten compared the
predictions automatically to existing annotations in test set and labeled them TP and FP
(see materials and methods for more details about the protein set table). I selected 12 GO
molecular function terms and evaluated all FP predictions for those GO functions. The
predictions were sorted in the validation categories t, mt, rf or rf. Results are shown here.
In order to get a feeling for how many annotations may be missing in the publicly
available annotations and how feasible it might be to use false positive predictions to find
them, the missing annotations for three GO terms were then quantified in the test set for

three GO terms. Results are shown in the second part of this chapter.
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3.1 Validation results for predictions of GO function

Table 1. Results of FP validation

GO term

G0:0004812 tRNA ligase
activity

G0:0016160 Amylase
activity

G0:0016886 ligase activity,
forming phosphoric ester
bonds

G0:0008235
metalloexopeptidase activity

G0:0042626 ATPase
activity, coupled to
transmembrane transport of
substances

G0:0003755 peptidyl-prolyl
cis-trans isomerase activity

G0:0015399 primary active
transporter activity

GO0:0004523 Ribonuclease
H activity

GO0:0030554 adenyl!
nucleotide binding

GO0:0004672 Protein kinase
activity

GO0:0003723 RNA binding

GO:0003677 DNA binding

? t- prediction is true

AUC

0,99

0,98

0,95

0,93

0,91

0,90

0,90

0,84

0,77

0,77

0,73

0,66

Validation Category

TP FP FN
t a
3 7 1 0
1 4 0 0
4 19 2 0
2 12 1 1
2 7 2 2
0 19 1 0
4 14 3 3
0 8 2 0
25 42 17 5
9 19 6 0
6 44 16 1or
more
36 70 24 5or
more

® mt- might be true. Not enough evidence to be sure.
¢ rf- related function. The predicted function is very close to the actual function.
4 ve- vague connection. The prediction has at least a (vague) connection to the actual function.
See materials and methods for detailed description of validation categories.
¢ A “true FP” is a FP prediction (according to test set table) which was found by my evaluation to be

actually a TP prediction.

17
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217

3/14

1/44

5/70



Table 1 shows the predicted GO molecular function, the AUC for this term and the
number of proteins with a TP, FP or FN prediction in the test set. Numbers that are taken
from test set table provided by T. Hvidsten are shown in italics. Note: this is the number
of TP, FP, FN predictions BEFORE the FP predictions were validated. On the right side
of the table, evaluation results of the FP predictions are shown. The percentage of FP that

were found to be actually TP (“true FP” ®) are given.

The number of FP predictions per GO term varied between 4 and 70 and between 0% and
around 20 % (2 "true FP" in 7 FP and 3 "true FP" in 14 FP) of the FP predictions were
“true FP”. Out of 266 FP predicitions, 17 were evaluated as “true FP”. This means that 17
missing annotations were found by using FP predictions. On the average 1 out of 16 FP
predictions were true. 1 in 10 FP were true if DNA and RNA binding were not
considered. These were only searched with search mode “b) search by protein name”
(with this search mode less of the relevant existing information was found than when

more intensive search literature and database search would were used).

The classifier predicted the 12 GO classes that were validated with an average precision

They are called “true FP” to distinguish them from those predictions that were already scored TP in
Hvidstens test set table. Example for a "true FP": the test set protein “Deoxynucleotide monophosphate
kinase” had one publicly available GO function annotation: transferase activity, transferring phosphorus-
containing groups. The LCB-classifier predicted two GO functions: transferase activity, transferring
phosphorus-containing groups and adenyl nucleotide binding. The latter is labelled a FP prediction in the
test set table. I validated this prediction and found that the protein actually does bind adenyl nucleotides.
Therefore the FP prediction in the test set table was actually a TP prediction and is referred to as a “true
FP” prediction. A GO annotation in MSD for adenyl nucleotide binding had not been generated yet.
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of 25 % and a coverage of 55 %. Percentages were calculated from FP,TP, FN, TN
numbers shown in Table 1. Considering the validation results that showed that 17 FP
predictions were actually TP predictions (“true FP”), those numbers increase to 30% and

59% respectively.

It is interesting to note that the validation process revealed that even FP predictions that

could not be evaluated to be true often were not complete nonsense predictions: 42 of the
FP predictions were scored as being “related functions” or as having “vague connections”
to the known protein function. Some of the FP predictions scored as ’related functions’ or

‘vague connections’ are described in the following.

3.2 Related functions and vague connections

GO: tRNA ligase activity - 4 of 7 proteins with incorrectly predicted tRNA ligase activiy
carry out an enzymatic function also involving nucleic acid binding. Those enzymatic
functions were evaluated as vague connections. It seems that the classifier had difficulties
in distinguishing between different types of enzymatic activities when the substrate is
some kind of nucleic acid (DNA or RNA). In 6 of 7 cases, tRNA ligase activity was

predicted together with nucleic acid binding (DNA binding or RNA binding).

