
Lecture 6:
Sequence alignment

Torgeir R. Hvidsten

Professor
Norwegian University of Life Sciences

Guest lecturer

Umeå Plant Science Centre
Computational Life Science Cluster (CLiC)

1

This lecture

• Dynamic programming and sequence alignment
• Scoring methods
• Multiple alignments, profiles
• Hidden Markov models

2

DNA sequence comparison:
First success story

• In 1984 Russell Doolittle and colleagues
found similarities between a cancer-causing
gene and a normal growth factor (PDGF)
gene using a database search

• Finding sequence similarities with genes of
known function is a common approach to
infer the function of a newly sequenced gene

3

Longest common subsequence (LCS) –
alignment without mismatches

– T G C T – A – C

A T – C T G A T C

elements of v

elements of w

A

–

2

1

1

0

2

2

3

3

3

4

4

5

5

5

6

6

7

6

8

7

j coords:

i coords:

Matches shown in red
positions in v :

positions in w :

 1 < 3 < 5 < 6 < 7

 2 < 3 < 4 < 6 < 8

TCTAC is a common subsequence of v and w

Every common subsequence is a path in a 2-D grid

0

0

4

Edit graph for the longest
common substring (LCS) problem

T

G

C

A

T

A

C

1

2

3

4

5

6

7

0 i

A T C T G A T C
0 1 2 3 4 5 6 7 8

j

Every path from
source to sink is a
common
subsequence (CS)

Every diagonal
edge adds an extra
element to the CS

LCS Problem: Find
the path with the
maximum number
of diagonal edges

source

sink

5

Edit graph for the LCS problem

T

G

C

A

T

A

C

1

2

3

4

5

6

7

0 i

A T C T G A T C
0 1 2 3 4 5 6 7 8

j

Deletion

Matches

Insertion

-TGCAT-A-C
AT-C-TGATC

v

w

6

Computing LCS (I)

Let vi = prefix of v of length i: v1 … vi

and wj = prefix of w of length j: w1 … wj

The length of LCS(vi,wj) is computed by:

si, j = max

si-1, j

si, j-1

si-1, j-1 + 1 if vi = wj

Insertion

Deletion

Match i,j

i-1,j

i,j -1

i-1,j -1

1 0

0

7

LCS algorithm

LCS(v, n, w, m)
1 for i ← 1 to n
2 si, 0 ← 0
3 for j ← 1 to m
4 s0, j ← 0
5 for i ← 1 to n
6 for j ← 1 to m
 si-1, j
8 si, j ← max si, j-1
 si-1, j-1 + 1, if vi = wj
10 return sn, m

8

T

G

C

A

T

A

C

1

2

3

4

5

6

7

0 i

A T C T G A T C
0 1 2 3 4 5 6 7 8

j

0 0 0 0 0 0 0 0

0

0

0

0

0

0

0

Example: initiation

9

T

G

C

A

T

A

C

1

2

3

4

5

6

7

0 i

A T C T G A T C
0 1 2 3 4 5 6 7 8

j

0 0 0 0 0 0 0 0

0

0

0

0

0

0

0

Example: For i = 1, j = 1... m

0 1 1 1 1 1 1 1

10

T

G

C

A

T

A

C

1

2

3

4

5

6

7

0 i

A T C T G A T C
0 1 2 3 4 5 6 7 8

j

0 0 0 0 0 0 0 0

0

0

0

0

0

0

0

Example: For i = 2, j = 1... m

0 1 1 1 1 1 1 1

0 1 1 1 2 2 2 2

11

T

G

C

A

T

A

C

1

2

3

4

5

6

7

0 i

A T C T G A T C
0 1 2 3 4 5 6 7 8

j

0 0 0 0 0 0 0 0

0

0

0

0

0

0

0

Example: For i = 3 ... n, j = 1... m

0 1 1 1 1 1 1 1

0 1 1 1 2 2 2 2

0 1 2 2 2 2 2 3

1 1 2 2 2 3 3 3

1 2 2 3 3 3 4 4

1 2 2 3 3 4 4 4

1 2 3 3 3 4 4 5

12

LCS Runtime

• It takes O(nm) time to fill in the n × m dynamic
programming matrix

• The pseudocode consists of a nested “for” loop inside
of another “for” loop to set up a n × m matrix

13

What’s so great about
dynamic programming?

