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This lecture

Background: terminology, definitions and history
Distance methods
Discrete methods

Why trees may lie



From Greek: phylon = race / tribe / class; genes
Phylogeny = evolutionary classification

Phylogenetics
study of predicted evolutionary relationships
we can (almost) never know for sure what really happened
we can not replay the past
we can only extrapolate back from the present
predict the past based on what we see now

phylogenetic “reconstruction”:
because we are trying to recover the past

Phylogeny = molecular archaeology
the clues left in genes, proteins (aa and nt substitutions)
~> random remnants of the past, like shards of broken pottery
not the best clues, often deeply flawed, but sometimes enough 3



The first evolutionary trees - 1860’s

FIG. 1. Haeckel's phylogenetic tree of 1866 76). -




Phenetic Classification

Animalia

Whittaker and Margulis, 1960s




1960s: Cladistics

Hennig: formulated the rules of moder
= cladistics: developed with morp
applies well with molecular data

Distinguished between ancestral similarities and

Willi Hennig 1913-1976

Ancestral characters (plesiomorp
Derived characters (apomorphies — '

Symplesiomorphides
shared primitive characters
= common heritage of all,
uninformative about unique relationships

Synapomorphies
shared derived characters
= unique heritage of subset of taxa,
define unique groups (clades)



1960s: Molecular Phylogeny

Margaret Dayhoff 1925-1983

pioneered study of:

- protein evolution Universal Tree based on ferredoxin sequences
- field of bioinformatics Science (1966:) 152:363-366

first true universal evolutionary trees
used small proteins (~100 amino acids), sequenced “by hand”
no high-throughput automation, DNA sequence not invented yet



1980s: DNA Sequencing

Archaea

Eucarya
Unrooted Phylogenetic Tree Based on 16S-like rRNA Sequences

from: Pace, Olsen & Woese, 1988, Cell 45:325-326.



Terminology

Node = a “divergence” or “splitting” e\

human chimp ‘

gorilla

< = branches

This is a species tree tubA
divergences = speciation events

ftsZ

This is a gene tree
divergences = gene duplication events 9



erminology

s*branches [“edges”] connect nodes
= internal (node to node) or terminal (node to te

ssterminal nodes
- terminal nodes = [“leaves’] = operational taxonomic units,
- OTUs = organisms [“species tree”]
- OTUs = genes, proteins [“gene tree”]

C
b
«*internal node = point at which two branches diverge e h
- represent divergence events [“splittings”] :
 ——
 ——

s*root = origin of the tree, or sub-tree
= point where everything started, corresponds to LCA 10



1d Relatedness

human chimpanzee

gorilla

OTUs sharing more re
are more closely

Node = corresponds to last common ancestor (LCA) of diverging branches
= fossil, but mostly, hypothetical LCA

Human and chimp share more recent common ancestor with each other, i.e., they
are more closely related to each other than either is to gorilla

LCA 2 human or chimp (or even something in between),
LCA = something before, = equally ancestral to both lineages 11



2 |s usually only a fragment of the

99.99999....% of all species that ever lived are extinct

true of genes as well? »



% clade (monophyletic group
= complete group

= node plus all descenden

- share unique common ance

and unique common hist

“soutgroup
- anything not in ingroup
(= group of interest)

% sister group
- closest outgroup to clade of interest
~> operational definition (true sister group probably extinct)
- operational sister group = closest outgroup availéble



Tree can be
lengths (ev

Phylograms:
relationships and distances
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Three Domains of Life

Archaea

Eucarya Bacteria

Where is the root (the origin)?




Rooting Phylogene

{ /2
VL 1<

1] |
root = oldest point in the tree
if molecular clock (i.e. constant rate of evolution) -> root
would be in the middle

without a clock (i.e., in the real world) need external point of reference
= outgroup, = anything not in your ingroup (= group of interest)

for gene trees can use distant relative (paralogs)
for species tree use sister group = closest relative to ingroup

16



Homologs

—[ gene X

Species A Species B

- all copies of gene X = orthologs

- genes X and X' are paralogs

17




Laternal G

Salmonella Ecoli

X
\
: . \
Listeria .
\

Mycoplasma

Listeria

* very common in bacteria, especially for pathogenicity genes
important in bacterial evolution:
steal whole metabolic pathways from each other
important to us -> rapid spread of antibiotic resistance 18




First Molecular Trees (1988) -> Three Domains of Life

Archaea

Eucarya Bacteria

Unrooted Phylogenetic Tree Based on 16S-like rRNA Sequences

from: Pace, Olsen & Woese, 1988, Cell 45:325-326.