GO: ligase activity, forming phosphoric ester bonds. This GO term is a parent term of

tRNA ligase activity. 8 of 19 FP proteins with an incorrectly predicted ligase activity have

the known function GO: nucleic acid binding.
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GO: ligase activity, forming phosphoric ester bonds ’ in a protein comes always together
with GO: nucleic acid binding, which therefore was evaluated a vague connection. The
two substructures that carry out the functions always occur together in a protein.
Presumably, GO: nucleic acid binding annotations are missing more often. I suggest that
this might cause a difficulty for the classifier when setting up rules to predict the GO

function ligase activity, forming phosphoric ester bonds.

GO: Metalloexopeptidase - 6 out of 12 proteins with a FP prediction had the known GO
function: metal ion binding. Metal ion binding is a function that all proteins with GO
function metalloexopeptidase have in common. In the FP group, 50 % of the proteins
have this GO molecular function. This number is significantly different from the number
of proteins with the function metal ion binding in the test set: Only 25 % (100 out of
404) of all proteins are annotated with metal ion binding.

Reason for this might be the same as suggested for GO: ligase activity — structural
similarities in metalloexopeptidas-proteins and other metal ion binding proteins lie in the
metal ion binding site. During the validation process the impression grew that annotation
of binding activites like GO: metal ion binding lack more often than annotations of
enzymatic activity. Because of this, in the course of building the classifier, incorrect rules

connecting the metal ion binding site to an enzymatic activity might have been set up.

° It has two main child terms: GO: DNA ligase activity and GO: RNA ligase activity
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However, the differences in the numbers might be due to missing annotations in the test
set or to the fact that the FP group is too small (12 FP in the test set). Annotations in the

test set need to be completed in order to evaluate this result properly.

GO: Ribonuclease H activity - In 7 of 8 cases of a FP prediction of this GO term, it was
predicted together with nucleic acid binding. But the protein was annotated by this GO
term only in one of those cases. The prediction is evaluated as a vague connection since

Ribonuclease H activity always occurs together with nucleic acid binding in a protein.

GO: Adenyl nucleotide binding -10 out of 42 proteins with a false adenyl nucleotide
binding predicition carry out related functions. The guanyl molecule and uracyl molecule
have the same basic structure as adenyl and differ only in a few functional groups. This
suggests that the 3-dimensional structure in binding sites for adenyl nucleotides of these
proteins are structurally so similar to bindings sites for guanyl- uracil and NAD-binding
sites that the classifier can not distinguish between them.

Binding of adenyl nucleotides in chemical compounds like NAD and NADH was also
considered to be a related function. However, the molecular functions GO:
NAD/NADH/NADPH are not closely related to adenyl nucleotide binding in the parent-

child hierarchy of Gene Ontology.

GO: RNA binding and GO: DNA binding were only searched by protein name, with a

more intensive search mode probably more FP would be validated as true.
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Summarizing the observations described above I could see (for some GO terms) a
tendency that proteins with the same incorrect (FP) GO function prediction often bind a
substrate/cofactor that is identical to the substrate bound by proteins that actually carry
out this GO function. For example, a significantly high number of proteins with
incorrectly predicted metalloexopeptidase activity are annotated to metal ion binding and
proteins with a known annotation by metalloexopeptidase activity are always also
annotated by metal ion binding. The same observation was made for enzymatic GO
functions (e.g. tRNA ligase activity, ligase activity, forming phosphoric ester bonds) that
appear in a protein always together with the binding GO function: nucleic acid binding.
Furthermore, FP predictions may be not nonsense predictions but may contain
structural/functional information about the protein (e.g. adenyl- and uracil binding sites

might have similar binding sites.

3.3 Missing annotations in test set of proteins

The fast search mode ™ b) search by protein name” was applied on all 404 test set proteins
to get a picture of how many annotations are missing, and how many of those are found
by the classifier. The real percentage of missing annotations would be expected to be

higher since database and literature search would discover even more annotations.
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Table 2 Missing annotation in test set

AUC Number of Missing Percentage of ~ Missing  FP TP  TN+FN'
annotations  annotations missing annotations
in test set annotations found by
classifier

GO:0003677 0,6641 60 15 (or more) 23 % 5 70 36 298
DNA binding
RNA binding 0,7346 22 7 (or more) 24 % 1 44 6 354
G0:0004672 0,7691 15 14 (or more) 48 % 0
Protein kinase
activity

"The negatives (TN+FN) result from the calculation "all test set proteins" - FP - TP = TN + FN

Table 2 shows that 36 missing annotations were discovered in the test set by search mode
b) search by protein name (see materials and methods). About a fourth of all “DNA

binding” and “RNA binding” annotations were missing in the test set of proteins.

