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This lecture 

• Dynamic programming and sequence alignment 
• Scoring methods 
• Multiple alignments, profiles 
• Hidden Markov models 
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DNA sequence comparison:  
First success story  

• In 1984 Russell Doolittle and colleagues  
found similarities between a cancer-causing 
gene and a normal growth factor (PDGF) 
gene using a database search 

• Finding sequence similarities with genes of  
known function is a common approach to 
infer the function of  a newly sequenced gene 
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Longest common subsequence (LCS) – 
alignment without mismatches 
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Edit graph for the longest  
common substring (LCS) problem 
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Edit graph for the LCS problem 
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Computing LCS (I) 

Let vi   =   prefix of v of length i:    v1 … vi 

and wj  =  prefix of w of length j:   w1 … wj 

 

The length of LCS(vi,wj) is computed by: 

si, j  = max 

si-1, j 

si, j-1 

si-1, j-1  + 1  if  vi = wj  

Insertion 

Deletion 

Match i,j 

i-1,j 

i,j -1 

i-1,j -1 

1 0 

0 
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LCS algorithm 

LCS(v, n, w, m) 
1 for i ← 1 to n 
2  si, 0 ← 0 
3 for j ← 1 to m 
4  s0, j ← 0 
5 for i ← 1 to n 
6  for j ← 1 to m 
       si-1, j 
8   si, j   ←  max si, j-1  
       si-1, j-1 + 1, if  vi = wj 
10   return sn, m 
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LCS Runtime 

• It takes O(nm) time to fill in the n × m dynamic 
programming matrix 
 

• The pseudocode consists of  a nested “for” loop inside 
of  another “for” loop to set up a n × m matrix 
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What’s so great about  
dynamic programming? 

• A naive exhaustive search would have the running time 
O(3f(n,m)) 

• An exhaustive search would recompute the same 
subpaths several times 

• Dynamic programming takes advantage of  the rich 
computational structure in the search space, and reuse 
already computed subpaths 
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Traversing the edit graph  

3 different strategies: 
−a) Column by column 
−b) Row by row 
−c) Along diagonals 

a) b) 

c) 
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Making a scoring matrix 

• Scoring matrices are created based on biological evidence 
• Alignments can be thought of  as two sequences that 

differ due to mutations 
• Some of  these mutations have little effect on the protein’s 

function, therefore some penalties, δ(i, j), will be less 
harsh than others 

• δ(i, j) ≈ how often do amino acid i substitutes amino acid 
j in alignments of  related proteins 
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Scoring matrix: Example 

• Notice that although R and K 
are different amino acids, they 
have a positive score 

• Why? They are both positively 
charged amino acids and will 
not greatly change the 
function of  protein 

A R N K 

A 5 -2 -1 -1 

R - 7 -1 3 

N - - 7 0 

K - - - 6 
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Scoring matrices 

• Amino acid substitution matrices 
– PAM 
– BLOSUM 

 
• DNA substitution matrices 

– DNA is less conserved than protein sequences 
– Less effective to compare coding regions at 

nucleotide level 
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PAM 

• Point Accepted Mutation 
• 1 PAM = PAM1 = 1% average change of  all amino acid 

positions 
• After 100 PAMs of  evolution, not every residue will 

have changed 
• some residues may have mutated several times 
• some residues may have returned to their 

original state 
• some residues may not changed at all 
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PAMX 

• PAMx = PAM1
x 

– PAM250 = PAM1
250 

• PAM250 is a widely used scoring matrix: 
          
