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This lecture

Dynamic programming and sequence alignment
Scoring methods

Multiple alignments, profiles
Hidden Markov models



DNA sequence comparison:
First success story

* In 1984 Russell Doolittle and colleagues
found similarities between a cancer-causing
gene and a normal growth factor (PDGF)

gene using a database search

* Finding sequence similarities with genes of
known function 1s a common approach to
infer the function of a newly sequenced gene



Longest common subsequence (LCS) —

alignment without mismatches
icoords: 0 O 1 2 3 4 5 5 6 6 7

elements of v T G C A T

- A |- |cC

elements of w A T _ C _ T G A T C

jcoords: 0O 1 2 2 3 3 4 5 6 7 8

positionsin v : 1<3<5<6<7
Matches shown in red
positions in w: 27<3<4<6<8

TCTAC is a common subsequence of vand w

Every common subsequence is a path in a 2-D grid
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Edit graph for the longest
common substring (LCS) problem

Every path from
source to sink is a
common
subsequence (CS)

Every diagonal
edge adds an extra
element to the CS

LCS Problem: Find
the path with the
maximum number
of diagonal edges



Edit graph for the LCS problem

Deletion

Matches

-TGCAT-A-C
AT-C-TGATC




S, j

Computing LCS (1)

Let v, = prefixof voflengthi: v,..v,

/

and w; = prefix of wof lengthj: w, ... w,

The length of LCS(v,w;) is computed by:

~ e g
Si'l,j I 1/./ 1 I 1/./
max < S, j-1 1 10
Si-l,j-l +1 |f Vi = Wj MatCh I,_/ _1 0 [,j
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LCS algorithm

LCS(v, n, w, m)
1 fori<«— 17ton
2 500
3 fotj«— Ttowm
4 S0, € — 0
5 for/;«— 7Tton
§

for j < 7 to m

i1,
i 0 T LA 0=,

10 returnys, ,



Example: initiation
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Example: Fori=3...n,j=1... m
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LCS Runtime

* It takes O(nm) time to fill in the #» X » dynamic
programming matrix

* The pseudocode consists of a nested “for” loop inside
ot another “for” loop to set up a # X 7 matrix
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What's so great about
dynamic programming?
* A natve exhaustive search would have the running time
O<3f(ﬂ,m))

* An exhaustive search would recompute the same
subpaths several times

* Dynamic programming takes advantage of the rich
computational structure in the search space, and reuse
already computed subpaths
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Traversing the edit graph

3 different strategies: ? 5 b)
—a) Column by column ;; | T
—b) Row by row i
—c) Along diagonals :’r ; |

) L7

s #
///////
///////
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/////
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Making a scoring matrix

Scoring matrices are created based on biological evidence

Alignments can be thought of as two sequences that
differ due to mutations

Some of these mutations have little effect on the protein’s
function, therefore some penalties, d(s, /), will be less
harsh than others

0(z, 7) = how often do amino acid 7 substitutes amino acid
7 1in alignments of related proteins
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Scoring matrix: Example

N |®
A 1| -1
® 113
N 71 0
K 16

* Notice that although R and K
are different amino acids, they
have a positive score

* Why? They are both positively
charged amino acids and will
not greatly change the
function of protein
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Scoring matrices

Amino acid substitution matrices

— PAM
— BLLOSUM

DNA substitution matrices
— DNA is less conserved than protein sequences

— Less effective to compare coding regions at
nucleotide level

18



PAM

* Point Accepted Mutation

* 1 PAM = PAM, = 1% average change of all amino acid
positions

o After 100 PAMs of evolution, not every residue will
have changed

some residues may have mutated several times

some residues may have returned to their
original state

some residues may not changed at all



e PAM,_ = PAM/®

* PAM,., 1s a widely used scoring matrix:

Ala
Arg
Asn
Asp
Cys
GIn
Trp
Tyr
Val

PAM,
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BLOSUM

* Blocks Substitution Matrix
* Scores derived by observing the frequencies of

substitutions in blocks of local alignments in related
proteins

* Matrix name indicates evolutionary distance

— BLOSUMOG2 was created using sequences sharing no more
than 62% sequence identity
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BLOSUMS5O0
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Scoring matrices and
the global alighment problem

* To generalize scoring, consider a (4+7) X (4+7) scoring

matrix o

* In the case of an amino acid sequence alignment, the
scoring matrix would be (20+7) X (20+7)

* The addition of 7 is to include the score for
comparison of a gap character “-” (indels)

‘fz',j — max

A

e

\

Si1,; td(,-) 11 1

i1 T 00 )

‘fz'-i,j-7 + 0 (ﬂl-, l]/j) (Mis)match

ij-1 > i
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Local vs. global alignment ()

* The Global alignment problem : find the longest path
between vertices (0,0) and (n,m) in the edit graph

* The Local alignhment problem tries to find the longest
path between arbitrary vertices (i, ) and (1, 1) in the edit
graph

* In the edit graph with negative scores, local alignment
may score higher than global alignment
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Local vs. global alignment (lI)

* Global Alignment
——T——CC-C-AGT—-TATGT-CAGGGGACACG—A-GCATGCAGA-GAC

aatrebdole-Heat At drtate 4 L4

* Local Alignment—better alignment to find

conserved segment
tccCAGTTATGTCAGgggacacgagcatgcagagac

ARRRERNRARY
aattgccgccgtcgttttcagCAGTTATGTCAGatc



Local vs. global alignment (lI1)

Global alignment

26



Free rides

Yeah, a free ride!

Vertex (0,0)

The dashed edges represent the free rides from
(0,0) to every other node.
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The local alignment recurrence

» The largest value of s;; over the whole edit graph is the score of
the best local allgnment

(0

S.4 T 0(v, —
5;; = max < = N =)
; 5; i1 0 (= w)

. 27,/7 5(@,2}//)

» The 0 is the only difference from the recurrence of the global
alignment problem



Gap penalties

In nature, a series of £ indels often come as a single event
rather than a series of £ single nucleotide events:

ATA- -GC ATAG- GC
ATATTGC AT- GTGC

[ Normal scoring would [
This is more likely give the same score for  This s less likely

both alignments
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Gap penalty recurrences

|
(¢ i1 o Continue gap in w (insertion): upper level
— max
S0, (0F0) Start gap in w (insertion): from main level
N~
/_> . . . R
$,00—0 Continue gap in v (deletion): lower level
— max <
\ S i1 (@—I—a) Start gap in v (deletion): from main level
e : :
Sig0 T 0 (v, 7/2//) Match or mismatch: main level
_ |
— max< § i j End insertion: from upper level
S . End deletion: from lower level




BLAST (1)

* Basic Local Alignment Search Tool (BLLAST) finds

regions of local similarity between sequences

* The program compares nucleotide or protein sequences
to sequence databases and calculates the statistical
significance of matches

32



BLAST (I1)

* First stage: Identify exact matches of length W (default
W=3) between the query and the sequences in the
database

* Second stage: Extend the match in both directions in an
attempt to boost the alignment score (insertions and
deletions are not considered)

* Third stage: If a high-scoring ungapped alignment 1s
found: Perform a gapped local alighment using dynamic
programming

33



Multiple alighment

* A faint similarity between two sequences becomes
significant if present in many

* Multiple alignments can reveal subtle similarities that
pairwise alignments do not reveal

AT - G C G -
A - G T - A
AT A C A

C
C



2D vs 3D edit graph

2-D edit graph

3-D edit graph



Architecture of 3D edit graph

(i-1,j-1,k-1)

(1,j-1,k-1)
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Multiple alignment of three sequences:

Dynamic programming

Sii1,j-1,k
Si-1,jk-1
S; ik = Max < Sij-1k-1
Si1jk
Sij-1,k

\ Silj/ k-1

4 Sizjik1t o(v, w, u,

+o(v,w,_)
+o(v,_, uy
+o(_, w, uy
+o(v,_,_)
+o(w,_)
+0(_,_, uy)