At least 50 % of all “protein kinase activity” annotations were found to be missing in the
test set. None of them were found by the classifier. It can be assumed that the lack of
annotations in the training set is similar. It would be useful to evaluate the effect of
missing annotations in the training set. The cross validation AUC estimates were
designed to measure prediction performance [6]; the AUC value of 0.76 for GO protein
kinase activity is relatively low '°. The extensive lack of annotation might cause
difficulties during rule learning, resulting in a poorer prediction quality which is

expressed in the AUC value.

The classifier was able to find 5 of the 15 “DNA binding” annotations missing in the test

set and 1 of the 7 “RNA binding” annotations missing in the test set. | wanted to know if

191 is perfect classification capability, 0.5 is no classification capability at all. Hvidsten et al [6] showed

that precision and coverage values of the LCB-classifier were best when they considered only
predictions for GO terms with AUC’s over 0.7.
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there were more proteins with a missing DNA binding annotation in the FP group than in
the rest of the test set (i.e. FP group + TN group + FN group) . In that case, the FP

predictions could assist the biological expert in finding missing annotations.

5 out of 70 (7 %) proteins with a FP prediction DNA binding are “true FP”, i.e. they miss
this annotation. In contrast 15 of 368 (FP+FN+TN) proteins in the test set are FN and
miss this annotation (4.1 %).

In other words: The biological expert would discover a protein that binds DNA in every
25th protein if he would be searching the whole test set and in every 14th protein if he
would be searching only in the FP group instead. Therefore, the FP predictions may be a
help for the biological expert to find proteins that miss annotation of the GO term DNA
binding, because proteins with a missing binding annotation occur slightly more often in
the FP group than in the whole test set. Still, in order to find all proteins with a missing
annotations, the whole test set must be searched since the FP group lacks two third of the

missing annotations.

For the GO function RNA binding, the number of proteins with a missing annotation in
the FP group was not significantly different from the number of proteins with a missing
annotation in the whole test set: every 44th protein (1 in 44 FP) in the false positive have
a missing RNA binding annotation compared to every 57th protein (7 in 398) test set
proteins) in the test set. For Protein Kinase activity none of the proteins that miss this
annotations occurred in the FP group. Apparently, the feasibility of FP to find missing

annotations varies from GO term to GO term and needs to be evaluated for each one
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separately. I can not say in general how useful FP predictions are to find missing

annotations.

4 Discussion

4.1 Feasability of FP predictions to find missing annotations

On the average 6 % of the FP predictions were evaluated as “true FP”. The overall
percentage of missing annotations in Gene Ontology probably is to be higher than 6% and
I can not state it is generally feasable to find missing annotations from FP predictions.
However, the number of “true FP” varied from GO term to GO term. While there was no
missing annotation found for one half of the evaluated GO terms, the other half of the GO
terms had several “true FP” in the FP group. Obviously, the FP groups for certain GO
terms does contain a number of proteins missing that annotation. But since the percentage
of missing GO terms in the test set is not known, I can not quantify the usefulness of
using FP predictions to find missing annotations for each single GO term. Future work is
needed to evaluate the FP predictions for all GO terms to be able to base the numbers on

more results.

In order to try to estimate the potential for finding missing annotations from protein
structure generated predictions, I quantified missing annotations for three GO terms
(DNA binding, RNA binding and Protein Kinase activity) in the whole test set. I found
that among proteins with a FP prediction DNA binding proteins that actually miss this

annotation were present slightly more often, while FP predictions for Protein kinase
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activity were actually incorrect predictions so that it was not feasable to find missing

annotations in this FP group.

4.2 Impact of structural similarities between proteins with different GO functions on

performance of the classifier

A number of proteins in the FP groups carry out related functions or have at least a vague
connection to the predicted function. The validation categories ‘related function” and
‘vague connection’ were used to see if the classifier could be used to infer structural and
functional knowledge about the proteins. In the FP group of GO adeny! nucleotide
binding, 10 out of 42 FP proteins bind compounds that are structurally very similar to
adenyl nucleotides (e.g. guanyl and uracil nucleotides). The 3-D structure of binding sites
might be too similar for the classifier to distinguish. Learning and prediction at a higher
GO level, i.e. taking a parent or grandparent term for learning and prediction, is therefore
suggested to improve performance of the classifier(e.g. GO:0000166 Nucleotide binding
is parent term of adenyl nucleotide binding, uracil nucleotide binding and guanyl

nucleotide binding).