20

adapted from Baldauf, et al, in Assembling the Tree of Life, 2004



Two General Categories of Phylogenetic Methods

¢ Distance methods
- sometimes referred to as “clustering” or algorithmic methods

- calculate trees in two steps
1. All data as single matrix of pairwise distances
2. Distances assembled into tree,
- most commonly using clustering algorithm

- fast, easy, reasonably accurate, good enough for many things
- methods: UPGMA (for clock-like evolution), neighbor joining (for reality)

**Discrete data (tree searching) methods

each column in alignment = discrete data point
=>hypothesis for each column of alignment

look for the tree that best fits this collection of hypotheses
- much more details, better precision..., much slower
methods: parsimony, maximum likelihood, bayesian inference




Distance Methods

Step 1: calculate a matrix of pairwise distances

Thermetoga YPOOI4AF0207/1-399 F
Erpli NOLT 2407 /1_304 F
Bapthrzsis_NPR4267 /1395 F
Srerevisize NPT FRL05/ 1457 MG
Hiaplens_NPPPI 2930 462 M
Hyperthermus_YPO0T 01 37477 ] —L40M 5
Sspifataricus_CACAZ2 06/ 1435 -M5

3n 40 SIIJ

1 1 1 1

2 BT K [0S v kil F ABE VR
AT T LA kil [ s Al R AR
AANTTYLAKAGGAEARK

G LIYECGG IR EKEEFREASE LGKG
G LIYECGG FEEREEEEEFE E A4 EMG G
LWL Ly RILGF A EK | KL EAKEKGEE

LwiGRILLMDRIGFI

WK EAEEASKELGEE

FEY AL
FEY AL
FEY AWLIL
EKFAFLIL

Thermotoga
Ecoli
Banthrasis
Scerevisia
Hsapiens
Hypertherm

Ssolfatari

Thermo

.000
.245
.325
.731
127
.786
.786

Ecoli

.245
-000
-333
- 739
- 733
. 778
-780

Bantha Scere Hsapi
-325 731 127
-333 - 739 - 733
-000 -.704 -696
-704 -000 -143
-696 -143 -000
. 766 -400 -415
771 -431 -555

Hyperth
. 786
778
. 766
-400
-415
-000
222

Ssolf
. 786
- 780
771
-431
-555
222
-000
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Distance Methods 1: Pairwise Distance Matrix

*» All data reduced to single set of pairwise distances
*» therefore, important to accurately estimate distances

% Over short time, what you see is what you get
Observed distance = true distance

“ Over longer time “mutations on top of mutations” => hidden change
simply counting differences under-estimate true distance

real difference
—

Correction .
Over time, observed

<——— observed difference mutations # true
distance. Mutations still
occur (distance still
increasing) but no longer
directly observable.

time

sequence difference




Nucleotide Substitution Models

Jukes-Cantor (JC)

- equal base sequencies
- all substitutions equal

/

K2P: Kimura 2-parameter
- equal base frequencies
- different rates for tsvstv

~—~

~~—

F81: Felsenstein 1981
- unequal base sequencies
- all substitutions equally likely

/

4 & O >

HKY85: Hasegawa et al., 1985
- unequal base sequencies
- different rates for ts vs tv

A C G T

v
v

Taa  Hacfc Maghg fatht gtREV (GTR): General time reversible
s Qo Hogfg Haft - unequal base frequencies
- rate for each substitution type

Hog®a Hgc®c g Hpt%
Bty Bete Hg® G 4B




Not all sites evolve according to the same rules

30 40 50 &0 70
sETTEY sy kG F aBF PP - - - - - - - - - - - - - P

Thermetega rPI0IL70207/1-288 |F WiaT |G Gl
Erpll NPLTf407/1-394 F WGT |G AT T W LAKEY EE R s P BE- - - - - - - - - - NAP Gl
Banthrasis_NPEL2676/1-305% F a7 1@ ARNTTYLAKAGOGAEARGYDR- - - - - - - - - - - - - - ARP Gl
Srerevisize NPOT 5051458 bl G WG GHL 1Y KCOG TBERTEHEEFERK EAAE LGRGSFEY AWYL L kA Gl
Hiaplens_NPOOI383/146s bl G | Wi GHL 1Y KCGG TBEREHEEFEE EAAEMGEGSFEY AWYIL L kA Gl
Hyperthermus_yPO0I 0T 37471 L4200 5 Ll i LW GBIl LY RICSF A E R EML EAKKEEGEESFEY AWLIL Lk G
Siplfataricus_CACHZRRe/I-d3F -3 L 1wl LW iGR L L hD Rl FEEEN E R E EAEEAARKE LGE EEERFAFLIL Lk G

Different positions in a sequence
can evolve at very different rate

Some sites change a lot
Others unchanged
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Distance Matrix Methods: Step 2 - Tree Building

1. UPGMA (unweighted pairgroup method)

group most similar sequences first

only works if there is a molecular clock, which there isn’t
simple,fast, ~> highly inaccurate

no one uses this anymore!

