
1

Knowledge-based systems in Bioinformatics,
1MB602, 2006

Lecture 4:

Symbolic and abstract data,

assignments and local state

Lecture overview

• Quotation

• Symbolic differentiation

• Complex numbers

• Tagged data

• Data directed programming

• Message passing

• Imperative programming

• Local state

Symbols?

• Say your favorite color

• Say “your favorite color”

• What is the difference?
– In one case, we want the meaning associated with the

expression

– In the other case, we want the actual words (or symbols) of the
expression

• Constructors:
– (quote alpha) → “alpha”
– quote is a special form. One argument: a name.

• Operations:
(symbol? (quote alpha)) → #t

Symbols are ordinary values

(list 1 2) → (1 2)
(list (quote delta) (quote gamma))

→ (delta gamma)

(list (quote delta) (quote delta))
→ (delta delta)

two quote expressions with the same

name return the same object

symbol
gamma

symbol
delta

symbol
delta

The eq? operation

• Primitive procedure

• Returns #t if the two arguments are the same object

(eq? (quote eps) (quote eps)) → #t
(eq? (quote delta) (quote eps)) → #f

Quoting

• Shorthand
– ‘a is shorthand for (quote a)
– ‘(1 2) is shorthand for (quote (1 2))

• Rewritings
– (quote (a b)) → (list (quote a) (quote b))
– (quote <self-eval-expr>) → <self-eval-expr>

– (quote (1 (b c))) → (list (quote 1)
(quote (b c)))

→ (list 1
(list (quote b)

(quote c)))

→ (1 (b c))

2

Quoting cont.

(define x 20)

(+ x 3) →

'(+ x 3) →

(list (quote +) x '3) →

(list '+ x 3) →

(list + x 3) →

23

(+ x 3)

(+ 20 3)

(+ 20 3)

([procedure #…] 20 3)

Symbolic differentiation

(deriv <expr> <with-respect-to-var>) → <new-expr>

(deriv '(+ x 3) 'x) → 1
(deriv '(+ (* x y) 4) 'x) → y
(deriv '(* x x) 'x) → (+ x x)

• How to implement?

Symbolic differentiation cont.

• How to get started?

• Analyze the problem precisely

deriv constant dx = 0

deriv variable dx = 1 if variable is the same as x

= 0 otherwise

deriv (e1+e2) dx = deriv e1 dx + deriv e2 dx

deriv (e1*e2) dx = e1 * (deriv e2 dx) + e2 * (deriv e1 dx)

• Observe:
– e1 and e2 might be complex subexpressions

– Derivate of (e1+e2) is formed from deriv e1 and deriv e2

– A tree problem

b
ase

recu
rsive

Symbolic differentiation cont.

• Wishful thinking
– Assume we have means for representing algebraic expressions

– Assume we have procedures to implement the following

(variable? e) Is e a variable?

(same-variable? v1 v2) Are v1 and v2 the same variable?

(sum? e) Is e a sum?

(addend e) Addend of the sum e

(augend e) Augend of the sum e

(make-sum a1 a2) Construct the sum of a1 and a2

(product? e) Is e a product?

(multiplier e) Multiplier of the product e

(multiplicand e) Multiplicand of the product e

(make-product m1 m2)Construct the product of m1 and m2

The differentiation procedure

(define (deriv exp var)
(cond ((number? exp) 0)

((variable? exp)
(if (same-variable? exp var) 1 0))
((sum? exp)
(make-sum (deriv (addend exp) var)

(deriv (augend exp) var)))
((product? exp)
(make-sum

(make-product (multiplier exp)
(deriv (multiplicand exp) var))

(make-product (deriv (multiplier exp) var)
(multiplicand exp))))

(else
(error “unknown expr type -- DERIV” exp))))

recursive

base

The differentiation procedure cont.

• The deriv procedure incorporates the complete
differentiation algorithm

• Expressed in terms of abstract data
– It will work no matter how we choose to represent

algebraic expressions!

• How to represent the algebraic expressions?

• How to represent ax + b?
– (a * x + b)

– (+ (* a x) b)

sum

product

addend augend

multiplier multiplicand

3

Representing algebraic expressions

• Variables are symbols

(define (variable? x) (symbol? x))
(define (same-variable? v1 v2)

(and (variable? v1) (variable? v2) (eq? v1 v2)))

• Sums and products are constructed as lists

(define (make-sum a1 a2) (list ‘+ a1 a2))
(define (make-product m1 m2) (list ‘* m1 m2))

• Sums and products are identified by their first element

(define (sum? x)
(and (pair? x) (eq? (car x) ‘+)))

(define (product? x)
(and (pair? x) (eq? (car x) ‘*)))

Representing algebraic expressions cont.

• Addends and multipliers are the second items of the sum and
the product lists

(define (addend s) (car (cdr s)))
(define (multiplier p) (car (cdr p)))

• Augends and multiplicands are the third items of the sum and
the product lists

(define (augend s) (car (cdr (cdr s))))
(define (multiplicand p) (car (cdr (cdr p))))

• Done!