It would be interesting to check automatically the relationship between predicted function

and annotated function. This would show if learning and prediction at a higher GO level

would maybe improve the prediction quality for some GO terms.
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4.3 Impact of missing annotations in training set on performance of the classifier

An interesting observation was made in connection to “related functions” and “vague
connections”. Proteins with a FP predictions of a certain GO function often bind a
substrate that is identical or similar to the substrate bound by proteins that actually carry
out this function. As indicated in section 5.3 it appeared that annotations for binding
activities like nucleic acid binding and metal ion binding are missing to a greater extent
than annotation of enzymatic activities in these proteins. It might be the case that those
proteins in the trainings set have structural similarities in the binding site while the
structures of the active site differ according to the enzymatic function. This might cause
difficulties, since it could mean that incorrect rules connecting local descriptors of the
metal binding site to an enzymatic activity might be set up in the course of building the

classifier.

It would be interesting in the future to evaluate what effect missing annotations in the
training set have on rule learning by the classifier, not only for the prediction of the GO
term itself but also for other GO terms that often occur together in a protein ( e.g. do
missing nucleic acid binding annotations effect prediction quality of GO functions like
tRNAse activity, that use nucleic acids as a substrate?) This could be done easily by
erasing all annotations for one GO term in the training set and doing rule learning with

this modified training set.

The effect of missing annotations on a GO term itself could be evaluated by creating

various modified training sets, each one with a different number of missing annotations
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for this GO term. Changes in prediction performance could be measured by changes in

the AUC value.

4.4 Future steps to faciliate validation GO function predictions

Future work on the search method itself could be to faciliate the search for validation
evidence for predictions by automatical methods. Starting from the search method
described in this report, a semiautomatic search method could be build up which could be
based on the list of search criteria that was set up for each GO term, e.g. textmining like
searching for the keyword “ATP” in the category “CATALYTIC ACTIVITY” of Uniprot.
Keyword search in protein name and search for EC number can also be performed

automatically based on the list of keywords.

5 Materials and methods

5.1 Method for systematic validation of predictions

FP predictions were validated for one GO term at a time for all concerned test set proteins

instead of validating all false positive predictions for one protein at a time.

5.2 The test set

A table of 404 proteins (referred to as the test set) with their publicly available GO
molecular function'' annotations (annotations from Molecular Structure Database (MSD)
in february 2005) and the GO molecular function predictions made by the LCB-classifier

for those proteins was provided by Torgeir Hvidsten, LCB, Uppsala University. Table 3

' “GO molecular function” here means all GO terms under the molecular function sub-ontology.
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shows a fragment of the test set table. The proteins in the test set were not chosen
according to certain criterias. It included all proteins that had been newly annotated by the
GO consortium since the proteins for the training set were accquired from MSD and the
classifier was built, i.e. a random selection of test set proteins. Between 0 and 18
predictions were made for each protein. The predictions were compared automatically by
Hvidsten to the existing annotations and TP predictions were labelled with three
exclamation marks. The proteins originate from a wide range of species from viruses to

mammals and carry out several kinds of functions which are not more specified here.

Table 3: Fragment of the test set table provided by T. Hvidsten, LCB, Uppsala University.

PDB Entry
ID Protein name GO molecular function annotations GO molecular function predictions
1972 Methanol dehydrogenase G0:0016616 oxidoreductase activity, GO:0005509 !!!"? GO:0016702
subunit 1, Methanol acting on the CH-OH group of G0:0016747 GO:0016798
dehydrogenase subunit 2 donors, NAD or NADP as acceptor  G0O:0005125 G0O:0004252
[Precursor] G0:0005509 calcium ion binding G0:0046914 GO:0008233
G0:0008083 GO:0004888
4erx Recombinase cre G0:0003677 DNA binding G0:0003677 !1!'"* GO:0030554
G0:0004601 GO:0003916
G0:0004672 GO:0015399
G0:0042623 GO:0042626
G0:0016818
1gde 389aa long hypothetical G0:0008483 transaminase activity = G0:0008483 !1!"* GO:0016741
aspartate aminotransferase GO0:0016747

5.3 Selection of GO terms
The prediction method developed by Hvidsten et al [6] set up rules to predict 72 different

GO functions. I validated the FP predicitions for 12 of those. I chose those 12 GO terms

2 The predictions were compared automatically to the existing annotations and true positive (TP)

predictions were marked with three exclamation marks.
See footnote 12
See footnote 12

13
14
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with the goal to have a selection of GO terms that included a range of different activities,
from binding to enzymatic activities and AUC values ranging from 0.66 to 0.99.

5.4 Finding search criteria

Evidence for evaluation of FP predictions was found in the literature and in databases.
The search was based on a list of search criteria. These search criteria were expressed as a
list of keywords for each GO term and were inferred from the biological background
knowledge associated with this GO term. This biological background knowledge was
found from the GO term and its definition as well as by analysizing TP predictions in the
test set and by analysizing proteins annotated to this GO term in Gene Ontology. (See
Appendix A for lists of search criteria.) Depending on the GO term, different search

strategies were effective to find evidence information for the concerned protein.