2. neighborjoining method (NJ)
group sequences stepwise to minimize tree length
much more accurate, nearly as fast, now
progressively pair sequences

Both take distance matrix and turn it into a tree

independent of method used to derive the matrix



Neighborjoining Distance Method (NJ)

group sequences stepwise to minimize tree length (L = sum of branches)
start with star phylogeny (fully unresolved tree = longest possible)
progressively pair sequences
select pairing that shortens the tree the most (L' = L-i)
recalculate the distances, repeat— fully resolved tree

D

L (length) = a+b+c+d+e+f+g+h L (length) = a+b+c+d+e+f+g+h-i




Evaluating Trees: Bootstrap Analysis

+ a method for calculating the reliability of different parts of the tree
** “random sampling with replacement”

1. create multiple pseudo-datasets from the real dataset by repeatedly
drawing sites from the real-dataset (with replacement)

 pseudo-dataset have the same size as the real dataset
 but some sites are present multiple times, others absent
* repeat x times (1000 minimum)

2. calculate phylogenetic tree for each pseudo-dataset

3. reliability score: how many pseudo-trees contain clade (node) x

it works: tested in lab with populations of viruses:

- simulate evolution, sequence -> tree, bootstrap (Hillis & Bull, 1993)
can use with any phylogenetic method

- well understood



Step 1
a. build pseudodata sets

b. repeat x 1000

Step 2
build trees for each
(= 1000 trees)

Step 3
tabulate results
(strict consensus tree)

Bootstrap Analysis

,/_rep“c}

Data set replicate 2
012345678 l 52349
seqgA CGTTCGGT] | segA [ seqgA TCGTT..
seqB GGTTCAGA |segB [T seqB TGGTA..
seqC CGATCGGA | seqC [T seqC TCGAA..
treel seqA  tree2 seqA  tree3 segA
_§ seqB seqc seqB  etc.
seqc seqB seqc

segA
seqB
seqc

67%

bootstrap consensus tree
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Bootstrap: rule 1

“+1. Bootstrap (BP) values=support for a clade (a single branch in the tree)
no statement about relationships within that clade

A
seqA S€q
Squ _ESEC]B

—5eqC
(o) \

seqD LA’E— seqD

seqE seqE

“*Each bootstrap divides tree in half
bootstrap value = equal support for each half

seqB

seqC

seqC

seqD
seqE }




Bootstrap: rules 2-3

< 2. theoretically, only BP > 95% = significant

experimental evidence: ~> BP>70% = robust
at least for molecular data

Hillis& Bull, 1993, Systematic Biology, 42:182

% 3. what if BP > 90% for clade of interest, but <b0% for others

- count yourself lucky!
- frees don't have to be fully resolved to be useful
- don't expect 100% BP for every branch on your tree



Bootstrap rule 4: More Is Better

10000 !
i
9000 |
f
8000 | E
S = 1% iance in p-val
S 7000 | <- curve = 1% percent variance Iin p-value
L
[w)
O 6000 |
a
O 5000 F
o
‘S 4000+
O 3000} 2%
Q0
§ 2000
1000 + 5% ;
N 1 A 1 —
50%  60%  70% 80%  90% 100%
Bootstrap percentage ref: Hedges 1998
< 100 bootstrap replicates < 1000 bootstraps
60% bOOTSTI"Gp =+/-<5% 60% = +/- ~4%

100% bootstrap = +/- 1% 100% = +/- 1%



A Tree is Only As Good as the Alignment Its Based On

Delete regions of uncertain alignment (= uncertain homology)
there are other ways to align this region
hard to know which is correct

. " L L LT LIS X

NN ' Low sequence similarity # uncertain homology

.
MV E---
ML - - -
NVE---
MDKT EK
LD K KA A
MKPAKY
o[ B K

Also: o
delete regions with incomplete sequence for >1 OTU Fé-
(otherwise more data for some OTUs than others) [

OK not OK

Delete large indels.

33




Defining regions of certain homology:
consensus sequences

100% consensus
means all sequences
have same character
at this position

> BioEdit Sequence Alignment Editor.
File Edit

= 0O

" C:\Documents and Settings\A dministrator\Desktop\BioEdit_7.09_ 2007062 7\example. bio

Sequence  Alignment

Wiew Accessory Application  RNA  World Wide Web  Options  Window  Help

[=] |E0urier Mew

26 total sequences

zlhs -8

Made: | Edit

£ 1DIT §on - =EREE IR RE  rat v

j | Insert j gelection: 571

Sequence Maszk: Mone

Mumbering Mask: Mone
Serall Ll 1 s |
@ NHlE speed slow oy - fast

;{rr||'|'|'|'|vvvv|vvvv|vvvv|vrrrlrrrrlrrrrlrrrrlrrrr|rrrrlrrrrlrrrrlrrrrlrrrr

40 50 a0 70 a0 90 100 1

Start

‘osition: tuler at:

Consensus:

aureum 35L1

brunneum W3700

crassicaule
discoid NC4
intermedium
longosporum
medium KP23
laterosorum
lacteum
menorum M1
rhizopodium
tenue PanbZ
tenue BJAH
tenue PR4
luridum LRZ
nandutensis
tenuiss imum
tikaliensis
subglobosum
aureostipes
aureostipes
deminutivum
microsporum
multistipes
parvisporumn
100%

CAAAGATTARGCCATGCATGTCTAAGTATARATTCTTGTACGATGARACTGCAGAC GG TCATTACAACAGT
CRAARGATTARAGCCATGCATGTCTAAGTATARATTCTTGTACGATGARACTGCAGAC GG TCATTACARCAGT

O3HO33 CAAAGATTARGCCATGCATGTCTAAGTATARATTCTTGTACGATGARACTGCAGAC GG TCATTACAACAGT
CAAAGATTARGCCATGCATGTCTAAGTATARATTCTTGTACGATGARACTGCAGAC GG TCATTACAACAGT
PJ11 CAAAGATTARGCCATGCATGTCTAAGTATARATTCTTGTACGATGARACTGCAGAC GG TCATTACAACAGT
THSC109 CAAAGATTARGCCATGCATGTCTAAGTATARATTCTTGTACGATGARACTGCAGAC GG TCATTACAACAGT
CAAAGATTARGCCATGCATGTCTAAGTATARATTCTTGTACGATGARACTGCAGAC GG TCATTACAACAGT
AR4 CAAAGATTARGCCATGCATGTCTAAGTATARATTCTTGTACGATGARACTGCAGAC GG TCATTACAACAGT
CAAAGATTARGCCATGCATETCTAAGTATARATC TTTATACGETGARAC TGCAGAC GG TCATTACAACAGT
CAAAGATTARGCCATGCATETCTAAGTATARATC TTTATACGETGARAC TGCAGAC GG TCATTACAACAGT
AusKy4 CAARMGATTARGCCATGCATGTCTAAGTATARATTTTTATATGATGARAC TGCAGAAGGC TCATTACAACAGT
CAAAGATTARGCCATGCATGTCTAAGTATARATTTTTATATGATGARACTGCAGAC GG TCATTACAACAGTH
CAAAGATTARGCCATGCATGTCTAAGTATARATTTTTATATGATGARACTGCAGAC GG TCATTACAACAGTH
CAAAGATTARGCCATGCATGTCTAAGTATARATTTTTATATGATGARACTGCAGAC GG TCATTACAACAGTH
CAARGATTARAGCCATGCATGTCTAAGTATAR CCTTTATACGETGARACTGCAGAC GG TCATTACARCAGT
YAl CAAAGATTARGCCATGCATETCTAAGTATAR CCTTTATACGETGARACTGCAGAC GG TCATTACAACAGT
HZ07 CAAAGATTARGCCATGCATETCTAAGTATAR CCTTTATACGETGARACTGCAGAC GG TCATTACAACAGT
OH595 CAAAGATTARGCCATGCATETCTAAGTATAR CCTTTATACGETGARACTGCAGAC GG TCATTACAACAGT
LE1 CAAAGATTARGCCATGCATETCTAAGTATARACCTCTATATGETGARACTGCAGAC GG TCATTACAACAGT
JES150 CAAGGATTARGCCATGCATETCTAAGTATAAGC TCTTGTACGEC TAGAC TG AGAC GG TCATTACAACEET
var helvetium CRAGGATTAAGCCATGCATGTCTAAGTATAAGCTCTTGTACGGCTAGACTGCAGACGGCTCATTACARCGEET
MexM192 CAAGGATTARGCCATGCATGTCTAAGTATAAGTCCTTGTACGAC TAGAC TGCAGAC GG TCATTACAACAGT
H143 CAAGGATTARGCCATGCATETCTAAGTATAAGCCCTAGTACGEC TAGAC TG AGAC GG TCATTACAACEGET
UKZab AARGEATTARGCCATGCATETCTAAGTATA  GTCCTCACG GACGARACTGCAGACGGCTCATTACAACGET!
o8l12a CAAGGATTARGCCATGCATETCTAAGTATAAGCCCTAGTACGEC TAGAC TG AGAC GG TCATTACAACEGET

AR GATTAAGQ?ATGCATGTCTAAGTATAA A ACTGCAGA GGCTCATTACAAC GT

\ G

100% identical for all sequences

not 100% identical

]



Defining regions of certain homology:
consensus sequences

100% consensus too “stringent”,
more common to use ~75% (but depends on the data set)
more distantly related sequences/organisms, may require lower stringency