Ax, y, z) is an entry in the 3D scoring matrix
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Multiple alignment: Running time

* For three sequences of length 7, the run time is O(#”)

* Por £ sequences, build a £-dimensional edit graph, with
run time O(#F)

* Conclusion: dynamic programming approach for
alionment between two sequences is easily extended to £
sequences, but it is impractical due to exponential
running time
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Profile representation of multiple alignment

- A G G C T A T C A C G
T A G - C T A C C A - - - G
c AG - C T A CZCCA - - -6
c AG - C T AT C A C - G G
c AG - C T AT C G C —-— G G
A 1 1 8 S
C 6 1 41 6 .2 =
G 1 .2 2 4 1 .*5;8
T 2 1 6 .2 o wv
(&)
- 2 8 4 .8 .4 - = X
= 0 5
A ol
a n =

* In the past we were aligning a sequence against a sequence

* With profiles we can align a sequence against a profile and
even a profile against a profile
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Multiple alignment: Greedy approach

* Choose most similar pair of strings and combine into a
profile, thereby reducing the alignment of £ sequences to
an alignment of of £-7 sequences/profiles. Repeat!

* This is a heuristic greedy method

u,;= ACgtTACG/ITACG/CT...
u, = TTAATTAATTAA... [

[ u,= ACGTACGTACGT...
u, = TTAATTAATTAA. ..
k < u,=ACTACTACTACT...

u, = CCGGCCGGCCGEG.../

. U, =CCGGCCGGCCGG

40



CLUSTALW (1)

. Determine all pairwise alignments between sequences
and the degree of similarity between them.

. Construct a similarity tree.

. Combine the alignments from 1 in the order specified
in 2 using the rule "once a gap always a gap®.
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PSI-BLAST

Position-Specific Iterative (PSI) BLAST detect weak
relationships between the query and sequences in the
database (higher sensitivity than BLLAST)

PSI-BLAST first constructs a multiple alignment from
the highest scoring hits in a initial BLAST search and
generate a profile from this alignment i.e. PSSM

The profile 1s used to iteratively perform additional
BILAST searches (called iterations) and the results of
each iteration is used to refine the profile

The iteration stops when no new matches with a
satisfactory score are obtained



Scoring matches

Given a protein sequence x and an BLAST/PSI-
BLAST/HMM, what is a significant score?
— The score for the sequence x: p*
— Generate 1000 random sequences and score them:
Prand 1> Prand 2> + > Prand 1000

— Fit a distribution to the random scores and calculate the false
discover rate (fdr)

— E-score = fdr - Size of query database (the expected number of false
posttive hits)

Distribution
for rando
scores

fdr




Method power

You want to find homologous proteins to a specific protein A
using some computational method X:

TP/(TP+EN)
Specificity: TN/(TN+FP)

All proteins in the database

AN

Predicted

. homologous to A

TN

Homologous to A

44



Hidden Markov Model (HMM)

» Can be viewed as an abstract machine with k hidden
states that emits symbols from an alphabet 2

» Each state has its own probability distribution, and the
machine switches between states according to this
probability distribution

» While in a certain state, the machine makes 2
decisions:

— What state should | move to next?
—What symbol - from the alphabet % - should | emit?



HMM for Fair Bet Casino

51
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HMM for Fair Bet Casino (cont’d)

51
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HMM for Fair Bet Casino (cont’d)

48



HMM for Fair Bet Casino (cont’d)

HTH B
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Why “Hidden”?

* Observers can see the emitted symbols of an HMM
but have no ability to know which state the HMM is
currently in

* Thus, the goal 1s to infer the most likely hidden states
of an HMM based on the given sequence of emitted
symbols.