5.5 Search modes

Gene Ontology molecular function terms describe different types of protein activities, e.g.
binding activity or enzymatic activity. Therefore, different search modes were appropriate
for each GO function.

a) Search by EC class: For some enzymatic activities the GO term definition
corresponds to an EC class. In those cases, the EC class was used as a search
criteria as well. E.g. the GO function tRNA ligase activity is only performed by
members of the EC class 6.1.1.- “Aminoacyl-tRNA synthetases” EC 6.1.1.-.
Binding (e.g. ATP binding), on the other hand, occurs in many different enzyme
classes. Therefore, this search mode was usually not appropriate for binding

activities. In Appendix A appropriate GO terms and their EC classes are stated.
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b) Search by protein name: The protein name in some cases reveals information on

GO molecular function terms that can be used to describe its activity. E.g. protein
names like Nuclease, Ribosomal Protein, Restriction enzyme hint to the GO term
DNA binding. This fast search mode was useful when the EC class was not given.
See list of “hinting” protein names for appropriate GO terms inferred from the GO
terms biological background in Appendix A.

Search by keywords in databases: This was the most commonly used search
mode. Validation started at Uniprot [2]. Varying amounts of information about
function, catalytic activity etc. were found here. Cross-links to Pfam, Interpro,
Enzyme provided additional information about domains in the searched protein,
its protein family as well as its nomenclature class. Those databases as well as
Entrez Gene were used to find hints to validate annotations for the given protein.
Links to following databases were followed: Enzyme [4] contains for example
information like the reaction catalyzed and cofactors for all proteins belonging to
the same EC class as the searched protein. The “Comments” section of the
Enzyme database was valuable sometimes for validation because it gives
additional (in addition to Uniprot) information about e.g. special features for some
members of this class. This was valuable because it gave information not only
about the single protein for which a GO term was to be validated, but it gave
information about all proteins in the same nomenclature class, which might be
better characterized. Prosite [4] gave more extensive information about and
description of the domains in the searched protein than Uniprot, e.g. information

about function of other proteins sharing this domain. If this protein family in
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general or a member of this familiy was involved in the searched protein’s
function, this could give useful hints when validating a predicted GO molecular
function for individual proteins.

d) Search by keyword in literature: This most time consuming search mode was
applied if search in databases didn’t provide information about the protein or if it
suggested that the predicton might be true (e.g. predicted activity was found in a
similar protein in other organisms or a related protein family etc.) but didn’t give
enough evidence. Sources of information were literature links in Uniprot [6] as
well as keyword search in Pubmed [15].

General strategies:

e) Using existing annotations: An existing annotation could hint to the existence of
the searched annotation. E.g. an already existing annotation GO: Protein folding
might hint that the FP prediction GO: Peptidyl-prolyl-cis-trans isomerase was
true because protein folding often involves those isomerasing proteins. E.g., for a
protein with annotated GO: Kinase activity the FP prediction GO: adeny!
nucleotide binding must be true because all kinases use ATP (which is an adenyl

nucleotide). See Appendix A for a list of “hinting” GO terms.

5.6 The validation categories

The idea during validation was to get a picture of what the protein does and than judge if
the predicted GO term could be involved in that activity.
Using the search methods described above the FP predicitions were evaluated. The

predicted GO terms were scored according to five different categories:
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1)

2)

3)

4)

5)

True (t): The prediction was true. Source of evidence (database, literature) was
given. The annotation for this protein is missing in Gene Ontology.

Related function (rf): The predicted function was very close to the actual
function. This suggested that the binding or active sites in the protein are
structurally very similar for predicted and actual function. Two related functions
showed in some but not all cases close relation in the GO tree as well.

Might be true (mt): Literature and databases hinted to that annotation might be
true, but further experiments will have to be carried out to be certain. A typical
case would be that the predicted activity of this protein was found in another
organism but not in the organism in the protein set.

Vague connection (vc): The prediction had at least some connection to the
known protein function. There was presumably no structural similarity between
those two functions but they often occur together in a protein. If for example the
actual function was RNA binding, the prediction tRNA ligase activity has some
connection to this because this activity involves RNA binding, in other words: a
protein with an active site for tRNA ligase activity has always a binding site for
RNA as well. Another example of a vague connection would be if actual and
predicted function stated the same activity (e.g. hydrolase activity) but on a
slightly different substrate. In this case, there might be a structural similarity
between active sites in the protein for actual and predicted function.

Not true (nt): The prediction was not true and did not belong to one of the

categories above.
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Appendix A

A.1. Description of GO term and search criteria

In this chapter, a short description of each GO term and its biological background is
given. Based on its biological background, analysis of TP predictions and analysis of
proteins annotated to a certain class in Gene Ontology, searching criteria were set up for
each term. Searching criteria include a list of keywords for search in databases and
literature and definition of “related functions” and “vague connections” are given. The
lists are the base of the search and show therefore to which extend and to which limits
databases are searched, they do not claim to be perfectly complete. Related functions and
vague connections are mainly set up during evaluation process, only those are listed

which were actually found in proteins with a false positive prediction.