         Ala  Arg  Asn  Asp  Cys  Gln  Glu  Gly  His  Ile  Leu  Lys ... 
          A    R    N    D    C    Q    E    G    H    I    L    K  ... 
Ala A    13    6    9    9    5    8    9   12    6    8    6    7  ... 
Arg R     3   17    4    3    2    5    3    2    6    3    2    9 
Asn N     4    4    6    7    2    5    6    4    6    3    2    5 
Asp D     5    4    8   11    1    7   10    5    6    3    2    5 
Cys C     2    1    1    1   52    1    1    2    2    2    1    1 
Gln Q     3    5    5    6    1   10    7    3    7    2    3    5 
... 
Trp W     0    2    0    0    0    0    0    0    1    0    1    0 
Tyr Y     1    1    2    1    3    1    1    1    3    2    2    1 
Val V     7    4    4    4    4    4    4    4    5    4   15   10 
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BLOSUM 

• Blocks Substitution Matrix  
• Scores derived by observing the frequencies of  

substitutions in blocks of  local alignments in related 
proteins 

• Matrix name indicates evolutionary distance 
– BLOSUM62 was created using sequences sharing no more 

than 62% sequence identity 
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BLOSUM50 
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Scoring matrices and  
the global alignment problem 

• To generalize scoring, consider a (4+1) × (4+1) scoring 
matrix δ 

• In the case of  an amino acid sequence alignment, the 
scoring matrix would be (20+1) × (20+1)  

• The addition of  1 is to include the score for 
comparison of  a gap character “-” (indels) 

 

     si-1, j  + δ (vi, -) 
  si,j = max  si, j-1 + δ (-, wj)  
    si-1, j-1 + δ (vi, wj) 

Insertion 

Deletion 

(Mis)match 

i,j 

i-1,j 

i,j -1 

i-1,j -1 
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Local vs. global alignment (I) 

• The Global alignment problem : find the longest path 
between vertices (0,0) and (n,m) in the edit graph 

• The Local alignment problem tries to find the longest 
path between arbitrary vertices (i, j) and (i’, j’) in the edit 
graph 

• In the edit graph with negative scores, local alignment 
may score higher than global alignment 
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Local vs. global alignment (II) 

• Global Alignment 
 
 

• Local Alignment—better alignment to find 
conserved segment 

    --T—-CC-C-AGT—-TATGT-CAGGGGACACG—A-GCATGCAGA-GAC 
      |  || |  ||  | | | |||    || | | |  | ||||   | 
    AATTGCCGCC-GTCGT-T-TTCAG----CA-GTTATG—T-CAGAT--C 

                tccCAGTTATGTCAGgggacacgagcatgcagagac 
                     |||||||||||| 

aattgccgccgtcgttttcagCAGTTATGTCAGatc 
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Local vs. global alignment (III) 

Global alignment 

Local alignment 
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Free rides 

Vertex (0,0) 

The dashed edges represent the free rides from 
(0,0) to every other node. 

Yeah, a free ride! 
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The local alignment recurrence 
 The largest value of si,j over the whole edit graph is the score of 

the best local alignment 
 
 
 
 
 
 

 

 The 0 is the only difference from the recurrence of the global 
alignment problem 

0 

si,j   =  max si-1, j +  δ (vi, –) 
si, j-1 + δ (–, wj) 
si-1, j-1 + δ (vi, wj) 



In nature, a series of  k indels often come as a single event 
rather than a series of  k single nucleotide events: 
 ATA– –GC    ATAG– GC 
 ATATTGC    AT– GTGC 
 

Normal scoring would 
give the same score for 
both alignments 

This is more likely This is less likely 

Gap penalties 
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3 layer edit grap 
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Gap penalty recurrences 

 si-1, j-1 + δ (vi, wj) 

si, j    = max s i, j   

                   s i, j 

si, j   = max 
s i-1, j – σ 
si-1, j – (ρ+σ) 

si, j   = max 
s i, j-1 – σ 

si, j-1 – (ρ+σ) 

Continue gap in w (insertion): upper level 

Start gap in w (insertion): from main level 

Continue gap in v (deletion): lower level 

Start gap in v (deletion): from main level 

Match or mismatch: main level 

End insertion: from upper level 

End deletion: from lower level 



BLAST (I) 