50



HMM parameters

> set of emission characters
> = {H, T} for coin tossing
> =1{A, C G, T} for the CG-island problem

Q: set of hidden states, each emitting symbols from X
Q={EB} for coin tossing

Q={CG-island, not CG-island} for the CG-
island problem
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HMM Parameters (cont’d)

A=(ay):a|Q| x |Q] matrix of probability of changing
from state £ to state /

- transition probabilities

E={(e,)):a|Q]| x | 2| matrix of probability of
emitting symbol 4 while being in state £

- emssion probabilities
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The Fair Bet Casino in HMM terms:
> ={0,1} -0 for Tails and 1 for Heads
Q = {LB} — IF for Fair & B for Biased coin

Transition Probabilities /A ~ Emission Probabilities E

HMM for Fair Bet Casino

Fair Biased
Blased aBF — 01 aBB — 09

Tails(0) | Heads(1)
Fair ep(0) = 72 | ep(1) = 72
Biased ep(0) = 7 | ey(1) = 73




HMM for Fair Bet Casino (cont’d)

g
10

51
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Hidden Paths

* Apathm =r,... z,in the HMM is defined as a sequence
of states

* Consider path 7 = FFFBBBBBFFTF and sequence x =
01011101001

Probability that x; was emitted from state 77

X /0 1 01 1 1 0 1 0 0 1
1 F F F B B B B B F F F
P(xm,) Yo Yo Yo Y Ya Ya Yo Ya Yo Yo Yo

P(ni—l 9 nl) . 1/2 9/lO 9/10 1/10 9/lO 9/10 9/10 9/lO l/lO 9/10 9/10 /

Transition probability from state n;_, to state n,
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P(x,mt) Calculation

P(x,m)=P(x|m) P(m): Probability that sequence x was
generated by the path z:

P(x,z) = P(my— =) - IL;I Px;| 7) - Plr;— 7;1)
j=

= 7y °Heﬂl (%) " @z .,

o I})e”zﬂ( +7) 617?2;7947
i=

where z,and z,, , are fictitious initial and terminal states begin

and end
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The Viterbi algorithm

» Every layer 7 emit one symbol x;

» Bvery path from layer 7 to layer #
has probability P(x,7)

» The path tells us which hidden
state in layer 7 that emitted x;,

» The Viterbi algorithm finds the
path that maximizes P(x,z) among

all possible paths
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The Viterbi algorithm

» Dynamic programming

» Define s, as the probability of
emitting the prefix x;,...x;and
reaching the state £

P Spier T € () - max,

» The Viterbi algorithm runs in

O(1|Q|?) time

{%z‘ ) %/}

Ouny® Al Ll ot a

.0,9.99,0,9.9.9.9
o LSRN

v
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HMMs

* HMMSs can be used for aligning a sequence
against a protein family

* Conserved positions in the family
corresponds to 7 sequentially linked match
states M ,...,M 1in the protfile HMM

* HMMs handle gaps better than profiles do



Building a profile HMM

Multiple alignment 1s used to construct the HMM model

Assign each column to a Match state in HMM. Add lnsertion and
Deletion state

Estimate the emission probabilities according to amino acid
counts in columns

Estimate the transition probabilities between Match, Deletion and
Insertion states

Match state 3:
eus(L) =5/8
eus(l) =3/8

Modeled as insertions

Transitions from match state 9 to 10
dpmo,M10 = 5/8
dmo,p10 = 3/8
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Penalties in HMMs

Ditterent penalties for opening a gap and extending the gap
is naturally implemented in HMM

— ayy T ap, = gap initiation penalty

— ay = gap extension penalty
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Pfam

* Ptam decribes protein domains

* FEach protein domain family in Pfam has:

— Seed alignment. manually veritied multiple alignment of a
representative set of sequences

— HMM built from the seed alignment for further database

searches
— Full alignment generated automatically from the HMM
* The distinction between seed and full alignments
facilitates Pfam updates
— Seed alignments are stable resources

— Full alignments can be updated with newly found amino
acid sequences



Pfam

Ptam uses a tool called HMMER with the following
architecture:

IR 0
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