A.1.1 GO:0030554 adenyl nucleotide binding (2804)

Gene Ontology definition: Interacting selectively with adenyl nucleotides, any compound

consisting of adenosine esterified with (ortho)phosphate. [1]

In most cases (2762 of 2804 in Gene Ontology) adenyl nucleotide binding means ATP
binding (child term). ATP hydrolysis is often used as energy source for active transport,

synthesis, ligation and motility a well as Cotransmitter/Transmitter in some neurons.

The nucleic acid Adenin is component of other chemical compounds than adenyl

nucleotides (NAD, cAMP etc.). Binding sites for those compounds might be similar to
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adenyl nucleotide binding sites and are therefore considered related functions or vaguely

connected when adenine as a part of a DNA strain is recognized.

Table A.1. Search criteria for adeny! nucleotide binding

True

Binding of compounds
including adenyl
nucleotides:

ATP binding

ADP binding

AMP binding

FAD binding

ATP binding enzymes
Kinase

(GO:0016301 Kinase
activity)

ATPase

Adenylate cyclase
Restriction enzyme Type [
and III

Acceptors for ATP as a
neurotransmitter

Related functions

Binding of guanyl

nucleotides, their chemical

structure is very close to
adenyl nucleotides

Guanyl nucleotide binding
(GO:0019001)

GTP binding (sibling term)
GDP binding (sibling term)
GMP binding (sibling term)
Binding of adenin
containing compounds
other than nucleotides

NAD (Nicotinamide adenine

dinucleotide) binding
(GO:0051287)

NADH binding
(GO:0051288)
NADPH binding
(GO:0050661)

cAMP binding

NAD binding enzymes
Dehydrogenases

Proteins involved in cAMP

signaling pathways -
cAMP synthesis and
degradation

Adenylate cyclase
(GO:0004016)
cyclic-nucleotide
phophodiesterase activity
(GO:0004112)
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This category is suitable for halfautomatical textmining involving Emzyme db. (e.g. get

word “ATP” in catalytic activity.)

A.1.2 GO:0004812 tRNA ligase activity 0,9933

Gene Ontology definition: Catalysis of the formation of aminoacyl-tRNA from ATP,

amino acid, and tRNA with the release of pyrophosphate and AMP. [1]

This very specific activity is only performed by members of the class “Aminoacyl-tRNA
synthetases” EC 6.1.1.- . The EC class can therefore be used as a search criteria. As the
first step in protein biosynthesis they activate amino acids by binding the carboxyl group
of an aminoacid with ester linkage to Adenosin in the CCA sequence of a tRNA molecule
using ATP as energysource. A protein has to bind at least those three components (ATP,
aminoacid and the nucleic acid tRNA) and produce aminacyl-t-RNA to be classified as

this.

The sibling term DNA ligase activity has a related function. It performes the ligase
reaction with DNA instead of RNA. It builds the ester linkage between two nucleotides
and not between a nucleotide and an aminoacid. This might be performed by a similar

structure.

Nucleic acid binding in general and enzymatic activities with nucleic acid substrate are

considered to have a vage connection to the GO term tRNA ligase activity.
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Table A.2. Search criteria for tRNA ligase activity

True Related functions Vage connection
Members of DNA ligase activity (sibling  Nucleic acid binding

EC 6.1.1.- class - term) (GO:0003909) DNA binding
Aminoacyl-tRNA RNA binding

synthetases tRNA binding

tRNA AND ATP AND Enzymatic activities with
tRNA binding nucleic acid substrate

Polymerase activity
Translation factor activity
Restrictionenzyme activity

A.1.3 GO:0016886 ligase activity, forming phosphoric ester bonds (584)

Gene Ontology definition: Catalysis of the ligation of two substances via a phosphoric
ester bond with concomitant breakage of a diphosphate linkage, usually in a nucleoside

triphosphate. [1]

582 proteins are annotated to GO term 0016886, the majority (530) have tRNA ligase

activity, 39 DNA ligase activity. So for most of the proteins apply the same rules as for

the above term G:004812 tRNA ligase activity.

A.1.4 GO:0003755 peptidyl-prolyl cis-trans isomerase activity (215)

Gene Ontology definition: Catalysis of the reaction: peptidyl-proline (omega=180) =

peptidyl-proline (omega=0). [1]

Proteins excersing this GO activity are called Peptdidyl-prolyl Isomerases (PPlases). They

are usually involved in protein folding and stabilization, which occurs mainly while
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forming the secondary and tertiary structure after translation. The cis-trans isomerization
of peptidyl-proline bonds is thought to be one of the rate-limiting events in protein
folding, hence isomerase (also called rotamase) activity is presumably involved in
accelerating conformational transitions in folding intermediates.