• Basic Local Alignment Search Tool (BLAST) finds 
regions of  local similarity between sequences 

• The program compares nucleotide or protein sequences 
to sequence databases and calculates the statistical 
significance of  matches 
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BLAST (II) 

• First stage: Identify exact matches of  length W (default 
W=3 ) between the query and the sequences in the 
database 

• Second stage: Extend the match in both directions in an 
attempt to boost the alignment score (insertions and 
deletions are not considered) 

• Third stage: If  a high-scoring ungapped alignment is 
found: Perform a gapped local alignment using dynamic 
programming 
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Multiple alignment  

• A faint similarity between two sequences becomes 
significant if  present in many 

• Multiple alignments can reveal subtle similarities that 
pairwise alignments do not reveal 

A T – G C G – 
A – C G T – A 
A T C A C – A 



2D vs 3D edit graph 

v 

w 

2-D edit graph 

3-D edit graph 

v 

w 

u 
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Architecture of 3D edit graph 
(i-1,j-1,k-1) 

(i,j-1,k-1) 

(i,j-1,k) 

(i-1,j-1,k) (i-1,j,k) 

(i,j,k) 

(i-1,j,k-1) 

(i,j,k-1) 
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Multiple alignment of three sequences:  
Dynamic programming 

 
 
si,j,k = max 
 
 
 
 
 
δ(x, y, z) is an entry in the 3D scoring matrix 

si-1,j-1,k-1 +  δ(vi, wj, uk) 
si-1,j-1,k    + δ (vi, wj, _ ) 
si-1,j,k-1   + δ (vi, _,  uk) 
si,j-1,k-1   + δ (_, wj, uk) 
si-1,j,k   + δ (vi, _ , _) 
si,j-1,k   + δ (_, wj, _) 
si,j,k-1   + δ (_, _, uk) 
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Multiple alignment: Running time 

• For three sequences of  length n, the run time is O(n3) 
• For k sequences, build a k-dimensional edit graph, with 

run time O(nk) 
 

• Conclusion: dynamic programming approach for 
alignment between two sequences is easily extended to k 
sequences, but it is impractical due to exponential 
running time 
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Profile representation of multiple alignment 
  -  A  G  G  C  T  A  T  C  A  C  C  T  G  
  T  A  G  –  C  T  A  C  C  A  -  -  -  G  
  C  A  G  –  C  T  A  C  C  A  -  -  -  G  
  C  A  G  –  C  T  A  T  C  A  C  –  G  G  
  C  A  G  –  C  T  A  T  C  G  C  –  G  G  
 
A     1              1       .8         
C .6           1       .4  1    .6 .2 
G        1 .2                .2       .4  1 
T .2              1    .6             .2 
- .2       .8                   .4 .8 .4 

• In the past we were aligning a sequence against a sequence 
• With profiles we can align a sequence against a profile and 

even a profile against a profile 

PS
SM
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Multiple alignment: Greedy approach 

• Choose most similar pair of  strings and combine into a 
profile, thereby reducing the alignment of  k sequences to 
an alignment of  of  k-1 sequences/profiles. Repeat! 

• This is a heuristic greedy method 

u1= ACGTACGTACGT… 

u2 = TTAATTAATTAA… 

u3 = ACTACTACTACT… 

… 

uk = CCGGCCGGCCGG 

u1= ACg/tTACg/tTACg/cT… 

u2 = TTAATTAATTAA… 

… 

uk = CCGGCCGGCCGG… 
k 

k-1 
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CLUSTALW (I) 

1. Determine all pairwise alignments between sequences 
and the degree of  similarity between them. 
 

2. Construct a similarity tree.  
 

3. Combine the alignments from 1 in the order specified 
in 2 using the rule "once a gap always a gap“. 
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PSI-BLAST 

• Position-Specific Iterative (PSI) BLAST detect weak 
relationships between the query and sequences in the 
database (higher sensitivity than BLAST) 

• PSI-BLAST first constructs a multiple alignment from 
the highest scoring hits in a initial BLAST search and 
generate a profile from this alignment i.e. PSSM 

• The profile is used to iteratively perform additional 
BLAST searches (called iterations) and the results of  
each iteration is used to refine the profile 

• The iteration stops when no new matches with a 
satisfactory score are obtained 
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Scoring matches 
Given a protein sequence x and an BLAST/PSI-
BLAST/HMM, what is a significant score? 