• A naive exhaustive search would have the running time
O(3f(n,m))

• An exhaustive search would recompute the same
subpaths several times

• Dynamic programming takes advantage of the rich
computational structure in the search space, and reuse
already computed subpaths

14

Traversing the edit graph

3 different strategies:
−a) Column by column
−b) Row by row
−c) Along diagonals

a) b)

c)

15

Making a scoring matrix

• Scoring matrices are created based on biological evidence
• Alignments can be thought of as two sequences that

differ due to mutations
• Some of these mutations have little effect on the protein’s

function, therefore some penalties, δ(i, j), will be less
harsh than others

• δ(i, j) ≈ how often do amino acid i substitutes amino acid
j in alignments of related proteins

16

Scoring matrix: Example

• Notice that although R and K
are different amino acids, they
have a positive score

• Why? They are both positively
charged amino acids and will
not greatly change the
function of protein

A R N K

A 5 -2 -1 -1

R - 7 -1 3

N - - 7 0

K - - - 6

17

Scoring matrices

• Amino acid substitution matrices
– PAM
– BLOSUM

• DNA substitution matrices

– DNA is less conserved than protein sequences
– Less effective to compare coding regions at

nucleotide level

18

PAM

• Point Accepted Mutation
• 1 PAM = PAM1 = 1% average change of all amino acid

positions
• After 100 PAMs of evolution, not every residue will

have changed
• some residues may have mutated several times
• some residues may have returned to their

original state
• some residues may not changed at all

19

PAMX

• PAMx = PAM1
x

– PAM250 = PAM1
250

• PAM250 is a widely used scoring matrix:

 Ala Arg Asn Asp Cys Gln Glu Gly His Ile Leu Lys ...
 A R N D C Q E G H I L K ...
Ala A 13 6 9 9 5 8 9 12 6 8 6 7 ...
Arg R 3 17 4 3 2 5 3 2 6 3 2 9
Asn N 4 4 6 7 2 5 6 4 6 3 2 5
Asp D 5 4 8 11 1 7 10 5 6 3 2 5
Cys C 2 1 1 1 52 1 1 2 2 2 1 1
Gln Q 3 5 5 6 1 10 7 3 7 2 3 5
...
Trp W 0 2 0 0 0 0 0 0 1 0 1 0
Tyr Y 1 1 2 1 3 1 1 1 3 2 2 1
Val V 7 4 4 4 4 4 4 4 5 4 15 10

20

BLOSUM

• Blocks Substitution Matrix
• Scores derived by observing the frequencies of

substitutions in blocks of local alignments in related
proteins

• Matrix name indicates evolutionary distance
– BLOSUM62 was created using sequences sharing no more

than 62% sequence identity

21

BLOSUM50

22

Scoring matrices and
the global alignment problem

• To generalize scoring, consider a (4+1) × (4+1) scoring
matrix δ

• In the case of an amino acid sequence alignment, the
scoring matrix would be (20+1) × (20+1)

• The addition of 1 is to include the score for
comparison of a gap character “-” (indels)

 si-1, j + δ (vi, -)
 si,j = max si, j-1 + δ (-, wj)
 si-1, j-1 + δ (vi, wj)

Insertion

Deletion

(Mis)match

i,j

i-1,j

i,j -1

i-1,j -1

23

Local vs. global alignment (I)

• The Global alignment problem : find the longest path
between vertices (0,0) and (n,m) in the edit graph

• The Local alignment problem tries to find the longest
path between arbitrary vertices (i, j) and (i’, j’) in the edit
graph

• In the edit graph with negative scores, local alignment
may score higher than global alignment

24

Local vs. global alignment (II)

• Global Alignment

• Local Alignment—better alignment to find
conserved segment

 --T—-CC-C-AGT—-TATGT-CAGGGGACACG—A-GCATGCAGA-GAC
 | || | || | | | ||| || | | | | |||| |
 AATTGCCGCC-GTCGT-T-TTCAG----CA-GTTATG—T-CAGAT--C

 tccCAGTTATGTCAGgggacacgagcatgcagagac
 ||||||||||||

aattgccgccgtcgttttcagCAGTTATGTCAGatc

25

Local vs. global alignment (III)

Global alignment

Local alignment

26

Free rides

Vertex (0,0)

The dashed edges represent the free rides from
(0,0) to every other node.

Yeah, a free ride!