If a FP protein is involved in protein folding (GO:0006457), this might hint the predicted
“peptidyl-prolyl cis-trans isomerase activity” is true.

Bacterial rotamases are for example rotA, parvulin, trigger factor and SlyD. Also
cyclophilins and FK 506 binding proteins have been shown to accererate folding of some
proteins [2]

No related functions or vage connection terms are defined for this term.

Table A.4. Search criteria for ligase activity, forming phosphoric ester bonds
True Related functions Vage connection

Enzymes involved in ND ND
Protein folding and
stabilization

GO:0006457 Protein folding
PPIases

Isomerase

Rotamase

rotA

parvulin

trigger factor

SlyD

Cyclophilin

FK506

Proline
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A.1.5 GO:0015399 primary active transporter activity (1048)

Gene Ontology definition: Catalysis of transport of a solute against a concentration
gradient using a primary energy source. Primary energy sources known to be coupled to

transport are chemical, electrical and solar sources. [1]

Primary active transporter activity is found in one main class of membrane proteins that
shift specific molecules across the membrane: carrier proteins. Carrier proteins can be
coupled to a source of energy to catalyze active transport. A broad range of protein
families with very different structures have this transport activity: transport ATPase
family — P-type and F-type ATPases (structurally different), ABC transporter (each

member contains two highly conserved ATP binding cassettes).

All proteins that are transporters using a primary source of energy are classified “true” in
contrast to a transporter working through “facilitated diffusion or chemiosmotic energy”.
Furthermore, this GO term does not include “any molecular entity that serves as an
electron accetor and electron donor in an electron transport system.

No related functions or vage connection terms are defined for this term.
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Table A.5. Search criteria for primary active transporter activity

True Related Vage connection
functions

Transporter activity ND ND

Carrier proteins

Transport ATPases:

P-type transport ATPase family

F-type ATPases also known as ATP synthases
ABC transporter:

MDR- multidrug resistance protein
Molybdate-transporting

ABC transporter

(GO:0015412)

Child terms

cytochrome-c oxidase activity

GO:0015451 : decarboxylation-driven active
transporter activity

GO:0015454 : light-driven active transporter
activity

GO:0015452 : methyl transfer-driven active
transporter activity

GO:0003957 : NAD(P)+ transhydrogenase (B-
specific) activity

GO:0008137 : NADH dehydrogenase
(ubiquinone) activity

G0:0015453 : oxidoreduction-driven active
transporter activity

GO0:0015405 : P-P-bond-hydrolysis-driven
transporter activity

GO0:0008121 : ubiquinol-cytochrome-c
reductase activity

A.1.6 GO:0042626 ATPase activity, coupled to transmembrane movement of substances

Gene Ontology definition: Catalysis of the reaction: ATP + H20 = ADP + phosphate to
directly drive the transport of a substance across a membrane. [1]

No related functions or vage connection terms are defined for this term.
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Table A.6. Search criteria for ATPase activity, coupled to transmembrane movement of

substances
True Related Vage connection
functions
Transporter activity ND ND
Carrier proteins
Transport ATPases:

P-type transport ATPase family

F-type ATPases also known as ATP synthases
ABC transporter:

MDR- multidrug resistance protein
Molybdate-transporting

ABC transporter

(GO:0015412)

A.1.7 GO:0008235 metalloexopeptidase activity (191
Gene Ontology definition: Catalysis of the hydrolysis of terminal peptide linkages in
oligopeptides or polypeptides. [1] Enzymes of this class contain a chelated metal ion

essential to their catalytic activity at their active sites.

The GO term corresponds to the EC class 3.4.17.22 Metallocarboxypeptidase.

This is a subclass of the big class of enzymes hydrolasing peptide bonds. (EC 3.4
Peptidases)

The mechanism used to cleave a peptide bond involves in all peptidases making an amino

acid residue or a water molecule nucleophillic so that it can attack the peptide carbonyl

group.

A FP prediction is only validated as “true”, if the protein belongs to this class.
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Metalloexopeptidase activity requires metallion and protein binding and a hydrolase

activity on carbon-nitrogen bonds. If any of those are present in the protein with a FP

“metalloexopeptidase activity” prediction, this prediction is evaluated “vc”, i.e. the actual

function has a loose connection to the prediction. Even the uncle term “hydrolase activity,

acting on carbon-nitrogen (but not peptide) bonds” is evaluated “vc”

Table A.7. Search criteria for metalloexopeptidase activity

True

Related functions

Vage connection

Members of EC 3.4.17.-
Metallocarboxypeptidases

A.1.8 GO:0016160 Amylase activity (64)