=0
H ’W‘m B 27 total sequences
i Sequence Mask: None —
Made: |Edit || Inset > gzljlféﬁnsﬂ Nur?’mering tdask: Mone ?tji?arrtal.1
1 0IT §en B EER DR e s SwmE L
NAIRAARERAARN RAAASEARANEARANRARANRAARARARARRARENE ASSRAARNEARAY \AAREEARMREARNRARAIRAASARARARRARANES \RARARRNY AAANRARLERAAANRARESEAS AN AANIS
T{ an 100 110 1z0 130 140 150 1a0 170 180 19 200 Z10 220
Dic aureum SL1 ARACTECAGACGGETCATTACAACAGTGATARACTGC TAGACTTTCGGEE TTTTA - ACCTTRIGGATAACCGCAGTARATCGEEGC TAATACATAGAAR CCATGEGYCGACTGE TAACGGAAGYTCABCGAT
Dic brunneum WS700 ARACTECAGACGGEETCATTACAACAGTGATARACTAATAGACTTTCGGEE TTTTA - - ACCTTRIGEATAACCGCAGTARAATCGEEGC TAATACATAGAAR CECATGEEY TGACTGE CRAACGGAAGETCASCGAT
Dic crassicaule 93HO3Z ARACTECAGACGECTCATTACAACAGTGATARACTAA TAGACTTTCGGEEE TTTTA - - ACCTTRIGEATAACCGCAGTAAATCGEEEC TARTACATAGAAR CCATGEEY TEACTGEE CAACGGAATETCABCGAT
Dic discoild NC4 ARACTECAGARCGGL TCATTACAACAGTGATARACTAR TAGACTTTCGGEETTT ACCTTRIGGATARCCGCAGTAAATCGEGGC TARTACATACALAE COATGEEY TGACTGE CRAACGGAAGETCAGCGAT
Dic intermedium PJ11 ARACTECAGACGGETCATTACAACAGTGATARACTAATAGACTTTCGGEETTT ACCTTRIGEATAACCCCAGTAAATCGEGGC TAATACATACAAR CECATGEEY TGACTGE TAACGGARAGETCASCGAT
Dic longosporum THNSC109 AAACTGCAGACGGCTCATTACAACAGTGATARACTAATAGACTTTCGGGETITTA - - ACCTTRIGGATARCCGCAGTARAATCGGEECTARTACATAGARG CCATGGEY TGACTGE CAACGGAAGETCABCGAT
Dic medium KPZ3 ARACTECAGACGEC TCATTACAACAGTGATARACTAR TAGACTTTCGGEEE TTTTA - - ACCTTRIGEATARCCGCAGTARRTCGEEGC TARTACATAGAAR CECATGEEY TGAC - GG CRACGARAG QTCRAEBECGAT
Dic laterosorum AE4 AAACTECAGACGGETCATTACAACAGTGATARACTAATAGACTTTCGGEETTT ACCTTRIGEATAACCGCAGTAAATCGEGGCTAATACATAGAAR CCAGGGEY TGACTGEA TTTATCGEAAGETCCECGAT
Dic lacteum AARCTGCAGACGGCTCATTACAACAGTGATARACTAATAGAGTTTCGGEECT A - ACCTACQTGGATATCCGCAGTARATCGEEECTAATACATACAR Y COAGGGGRTGACTE TTTA- CGGEAGRTCCBCGAT
Dic mencorum M1 ARACTECAGACGGECTCATTACAACAGTGATARACTAR TAGAGTTTCGGECT A - ACCTACRTGEATATCCGCRAGTARAATCGEEEC TARTACATRACARY COAGEEEY TEACTE TTTA- CEEAAGRTCCECGAT
Dic rhizopodium AusKy4d ARACTGCAGAAGGETCATTACAACAGTGATARACTACCAGACTTTCGGEECT T TGGCCTTRIGGATAACCGCEGTARATCGEEECTARTACATACAAY COAGGGEY TGACTS TTTA CGEAATETCCECGAT
Dic tenue Pansz ARACTECAGACGGETCATTACAACAGTAATAAACTAATAGACTTTCGGEY TT - CATTACCTTRTGEGATAACCGCAGTARATC GGEECTARTACATACAAY CEAGGGEY TGACTE TTTA- CGEAATETCCECEAT
Dic tenue PJA AAACTECAGACGGC TCATTACAACAGTAATARACTAL TAGACTTTCGGEE TT- TATTACC TTRIGEATARCCGCAGTAAATCGEEECTARTACATACAAY CEAGGGEY TEACTE TTTA- CEEAATETCCOECGAT
Dic tenue PR4 ARACTECAGARCGGL TCATTACAACAGTAATARACTALTAGACTTTCGGEETT TATTACCTTRIGGATARCCGCRGTARAATCGGEECTARTACATACARY COAGGEEY TGACTS TTTA CGGAATETCCECGAT
Pol luridum LREZ ARACTECAGACGGETCATTACAACAGTGATAAAC TARAGRACTTTCGCGE TTCGE CETCRMGEATAACCGCAGTARAATCGEEECTAATACATETAR Y COAGAGERTEAGCGE - - GCAACCGOGAGTETTTCGAT
Pol nandutensis val AAACTECAGACGGC TCATTACAACAGTGATARACTARAGRACTTTCGCGETTCGE CETCRMGEATAACCGCAGTARATCGEEECTAATACATETAR Y COAGRGERTGAGCGE - - GCAACTGCGAGTET T TCGAT
Pol tenulssimum HZ97 ARACTECAGACGECTCATTACAACAGTGATARAC TARAGRACTTTCGCGE TTCGE CETCRMGEATAACCGCAGTARATCGEEECTAATACATGTAR Y CORGRAGGRTGAGCAG - GCARCTGCGAGTETTTECGAT
Pol tikaliensis OHS585 AAACTECAGACGGETCATTACAACAGTGATARACTARAGRACTTTCGCGE TTCGE COTCRMGEATAACCGCAGTARATCGEEECTAATACATETARY COAGAGGRTEAGCGS  GCAACTGCGAGTETTTRCGAT
oy subglobosum LEL AARCTGCAGACGGCTCATTACAACARGTGATARACTACAAGACTTTCGCGETTCGE CGETTARTGGATAACCGCAGTAAATCGEEECTAATACATATARY CCARAGAYCEAGCAR GCAATTGCGAGT Y CTTRCGAT
Dic aureostipes JES150 AGACTECAGACGGECTCATTACAACGETTETATC TTCCAGGACATCCGGEN CGCARGE  COTTRTGEATARCCGCRAGTARAATCGEEEC TARTACATRACARSY COGAGEERTAGAGAGGEGCARCCTTGAAGC I TCTCGAT
Dic aureostipes var helv AGACTGCAGARCGGCTCATTACAACGETTGTATCTTACAGGGCATCCGEECECARGR COTTRTGEATAACCGCAGTARATCGEEECTRARTACATACARY CEGAGGARTEEAGGEEEAAACCTTGARGTYTCTECGRT
Dic deminutivum MexM19z RAGACTGCAGACGGCTCATTACAACAGTTGTTGTCTACAGGACATCCGEGETTTTES CETTRMGEATAACCGCAGTARAATCGEEECTAATACATATAR Y COAAGGARTE ACT - GGTARC G- GAAGTYTCTHCGAT
Dic microsporum H143 AGACTECAGACGGECTCATTACAACGETTGCAGC TTACAGAGCATCCGGE CGCARGE  COTTRTGEATARCCGCAGTAAATCGEEECTARTACATACAASY COGAGEERCGEAGCGEECARCCGLGAAGC N TCTRCGAT
Dic multistipes UKZ6b ARACTECAGARCGGETCATTACAACGETCGCTGETCACAGGACACGCGGEEGECARCT CoCTRTGEATARCCGCATTARAATCGEGEEC TARTACATACA A AN CCGAGTGRACGAC TGGECARCTG GARGTYCGCECGAT
i rvis Q3126 AGACTECAGACGGETCATTACAACGETTGCAGC TTACAGAGCATCCGGECGCARAGR  COTTRTGEATAACCGCAGTARATC GEEECTAATACATACAAR COGAGEERCGEAGUGGECARCCGCGAAGCYTCTCGAT
A ACTGCAGA GGEUTCATTACAAC GT CE & C [[GGATA CC C  TAAATCGGGGCTAATACAT AR AC G ECGRT
ARACTGCAGACGGCTCATTACAACAGT ATARACTA GARCTTTCGES) T AC TT IGGATARCCGCRAGTARATCGEEGCTARTACATR AR JACGR GGGYTGEA GGG [C N TC BCGART