Complex numbers

• Task: develop a system that performs arithmetic
operations on complex numbers

• Two plausible representations of complex numbers
– Rectangular form: (real part and imaginary part)

z = x + iy
– Polar form (magnitude and angle)

z = r ei*θ

• How did we represent rational numbers?

• Data abstraction!
– Operations on complex numbers should work regardless

of the representation!

– Wishful thinking, assume it is already done

Complex numbers cont.

• Addition (rectangular form)

Real-part(z1 + z2) = Real-part(z1) + Real-part(z2)

Imag-part(z1 + z2) = Imag-part(z1) + Imag-part(z2)

• Multiplication (polar form)

Magnitude(z1 * z2) = Magnitude(z1) * Magnitude(z2)

Angle(z1 * z2) = Angle(z1) + Angle(z2)

• Assume that the operations on
complex numbers are implemented
in terms of four selectors:

real-part
imag-part
magnitude
angle

Arithmetic on complex numbers

• Assume we have two constructors of complex numbers

make-from-real-imag (from rectangular parts)

make-from-mag-ang (from polar parts)

• Implement addition and subtraction in terms of real and
imaginary parts from rectangular form

(define (add-complex z1 z2)
(make-from-real-imag

(+ (real-part z1) (real-part z2))
(+ (imag-part z1) (imag-part z2))))

(define (sub-complex z1 z2)
(make-from-real-imag

(- (real-part z1) (real-part z2))
(- (imag-part z1) (imag-part z2))))

Arithmetic on complex numbers cont.

• Implement multiplication and division in terms of magnitude
and angle parts from polar form

(define (mul-complex z1 z2)
(make-from-mag-ang

(* (magnitude z1) (magnitude z2))
(+ (angle z1) (angle z2))))

(define (div-complex z1 z2)
(make-from-mag-ang

(/ (magnitude z1) (magnitude z2))
(- (angle z1) (angle z2))))

• Done?

• Done with wishful thinking

4

Representing complex numbers

• How to represent complex numbers?
– Rectangular form?

– Polar form?

• What if we want both representations?
– We need a way to distinguish the type of the complex

number

– Attach a type tag on the complex number

• Tagged data
– Attach an identifying symbol to all nontrivial data values

– Always check the symbol before operating on the data

(define (make-point x y) (list 'point x y))

Benefits of tagged data

• Data-directed programming:
– Functions decide what to do based on the arguments

– Example: in a graphics program

area: triangle|square|circle -> number

• Defensive programming:
– Functions that fail gracefully if given bad arguments

– Much better to give an error message than
to return garbage!

Tagging data

• Attach tags on data

(define (attach-tag type-tag contents)

(cons type-tag contents))

• Get the tag

(define (type-tag datum)

(if (pair? datum) (car datum)
(error “Bad tagged datum” datum)))

• Get the data

(define (contents datum)

(if (pair? datum) (cdr datum)
(error “Bad tagged datum” datum)))

Tagging complex numbers

• Checking complex types

(define (rectangular? z)
(eq? (type-tag z) ‘rectangular))

(define (polar? z)
(eq? (type-tag z) ‘polar))

• Constructors
– Construct rectangular form from real and imaginary

– Construct rectangular form from magnitude and angle

– Construct polar form from real and imaginary

– Construct polar form from magnitude and angle

),arctan()sin(*
)cos(* 22

xyry
yxrrx

==
+==

φφ
φ

Constructing complex numbers

• Constructing rectangular forms

(define (make-rect-from-real-imag x y)

(attach-tag ‘rectangular (cons x y)))
(define (make-rect-from-mag-ang r t)

(attach-tag ‘rectangular
(cons (* r (cos t))

(* r (sin t)))))

(define (make-polar-from-mag-ang r t)
(attach-tag ‘polar (cons r t)))

(define (make-polar-from-real-imag x y)
(attach-tag ‘polar

(cons (sqrt (+ (square x) (square y)))
(atan y x))))

Implementing selectors

• Real part

(define (real-part z)

(cond ((rectangular? z)
(real-part-rect (contents z)))
((polar? z)
(real-part-polar (contents z)))
(else (error “Unknown type: REAL-PART” z))))

(define (real-part-rect z) (car z))

(define (real-part-polar z)
(* (magnitude-polar z) (cos (angle-polar z))))

5

Implementing selectors cont.

• Imag part

(define (imag-part z)

(cond ((rectangular? z)
(imag-part-rect (contents z)))
((polar? z)
(imag-part-polar (contents z)))
(else (error “Unknown type: IMAG-PART” z))))

(define (imag-part-rect z) (cdr z))

(define (imag-part-polar z)
(* (magnitude-polar z) (sin (angle-polar z))))

Implementing selectors cont.

• Magnitude

(define (magnitude z)

(cond ((rectangular? z)
(magnitude-rect (contents z)))
((polar? z)
(magnitude-polar (contents z)))
(else (error “Unknown type: MAGNITUDE” z))))

(define (magnitude-rect z)
(sqrt (+ (square (real-part-rect z))

(square (imag-part-rect z)))))

(define (magnitude-polar z) (car z))

Implementing selectors cont.