27

The local alignment recurrence
 The largest value of si,j over the whole edit graph is the score of

the best local alignment

 The 0 is the only difference from the recurrence of the global
alignment problem

0

si,j = max si-1, j + δ (vi, –)
si, j-1 + δ (–, wj)
si-1, j-1 + δ (vi, wj)

In nature, a series of k indels often come as a single event
rather than a series of k single nucleotide events:
 ATA– –GC ATAG– GC
 ATATTGC AT– GTGC

Normal scoring would
give the same score for
both alignments

This is more likely This is less likely

Gap penalties

29

3 layer edit grap

ρ

ρ

σ

σ
δ

δ

δ

δ
δ

30

Gap penalty recurrences

 si-1, j-1 + δ (vi, wj)

si, j = max s i, j

 s i, j

si, j = max
s i-1, j – σ
si-1, j – (ρ+σ)

si, j = max
s i, j-1 – σ

si, j-1 – (ρ+σ)

Continue gap in w (insertion): upper level

Start gap in w (insertion): from main level

Continue gap in v (deletion): lower level

Start gap in v (deletion): from main level

Match or mismatch: main level

End insertion: from upper level

End deletion: from lower level

BLAST (I)

• Basic Local Alignment Search Tool (BLAST) finds
regions of local similarity between sequences

• The program compares nucleotide or protein sequences
to sequence databases and calculates the statistical
significance of matches

32

BLAST (II)

• First stage: Identify exact matches of length W (default
W=3) between the query and the sequences in the
database

• Second stage: Extend the match in both directions in an
attempt to boost the alignment score (insertions and
deletions are not considered)

• Third stage: If a high-scoring ungapped alignment is
found: Perform a gapped local alignment using dynamic
programming

33

Multiple alignment

• A faint similarity between two sequences becomes
significant if present in many

• Multiple alignments can reveal subtle similarities that
pairwise alignments do not reveal

A T – G C G –
A – C G T – A
A T C A C – A

2D vs 3D edit graph

v

w

2-D edit graph

3-D edit graph

v

w

u

35

Architecture of 3D edit graph
(i-1,j-1,k-1)

(i,j-1,k-1)

(i,j-1,k)

(i-1,j-1,k) (i-1,j,k)

(i,j,k)

(i-1,j,k-1)

(i,j,k-1)

36

Multiple alignment of three sequences:
Dynamic programming

si,j,k = max

δ(x, y, z) is an entry in the 3D scoring matrix

si-1,j-1,k-1 + δ(vi, wj, uk)
si-1,j-1,k + δ (vi, wj, _)
si-1,j,k-1 + δ (vi, _, uk)
si,j-1,k-1 + δ (_, wj, uk)
si-1,j,k + δ (vi, _ , _)
si,j-1,k + δ (_, wj, _)
si,j,k-1 + δ (_, _, uk)

37

Multiple alignment: Running time

• For three sequences of length n, the run time is O(n3)
• For k sequences, build a k-dimensional edit graph, with

run time O(nk)

• Conclusion: dynamic programming approach for
alignment between two sequences is easily extended to k
sequences, but it is impractical due to exponential
running time

38

Profile representation of multiple alignment
 - A G G C T A T C A C C T G
 T A G – C T A C C A - - - G
 C A G – C T A C C A - - - G
 C A G – C T A T C A C – G G
 C A G – C T A T C G C – G G

A 1 1 .8
C .6 1 .4 1 .6 .2
G 1 .2 .2 .4 1
T .2 1 .6 .2
- .2 .8 .4 .8 .4

• In the past we were aligning a sequence against a sequence
• With profiles we can align a sequence against a profile and

even a profile against a profile

PS
SM

: P
os

iti
on

Sp

ec
ifi

c
Sc

or
in

g
M

at
rix

39

Multiple alignment: Greedy approach

• Choose most similar pair of strings and combine into a
profile, thereby reducing the alignment of k sequences to
an alignment of of k-1 sequences/profiles. Repeat!

• This is a heuristic greedy method

u1= ACGTACGTACGT…

u2 = TTAATTAATTAA…

u3 = ACTACTACTACT…

…

uk = CCGGCCGGCCGG

u1= ACg/tTACg/tTACg/cT…

u2 = TTAATTAATTAA…

…

uk = CCGGCCGGCCGG…
k

k-1

40

CLUSTALW (I)

1. Determine all pairwise alignments between sequences
and the degree of similarity between them.

2. Construct a similarity tree.

3. Combine the alignments from 1 in the order specified
in 2 using the rule "once a gap always a gap“.

41

PSI-BLAST

• Position-Specific Iterative (PSI) BLAST detect weak
relationships between the query and sequences in the
database (higher sensitivity than BLAST)

• PSI-BLAST first constructs a multiple alignment from
the highest scoring hits in a initial BLAST search and
generate a profile from this alignment i.e. PSSM

• The profile is used to iteratively perform additional
BLAST searches (called iterations) and the results of
each iteration is used to refine the profile

• The iteration stops when no new matches with a
satisfactory score are obtained

42

Scoring matches
Given a protein sequence x and an BLAST/PSI-
BLAST/HMM, what is a significant score?