Regions to delete: gaps, and surrounding regions of “uncertain” alignment/homology35



Discrete Data Methods

% - start with tree
< - fit the data to the tree
< - measure goodness of fit

“* parsimony, maximum likelihood, bayesian inference
- each measures goodness of fit in slightly different ways

“*parsimony - measures steps (mutations)
- best tree = least number of steps (shortest = simplest)
- Occum’s razor, simplest solution most likely correct

“* likelihood - measure likelihood of data given the tree
- best tree = one with maximum (=highest) likelihood
- readily accommodates complex models (substitution weighting)
- same models as distance (JC, K2P, HKY, etc.)
- (unlike parsimony)

“* bayesian inference
- best tree = most probably tree given the data (posterior probability)
- modifies the model as the search proceeds
- algorithm learns and improves itself



Bayes’ Theorem

Posterior Likelthood Prior

| S
. P(T|D)=P([D|T) * P(T)
P(D)
f

Normalization constant




Discrete Data Methods

% - start with tree
< - fit the data to the tree
< - measure goodness of fit

< calculations (measure of tree quality) ~straightforward
» challenge is finding the right tree(s)

» in a ideal world, examine all possible trees
(universe of all possible trees for set of OTUs
= free space)
- take each tree, fit data to ftree, best fit tree wins

<+ problem: number of possible trees for n OUT = n™2
- # possible trees increases rapidly with # OTUs
- ~20 OTUs: # possible trees > # stars in universe
- exhaustive search impossible > 14 OTUs