• Angle

(define (angle z)

(cond ((rectangular? z)
(angle-rect (contents z)))
((polar? z)
(angle-polar (contents z)))
(else (error “Unknown type: ANGLE” z))))

(define (angle-rect z)
(atan (imag-part-rect z)

(real-part-rect z)))

(define (angle-polar z) (cdr z))

Constructing complex numbers

• Construct from real and imaginary → rectangular form
(define (make-from-real-imag x y)

(make-rect-from-real-imag x y))

• Construct from magnitude and angle → polar form

(define (make-from-mag-ang r t)

(make-polar-from-mag-ang r t))

• Our operations still work!
(define (add-complex z1 z2)

(make-from-real-imag
(+ (real-part z1) (real-part z2))
(+ (imag-part z1) (imag-part z2))))

Data directed programming

angle-rectangle-polarangle

magnitude-rectmagnitude-polarmagnitude

imag-part-rectimag-part-polarimag-part

real-part-rectreal-part-polarreal-part

RectangularPolar

Types

O
p

er
at

io
n

s

Message passing

Instead of “intelligent operations” that dispatch on
data types, what about “intelligent data objects”
that dispatch on operation names?

(define (make-from-real-imag x y)
(define (dispatch op)

(cond ((eq? op ‘real-part) x)
((eq? op ‘imag-part) y)
((eq? op ‘magnitude)
(sqrt (+ (square x) (square y))))
((eq? op ‘angle) (atan y x))
(else
(error “Unknown op” op))))

dispatch)

6

Factorial procedure

• Functional design
(define (fac n)

(define (iter count prod)
(if (> count n) prod

(iter (+ count 1) (*count prod))))
(iter 1 1))

• Imperative design
(define (fac n)

(let ((count 1) (prod 1))
(define (loop)

(if (> count n) prod
(begin
(set! prod (* count prod))
(set! count (+ count 1))
(loop))))

(loop)))

Assignments: set!

• Substitution model -- functional programming:
(define x 10)
(+ x 5) → 15 - expression has the same value
... each time it is evaluated
(+ x 5) → 15

• With assignment:
(define x 10)
(+ x 5) → 15 - expression’s "value" depends
... on when it is evaluated
(set! x 94)
...
(+ x 5) → 99

Assignments

• Assignments introduces time in our models

(set! <var> <value>)

• When an assignment occurs the state of the
modeled system changes

Decrement – no assignment

(define (make-decrementer balance)
(lambda (amount)

(- balance amount)))

(define D (make-decrementer 25))

(D 20) → 5
(D 10) → 15

• Substitution model:
((make-decrementer 25) 20)
((lambda (amount) (- 25 amount)) 20)
(- 25 20)
5

Withdraw – with assignment

(define (make-simple-withdraw balance)
(lambda (amount)

(set! balance (- balance amount))
balance))

(define W (make-simple-withdraw 25))

(W 20) → 5
(W 10) → -5

• Substitution model:
((make-simple-withdraw 25) 20)
((lambda (amount) (set! balance (- 25 amount)) 25) 20)

((set! balance (- 25 20)) 25)
((set! balance 5) 25)

• What???

Substitution model and set!

• Why doesn’t the substitution model work with
assignments?
– The substitution model is based on the assumption that the

symbols in the language are names that refer to values

– If set! is included then the symbols will no longer be names
that refer to values but names that refer to locations where values
are stored

– The value of such a location can be changed by set!

– To cope with this new situation we introduce the environment
model of evaluation

7

Environment model of evaluation

• What is it?
• A precise, completely mechanical description of:

– Name-rule: looking up the value of a variable
– Define-rule: creating a new definition of a variable
– Set!-rule: changing the value of a variable
– Lambda-rule: creating a procedure
– Application: applying a procedure

• New viewpoint
– Variable

• Location where a value is stored

– Procedure
• Object with inherited context

– Expression
• Only have meaning with respect to

an environment

Message passing

Simulating cons-cells with message passing to objects

(define (cons car-part cdr-part)
(define (set-car-part! new-val)

(set! car-part new-val))
(define (set-cdr-part! new-val)

(set! cdr-part new-val))
(define dispatch (mess)

(cond ((eq? mess ’car) car-part)
((eq? mess ’cdr) cdr-part)
((eq? mess ’set-car!)
set-car-part!)

((eq? mess ’set-cdr!)
set-cdr-part!)

(else ”bad message”)))
dispach)

Message passing cont.

(define (car cons-pair)
(cons-pair ’car))

(define (cdr cons-pair)
(cons-pair ’cdr))

(define (set-car! cons-pair new-val)
((cons-pair ’set-car!) new-val))

(define (set-cdr! cons-pair new-val)
((cons-pair ’set-cdr) new-val))

References

• H. Abelson, G.J. Sussman, Structure and
Interpretation of Computer Programs 2nd ed, The
MIT Press, Cambridge, Massachusetts, 2000, Chp:
2.3.1-2.3.3, 2.4, 3.0-3.2 pp 142-161, 169-187, 217-251

• 6.001 Spring 2000: Lecture Notes, lecture 7,8,11
http://sicp.ai.mit.edu/Spring-2000/lectures/