Metalloendopeptidases

Protein binding

Metalion binding
Enzymes with peptidase
activity

Members of EC 3.4

Serine peptidase
Threonine peptidase
Cysteine peptidase
Aspartic acid peptidase
Glutamic acid peptidase
Enzymes with hydrolase
activity, acting on carbon-
nitrogen (but not peptide
bonds)

Gene Ontology definition: Catalysis of the hydrolysis of amylose or an amylose

derivative. [1]
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Table A.8. Search criteria for amylase activity

True

Members of EC 3.2.1.1
Alpha Amylase

EC 3.2.1.2 Beta Amylase
3.2.1.68 Isoamylase

Related functions Vage connection

Hydrolase activity, acting on  Hydrolase activity GO:
glycosyl bonds GO:0016798 Members of EC class 3
(parent term)

A.1.9 GO:0003677 DNA binding (9675)

Gene Ontology definition: Interacting selectively with DNA (deoxyribonucleic acid). [1]

Table A.9. Search criteria for DNA binding

True Related functions Vage connection
DNA binding enzymes RNA binding ND

Nuclease RNA binding enzymes

Replication initian proteins ~ tRNA synthetase

Restriction enzymes ribonucleoprotein

Polymerase

Members of EC 3.1.11.- to
EC 3.1.16 and EC3.1.21 to
3.1.22 and 3.1.25 to 3.1.27
Ribonucleases

Ribosomal protein

Information sources

Validation of FP and search for missing annotations performed ONLY for keywords

(from search criteria) in protein name and by EC class in Enzyme

(http://au.expasy.org/enzyme/). Evidence check in Uniprot.
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A.1.10 GO:0003723 RNA binding (2597)

Table A.10. Search criteria for DNA binding

True Related functions Vage connection
RNA binding enzymes DNA binding ND
tRNA synthetase DNA binding enzymes
ribonucleoprotein Nuclease
Ribosomal protein Replication initian proteins
Restriction enzymes
Polymerase

A.1.11 GO:0004523 Ribonuclease H activity (89)

Gene Ontology definition: Catalysis of the endonucleolytic cleavage of RNA in RNA-

DNA hybrids to 5'-phosphomonoesters. [1]

EC class 3.1.26.- contains different Ribonucleases. E.g. Ribonuclease M5, Ribonuclease
P etc. The specific reaction of endonucleolytic cleavage to 5 phosphomonoester as
described in the Gene Ontology definition is only performed by members of the EC class
3.1.26.4 called Ribonuclease H.

Table A.11. Search criteria for Ribonuclease H activity

True Related functions Vage connection
RNase H activity Ribonucleases Nucleic acid binding
Members of EC class DNA binding
3.1.26.4 RNA binding

tRNA binding

Enzymatic activities with
nucleic acid substrate
Polymerase activity
Translation factor activity
Restrictionenzyme activity
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A.1.12 GO:0004672 Protein kinase activity (3674)

Gene Ontology definition: Catalysis of the transfer of a phosphate group, usually from
ATP, to a protein substrate. [1]
Protein kinases are represented by EC class 2.A.-, EC 2.A.-t0 2.7.4.-,2.7.6.-

EC2.7.9.-

Table A.12. Search criteria for protein kinase activity
True Related functions Vage connection
Kinases ND ND
Phosphotransferase
Members of EC 2.A.- to
2.74.-,2.7.6.-
EC 2.7.9.-
Proteins involved in

phosphorylation, ATP
hydrolosis

Information sources
Search for missing annotations in testset performed ONLY for keywords (kinase) in
protein name and by memberhip to EC class. For the search of true FP Uniprot was used
in those cases where there was no EC number given.

Validation of FP with Uniprot Information.
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A.2 GO terms and their search modes

Search mode a) Search by EC class

G0:0004523 Ribonuclease H activity

GO:0004672 Protein kinase activity

(GO:0016160 Amylase activity)

GO0:0008235 metalloexopeptidase activity

GO:0016886 ligase activity, forming phosphoric ester bonds

GO:0004812 tRNA ligase activity

Search mode b) Search by protein name

GO:0004672 Protein kinase activity

GO0:0003677 DNA binding

G0:0042626 ATPase activity, coupled to transmembrane movement of substances

GO:0003723 RNA binding

Search mode c¢) Search by keyword in databases

GO:0004672 Protein kinase activity (only when no EC number was given)
G0:0042626 ATPase activity, coupled to transmembrane movement of substances
GO0:0030554 adenyl nucleotide binding

GO:0004812 tRNA ligase activity

GO:0003755 peptidyl-prolyl cis-trans isomerase activity

GO:0015399 primary active transporter activity
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Search mode d) Search by keyword in literature
GO0:0030554 adenyl nucleotide binding

and most of the other ones when more evidence was needed

Search mode e) Using existing annotations

GO0:0030554 adenyl nucleotide binding

and others

Search for missing annotations

- only search mode a) and b)
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