– The score for the sequence x: p*
– Generate 1000 random sequences and score them:
 prand 1, prand 2, …, prand 1000
– Fit a distribution to the random scores and calculate the false

discover rate (fdr)
– E-score = fdr · Size of query database (the expected number of false

positive hits)

p*
fdr

p

Distribution
for random
scores

43

Method power
You want to find homologous proteins to a specific protein A
using some computational method X:

All proteins in the database

Homologous to A

Predicted by X to be
homologous to A

TP

TN

FP

FN

Sensitivity: TP/(TP+FN)
Specificity: TN/(TN+FP)

44

Hidden Markov Model (HMM)

 Can be viewed as an abstract machine with k hidden
states that emits symbols from an alphabet Σ

 Each state has its own probability distribution, and the
machine switches between states according to this
probability distribution

While in a certain state, the machine makes 2
decisions:
− What state should I move to next?
− What symbol - from the alphabet Σ - should I emit?

45

HMM for Fair Bet Casino

HMM model for the Fair Bet Casino Problem

46

HMM for Fair Bet Casino (cont’d)

HMM model for the Fair Bet Casino Problem

H

47

HMM for Fair Bet Casino (cont’d)

HMM model for the Fair Bet Casino Problem

HT

48

HMM for Fair Bet Casino (cont’d)

HMM model for the Fair Bet Casino Problem

HTH

49

Why “Hidden”?

• Observers can see the emitted symbols of an HMM
but have no ability to know which state the HMM is
currently in

• Thus, the goal is to infer the most likely hidden states
of an HMM based on the given sequence of emitted
symbols.

50

HMM parameters

Σ: set of emission characters
 Σ = {H, T} for coin tossing
 Σ = {A, C, G, T} for the CG-island problem

Q: set of hidden states, each emitting symbols from Σ
 Q={F,B} for coin tossing
 Q={CG-island, not CG-island} for the CG-

 island problem

51

HMM Parameters (cont’d)

A = (akl): a |Q| x |Q| matrix of probability of changing
from state k to state l

 - transition probabilities

E = (ek(b)): a |Q| x |Σ| matrix of probability of

 emitting symbol b while being in state k
 - emission probabilities

52

HMM for Fair Bet Casino
The Fair Bet Casino in HMM terms:
 Σ = {0, 1} – 0 for Tails and 1 for Heads
 Q = {F,B} – F for Fair & B for Biased coin
 Transition Probabilities A Emission Probabilities E

Fair Biased

Fair aFF = 0.9 aFB = 0.1

Biased aBF = 0.1 aBB = 0.9

Tails(0) Heads(1)

Fair eF(0) = ½ eF(1) = ½

Biased

eB(0) = ¼ eB(1) = ¾

HMM for Fair Bet Casino (cont’d)

54

Hidden Paths
• A path π = π1… πn in the HMM is defined as a sequence

of states
• Consider path π = FFFBBBBBFFF and sequence x =

01011101001

x 0 1 0 1 1 1 0 1 0 0 1

π = F F F B B B B B F F F
P(xi|πi) ½ ½ ½ ¾ ¾ ¾ ¼ ¾ ½ ½ ½

P(πi-1  πi) ½ 9/10 9/10
1/10

9/10
9/10

9/10
9/10

1/10
9/10

9/10

Transition probability from state πi-1 to state πi

Probability that xi was emitted from state πi

55

P(x,π) Calculation

P(x,π)=P(x|π) P(π): Probability that sequence x was
generated by the path π:

 P(x,π) = P(π0→ π1) · Π P(xi| πi) · P(πi → πi+1)

 = a π0, π1 · Π e πi (xi) · a πi, πi+1

 = Π e πi+1 (xi+1) · a πi, πi+1

where π0 and πn+1 are fictitious initial and terminal states begin
and end

n

i=1
n

i=1

i=0

n

56

The Viterbi algorithm

 Every layer i emit one symbol xi

 Every path from layer 1 to layer n
has probability P(x,π)

 The path tells us which hidden
state in layer i that emitted xi

 The Viterbi algorithm finds the
path that maximizes P(x,π) among
all possible paths