Measuring Goodness of Fit: Parismony

<+ parsimony measures tree fitness in "steps” (mutation events)
- sum for each position (column) in alignment separately

Tree 1. alignment position 1 Tree 1: alignment position 2
A (OTU1) A—C ¢ (oTuD)
A (OTU2) A (0TU2)
? A (OTU3) ? A (OTU3)
¢ C (0TU4) C C (0TU4)
C (OTU5) C (OTU5)
C (OTU6) C (OTU6)

<+ total number of steps = length of tree for given alignment
repeat for all trees
tree requiring fewest number of changes = best tree
Occum'’s razor - the simplest solution is most likely correct
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Tests two alternative Trees

A Parsimony Problem

identify one requiring the Least Number of Changes
(= simplest hypothesis)

Tree A
9 steps

seq-a
seqg-b
seq-cC
seq-d
seq-e
seq-T

> > 000k

> > > > 00N

> O0O000Ww
OOO0O0O0 M~
OOOO0O0X>>0
OOO0O0O >0
OO0O0OX>Xr>N
OOX>»>>0O0

a
b —
c —d
d

€/
F__J

Tree B
11 steps
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Maximum Likelihood

< essentially = parsimony, but with weighting
< weights =same as distance models (JC, K2P, etc.)

A (OTUl)
A (OTU2)
A (OTU3) pC(r'Simony =1 STCP

C (0TU4) likelihood = 1 x weight
Cc (0TU5)

C (OTU6)

) —

<+ Likelihood with all changes weighted equally => parsimony

% Likelihood = slower, but more accurate
» more likely to find ftrue tree in messy data
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All Discrete Data Methods Start with the Tree

“*»Ideally - generate all possible trees

- measure fit of the data to the tree A B
- best fit = correct tree > <
likely to b
(most likely to be) A c 5
>
C
<+ 3 OTUs -> 1 possible tree / C A
<+ 4 OTUs -> 3 possible tree
% 5 OTUs -> 15 possible tree B D
< X OTUs -> xx2 possible tree B
< 15 OTUs > # stars in the universe A : (
D C
<+>14 OTUs, exact solution not possible

“*need short cuts - heuristics, intelligent search
“*need an intelligent way to search tree space



Tree Space = Universe of All Possible Trees
for a set of OTUs

A B A , C
< All trees within tree space 1 —_— >_<
are related to each other o b 5 D

Tree space for 5 OTUs Trees as a landscape
All trees connected by single
rearrangement of branches



Searching Tree Space

< All frees within tree space

are related (connected) B A
> : :
C D
swap one
branch

(swap A for B)

= : 1 (
Tree space for 5 OTUs C D

all trees related by single
rearrangement of branches




Branch swapping

walking through tree space
looking for good trees

\

Start with tree 1
try to improve it

How? Rearrange branches \
measure how well new tree fits the dat

Whenever you find a better tree,
make that your starting tree
and try to improve the new tree (one step at a time)

Continue until you can’t find anything better .



Complex Tree Space

“*Branch swapping would be easy, if tree space were simple
- but, tree space can often be very complex
- multiple sets of pretty good trees (tree islands)
- correct tree is on one of these, but which one?

One search path

< branch swapping algorithms are "greedy”
- once on path upwards can only go up
- algorithms only accept better trees

» problem: how to avoid getting stuck on a sub-optimal island



How to avoid getting stuck on sub-optimal islands (hills)

“»solution: multiple independent starts
every random start -> one path through tree space

/ start point 2

e

start point 1

start point3 ‘
/

<»usually run 100's, 1000s or even 10000s of random starts
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Bayesian Inference

Posterior probability of phylogeny
probability of a tree conditioned on the observations.

Examine universe of possible trees (tree space)
and all possible parameters for evolutionary model
identifies combinations of branching patterns + model parameters
that give highest likelihood trees

In a sense, maximum likelihood with learning

< adjusts model as search progresses
- better trees -> better estimates of model parameters

<+ Bayesian Inference invented in 1600's by Thomas Bayes
- rediscovered in late 1990's
- formally applied to phylogeny in 2000
- MrBayes (2002) first widely useful implementation




BI - Searching Tree Space

“*MrBayes: MCMCMC algorithm to search tree space
- (Metropolis-Hasting Coupled Markov Chain Monte-Carlo)

» four searches run in parallel (chains)
- each chain = independent random walk through tree space

<» But chains are not equal
1 conservative (cold) chain, conservative rearrangements only
(slow, step by step search)
3 "heated"” chains, multiple simultaneous rearrangements
=> large jumps through tree space
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Searching Tree Space with MCMC

“* Most importantly, 4 chains talk to each other
- heated chains mostly find bad trees
- but occasionally may stumble across a new tree island

+ when heated chain finds better tree
- transforms into a "cold"” chain
- and old cold chain becomes “hot"

“*» hot chains essentially = random walk through tree space
- avoids problem of "greedy” algorithm

“» When is search "complete"? No improvement for long time...
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Why trees may lie?
(where do trees go wrong)

Bad data e e £ 8
sequences aren’t homologous (mixing orthologs, paralogs, xenologs/ horiz. gene transfer)
incorrect alignment, using misaligned regions of the alignment
too little difference between sequences (not enough data)
too much difference between sequences (too much homoplasy/convergent evolution)

Bad analyses
incorrect models: too much correction, not enough correction, incorrect model parameters
incorrect methods: UPGMA, unweighted parsimony for distantly related sequences

Over interpreting weak trees
BP < 70% : means it could be wrong, other hypotheses not ruled out
BP < 50% : means over half of BP replicates => something else!