– The score for the sequence x: p* 
– Generate 1000 random sequences and score them:  
 prand 1, prand 2, …, prand 1000 
– Fit a distribution to the random scores and calculate the false 

discover rate (fdr) 
– E-score = fdr · Size of  query database (the expected number of  false 

positive hits) 

p* 
fdr 

p 

Distribution 
for random 
scores  
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Method power 
You want to find homologous proteins to a specific protein A 
using some computational method X: 

All proteins in the database 

Homologous to A 

Predicted by X to be 
homologous to A 

TP 

TN 

FP 

FN 

Sensitivity: TP/(TP+FN) 
Specificity: TN/(TN+FP) 
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Hidden Markov Model (HMM) 

 Can be viewed as an abstract machine with k hidden 
states that emits symbols from an alphabet Σ 

 Each state has its own probability distribution, and the 
machine switches between states according to this 
probability distribution 

While in a certain state, the machine makes 2 
decisions: 
− What state should I move to next? 
− What symbol - from the alphabet Σ - should I emit? 
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HMM for Fair Bet Casino 

 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

HMM model for the Fair Bet Casino Problem 
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HMM for Fair Bet Casino (cont’d) 

 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

HMM model for the Fair Bet Casino Problem 
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HMM for Fair Bet Casino (cont’d) 

 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

HMM model for the Fair Bet Casino Problem 

HT 
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HMM for Fair Bet Casino (cont’d) 

 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

HMM model for the Fair Bet Casino Problem 

HTH 
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Why “Hidden”? 

• Observers can see the emitted symbols of  an HMM 
but have no ability to know which state the HMM is 
currently in 

• Thus, the goal is to infer the most likely hidden states 
of  an HMM based on the given sequence of  emitted 
symbols. 
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HMM parameters 

Σ: set of  emission characters 
  Σ = {H, T} for coin tossing 
  Σ = {A, C, G, T} for the CG-island problem 
 
Q: set of  hidden states, each emitting symbols from Σ 
  Q={F,B} for coin tossing 
  Q={CG-island, not CG-island} for the CG-

 island problem 

51 



HMM Parameters (cont’d) 

A = (akl): a |Q| x |Q| matrix of  probability of  changing 
from state k to state l 

 - transition probabilities 
 
E = (ek(b)): a |Q| x |Σ| matrix of  probability of  

 emitting symbol b while being in state k 
  - emission probabilities 
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HMM for Fair Bet Casino 
The Fair Bet Casino in HMM terms: 
 Σ = {0, 1} – 0 for Tails and 1 for Heads 
 Q = {F,B} – F for Fair & B for Biased coin 
   Transition Probabilities A      Emission Probabilities E 
 

Fair Biased 

Fair aFF = 0.9 aFB = 0.1 

Biased aBF = 0.1 aBB = 0.9 

Tails(0) Heads(1) 

Fair eF(0) = ½  eF(1) = ½ 

Biased 
 

eB(0) = ¼ eB(1) = ¾ 



HMM for Fair Bet Casino (cont’d) 

 
 
 
 
 
 
 

54 



Hidden Paths 
• A path π = π1… πn in the HMM is defined as a sequence 

of  states 
• Consider path π = FFFBBBBBFFF and sequence x = 

01011101001 

 

x                        0     1     0    1     1      1    0      1    0     0     1 

π      =        F   F   F   B   B   B   B   B   F   F   F 
P(xi|πi)               ½   ½    ½    ¾   ¾    ¾    ¼   ¾    ½   ½   ½  