Q1

Q2

Q3

Q4

x1 x2 x3 x4 x5 x6

57

The Viterbi algorithm

 Dynamic programming

 Define sk,i as the probability of
emitting the prefix x1…xi and
reaching the state k

 sl,i+1 = el (xi+1) · maxk Є Q {sk,i · akl}

 The Viterbi algorithm runs in
O(n|Q|2) time

Q1

Q2

Q3

Q4

x1 x2 x3 x4 x5 x6

58

HMMs

• HMMs can be used for aligning a sequence
against a protein family

• Conserved positions in the family
corresponds to n sequentially linked match
states M1,…,Mn in the profile HMM

• HMMs handle gaps better than profiles do

59

• Multiple alignment is used to construct the HMM model
• Assign each column to a Match state in HMM. Add Insertion and

Deletion state
• Estimate the emission probabilities according to amino acid

counts in columns
• Estimate the transition probabilities between Match, Deletion and

Insertion states

VTISCTGSSSNIGAG-NHVKWYQQLPG

VTISCTGTSSNIGS--ITVNWYQQLPG

LRLSCSSSGFIFSS--YAMYWVRQA--

LSLTCTVSG-SFDD--YYSTWVRQP--

PEVTCVVVD-SHEDPQVKFNWYVDG--

ATLVCLISDFYPGA--VTVAWKADS--

AALGCLVKD-FPEP--VTVSWNSG---

VSLTCLVKGFYPSD--IAVEWESNG--

Match state 3:
 eM3(L) = 5/8
 eM3(I) = 3/8

Modeled as insertions

Transitions from match state 9 to 10
 aM9,M10 = 5/8
 aM9,D10 = 3/8

Building a profile HMM

60

Profile HMM

A profile HMM

61

Penalties in HMMs

Different penalties for opening a gap and extending the gap
is naturally implemented in HMM

– aMI * aIM = gap initiation penalty
– aII = gap extension penalty

62

• Pfam decribes protein domains
• Each protein domain family in Pfam has:

– Seed alignment: manually verified multiple alignment of a
representative set of sequences

– HMM built from the seed alignment for further database
searches

– Full alignment generated automatically from the HMM
• The distinction between seed and full alignments

facilitates Pfam updates
– Seed alignments are stable resources
– Full alignments can be updated with newly found amino

acid sequences

Pfam

63

Pfam uses a tool called HMMER with the following
architecture:

Pfam

	Lecture 6: �Sequence alignment
	This lecture
	DNA sequence comparison: �First success story
	Longest common subsequence (LCS) – alignment without mismatches
	Edit graph for the longest �common substring (LCS) problem
	Edit graph for the LCS problem
	Computing LCS (I)
	LCS algorithm
	Example: initiation
	Example: For i = 1, j = 1... m
	Example: For i = 2, j = 1... m
	Example: For i = 3 ... n, j = 1... m
	LCS Runtime
	What’s so great about �dynamic programming?
	Traversing the edit graph
	Making a scoring matrix
	Scoring matrix: Example
	Scoring matrices
	PAM
	PAMX
	BLOSUM
	BLOSUM50
	Scoring matrices and �the global alignment problem
	Local vs. global alignment (I)
	Local vs. global alignment (II)
	Local vs. global alignment (III)
	Free rides
	The local alignment recurrence
	Gap penalties
	3 layer edit grap
	Gap penalty recurrences
	BLAST (I)
	BLAST (II)
	Multiple alignment
	2D vs 3D edit graph
	Architecture of 3D edit graph
	Multiple alignment of three sequences: �Dynamic programming
	Multiple alignment: Running time
	Profile representation of multiple alignment
	Multiple alignment: Greedy approach
	CLUSTALW (I)
	PSI-BLAST
	Scoring matches
	Method power
	Hidden Markov Model (HMM)
	HMM for Fair Bet Casino
	HMM for Fair Bet Casino (cont’d)
	HMM for Fair Bet Casino (cont’d)
	HMM for Fair Bet Casino (cont’d)
	Why “Hidden”?
	HMM parameters
	HMM Parameters (cont’d)
	HMM for Fair Bet Casino
	HMM for Fair Bet Casino (cont’d)
	Hidden Paths
	P(x,π) Calculation
	The Viterbi algorithm
	The Viterbi algorithm
	HMMs
	Building a profile HMM
	Profile HMM
	Penalties in HMMs
	Pfam
	Pfam