Phylogenetic artefacts
some problems are extremely difficult
sequences very distantly related
sequences evolving at very different rates in different species




Long Branch Attraction (The Felsenstein Zone)

[ Chocolate

— CAViar

m—mm Oyster
Lobster

Coffee
Truffle

‘= Nopi

Isolated long branches tend
to attract each other

Rapidly evolving lineages are inferred to be closely
related, regardless of their true evolutionary
relationships

Two random sets of character states are more likely o resemble one

another than either is to resemble any of the non-randomly associated sets
of states among the other taxa
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What causes long branches?

A. Fast evolution
- increased selection
parasites (evolutionary arms race), changing
environment, .....
- relaxed selection
founder effects, loss of function
gene duplications -> partial loss of function

y/

B. Species without close relatives (“isolated branches”)
- close relatives unknown or extinct
- close relatives existant, but not included in analysis

C. Bad evolutionary methods/models
- incorrect model e.g., overweighting simple mutations
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Data set

segA ACCGTTCGGT
seqB ATGGTTCAGA
seqC ATGGATCGGA
seqD ACCGACCGGA
BPrep1

segA AGTTTCGGTA
segB AGTTTCAGAA
seqC AGAATCGGAA
segD AGAACCGGAA

A D
B C

repl

bootstrap consensus tree:

LBAs and BPs

BP rep 2

segA CTCCGCTTTC

seqB  TTCGGTTATT

seqC TTCCGTAATT

segD CTCGGCTATT
A C D

rep2

BPrep 3

segA
SeqB
seqC
seqgD

ACCGCTCGGT
ATTGCTCAGA
ATTGCTCGGA
ACCGCTCGGA

rep3

A
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Solutions to LBA problems

A. remove the “offending” branch

(if you don’t need it)
Hampl et al. (2009) Proc Natl Acad Sci USA

B. more data
- given infinite data, most methods give the true tree

C. better evolutionary model
- give a perfect model, all methods give the true tree
- perfect model = time machine



LBA - Which Phylogenetic Method is Best?

(a)

1 2 (b)
10— 1.0
& 0.30 0.30
] [0} 0 8
g 0.8 e
s £ 0.05
o g
5 all 0.50 S ML: Kimura model
; 0.6 =) i —=e— NJ: Kimura distances
2 £
5 2 —O— NJ: uncorrected
= ::o e —=— Parsimony: weighted
| B {— Parsimony: uncorrected
2> £ E T e ] y: ecte
fréu —&— ML: Kimura model —&— Parsimony: weighted § "“C*O\“—Et —+— UPGMA: Kimura distances
= 02-] —®— NJKimura distances —— Parsimony: uncorrected g 0.2 N\ %L
o —C— UPGMA: Kimura distances —+— Lake's invariants l%:r_[th
ongct
0 ot : “"?:LHJ\M—,-U—‘” IO [ :
0 AR PR PR = T TTTTI Sy IR : | :
10 100 1000 10000 100000 10 100 1000 10000 100000
Length of sequence Length of sequence

The accuracy of several different phylogenetic methods in reconstructing two four-taxon
trees with (a) all edges equal in length and (b) with a short internal edge and two long
terminal edges. In each graph the proportion of analyses that recovered the correct tree
is plotted against the length of the simulated sequences. From Huelsenbeck et al.
(1996).

56



Combining data




Three schools of thought

II)

1. Always combine everything: “total evidence schoo
all the data = most comprehensive approach

This assumes there’s no such things as “bad data”
bad data = data inappropriate for the question
e.g., species trees with laterally transferred genes

2. Never combine data:
instead: use consensus — agreement among trees

Pros: congruence/consistency = strongest form of proof in evolutionary study

Cons: consensus can not discover anything new
single gene trees — poor resolution of many branches, especially deep ones
only combining gives enough information to resolve all branches

3. Conditional combination
test the data for congruence, only combine congruent data



Combining vs consensus

11560 Evolution: Baldauf and Palmer Proc. Natl. Acad. Sci. USA 90 (1993)

Ee—

strict consensus —

low resolution =
few taxa =

Fungl

-~
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L

combined sequence tree
all OTUs, most branches BP>80%

FI1G. 2. (Figure legend appears at the botrom of the opposite page.)

Individual trees for 4 different proteins
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