P(πi-1  πi)      ½   9/10    9/10      
1/10      

9/10      
9/10      

9/10     
9/10    

1/10     
9/10     

9/10  

Transition probability from state πi-1 to state πi 

Probability that xi was emitted from state πi 
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P(x,π) Calculation 

P(x,π)=P(x|π) P(π): Probability that sequence x was 
generated by the path π: 
  
 P(x,π) = P(π0→ π1) · Π P(xi| πi) · P(πi → πi+1)  

                     = a π0, π1 · Π e πi (xi) ·  a πi, πi+1  
 

   =             Π e πi+1 (xi+1) ·  a πi, πi+1  
 

where π0 and πn+1 are fictitious initial and terminal states begin 
and end 
                                         

n 

i=1 
n 

i=1 

i=0 

n 
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The Viterbi algorithm 

 Every layer i emit one symbol xi 
 

 Every path from layer 1 to layer n 
has probability P(x,π) 
 

 The path tells us which hidden 
state in layer i that emitted xi 
 

 The Viterbi algorithm finds the 
path that maximizes P(x,π) among 
all possible paths 
 

 

Q1 

 
 

Q2 
 
 
Q3 
 
 
Q4 

x1        x2              x3         x4         x5         x6 
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The Viterbi algorithm 

 Dynamic programming 
 

 Define sk,i as the probability of  
emitting the prefix x1…xi and 
reaching the state k 
 

 sl,i+1 = el (xi+1) · maxk Є Q {sk,i · akl} 
 

 The Viterbi algorithm runs in 
O(n|Q|2) time 
 

Q1 

 
 

Q2 
 
 
Q3 
 
 
Q4 

x1         x2          x3         x4          x5         x6 

58 



HMMs 

• HMMs can be used for aligning a sequence 
against a protein family 

• Conserved positions in the family 
corresponds to n sequentially linked match 
states M1,…,Mn in the profile HMM 

• HMMs handle gaps better than profiles do 
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• Multiple alignment is used to construct the HMM model 
• Assign each column to a Match state in HMM. Add Insertion and 

Deletion state 
• Estimate the emission probabilities according to amino acid 

counts in columns 
• Estimate the transition probabilities between Match, Deletion and 

Insertion states 

VTISCTGSSSNIGAG-NHVKWYQQLPG 

VTISCTGTSSNIGS--ITVNWYQQLPG 

LRLSCSSSGFIFSS--YAMYWVRQA-- 

LSLTCTVSG-SFDD--YYSTWVRQP-- 

PEVTCVVVD-SHEDPQVKFNWYVDG-- 

ATLVCLISDFYPGA--VTVAWKADS-- 

AALGCLVKD-FPEP--VTVSWNSG--- 

VSLTCLVKGFYPSD--IAVEWESNG-- 

 

Match state 3: 
 eM3(L) = 5/8 
 eM3(I) = 3/8 
 

Modeled as insertions 
 

Transitions from match state 9 to 10 
 aM9,M10 = 5/8 
 aM9,D10 = 3/8 
 

Building a profile HMM 
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Profile HMM 

A profile HMM 
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Penalties in HMMs 

Different penalties for opening a gap and extending the gap 
is naturally implemented in HMM 
 

– aMI * aIM = gap initiation penalty 
– aII = gap extension penalty 
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• Pfam decribes protein domains  
• Each protein domain family in Pfam has: 

– Seed alignment: manually verified multiple alignment of  a 
representative set of  sequences 

– HMM built from the seed alignment for further database 
searches 

– Full alignment generated automatically from the  HMM 
• The distinction between seed and full alignments 

facilitates Pfam updates 
– Seed alignments are stable resources 
– Full alignments can be updated with newly found amino 

acid sequences 
 

Pfam 
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Pfam uses a tool called HMMER with the following 
architecture: 
 

Pfam 
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