Exhaustive search

Torgeir R. Hvidsten

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II

This lecture

- Restriction enzymes and the partial digest problem
- ➤ Finding regulatory motifs in DNA Sequences
- Exhaustive search methods

R. Hvidsten: 1MB304: Discrete structures for bioinformatics II

2

Restriction enzymes and the partial digest problem

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics I

Restriction enzymes

- HindII first restriction enzyme was discovered accidentally in 1970 while studying how the bacterium Haemophilus influenzue takes up DNA from the virus
- bacterium Haemophilus influenzae
 takes up DNA from the virus

 Restriction enzymes are used as a
- defense mechanism by bacteria to break down the DNA of attacking viruses

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II

Uses of restriction enzymes

- ➤ Recombinant DNA technology (i.e. combining DNA sequences that would not normally occur together)
- **▶**Cloning
- ➤ cDNA/genomic library construction
- ➤ DNA mapping

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II

Restriction maps

- A map showing the positions of restriction sites in a DNA sequence
- ➤ If the DNA sequence is known then constructing a restriction map is trivial
- ➤ In early days of molecular biology, DNA sequences were often unknown
- Biologists had to solve the problem of constructing restriction maps without knowing DNA sequences

Food 1002 2014 AMA 179 AMA 179

F.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II

Measuring length of restriction fragments

- Restriction enzymes break DNA into restriction fragments
- ➤ Gel electrophoresis is a process for separating DNA by size and measuring sizes of restriction fragments
- ➤ Can separate DNA fragments that differ in length in only 1 nucleotide for fragments up to 500 nucleotides long

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II

Partial restriction digest

- The sample of DNA is exposed to the restriction enzyme for only a limited amount of time to prevent it from being cut at all restriction sites
- This experiment generates the set of all possible restriction fragments between every two (not necessarily consecutive)
- > This set of fragment sizes is used to determine the positions of the restriction sites in the DNA sequence

Multiset of restriction fragments

- We assume that multiplicity of a fragment can be detected, i.e., the number of restriction fragments of the same length can be determined.
- ightharpoonup Restriction sites: $X = \{0, 5, 14, 19, 22\}$
- ightharpoonup Multiset: $ightharpoonup X = \{3, 5, 5, 8, 9, 14, 14, 17, 19, 22\}$

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II

Partial Digest Problem (PDP)

- X the set of *n* integers representing the location of all cuts in the restriction map, including the start and end i.e. $X = \{x_1 = 0, x_2, ..., x_n\}$.
- *n* the total number of cuts
- $\triangle X$ the multiset of integers representing lengths of each of the n(n-1)/2 fragments produced from a partial digest i.e. $\triangle X = \{x_j x_i \mid 1 \le i < j \le n\}$

Problem: Given the multiset L, find a set X such that $\Delta X = L$

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II

Partial Digest: Multiple Solutions (I)

It is not always possible to uniquely reconstruct a set X based only on ΔX .

For example, the set

 $X = \{0, 2, 5\}$

and

 $(X + 10) = \{10, 12, 15\}$

both produce $\Delta X = \{2, 3, 5\}$ as their partial digest set (they are homometric).

The sets $\{0,1,2,5,7,9,12\}$ and $\{0,1,5,7,8,10,12\}$ present a less trivial example of non-uniqueness. They both digest into:

{1, 1, 2, 2, 2, 3, 3, 4, 4, 5, 5, 5, 6, 7, 7, 7, 8, 9, 10, 11, 12}.

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II

Partial Digest: Multiple Solutions (II)

R. Hvidsten: 1MB304: Discrete structures for bioinformatics II

BruteForcePDP

```
BruteForcePDP(L, n)
```

- 1 $M \leftarrow \text{Maximum element in } L$
- 2 **for** every set of n-2 integers $0 < x_2 < \dots x_{n-1} < M$ such that $x_i \in L$ for 1 < i < n
- $3 \qquad X \leftarrow \{0, x_2, \dots, x_{n-1}, M\}$
- 4 Form ΔX from X
- 5 if $\Delta X = L$
- 6 return X
- 7 output "No solution"

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II

Efficiency of BruteForcePDP

- The running time of BruteForcePDP is $O(|L|^{n-2})$ or, since |L| = n(n-1)/2, $O(n^{2n-4})$
- \triangleright Note that <u>without</u> restricting the elements of X to elements in L, the running time would be $O(M^{n-2})$
- ► If $L = \{2,998,1000\}$ (n = 3, M = 1000), the running time would be very different
- ➤ Nonetheless, both algorithms have a exponential running time

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II

4.4

Branch and Bound Algorithm for PDP

- 1. Initiation: Add the start (0) and end (vidth) point of the sequence to X (and remove the end point from L)
- 2. Find the largest element y in L
- See if y fits on the right or left side of the restriction map by checking whether the other lengths (fragments) it creates are in L
- 4. If it fits, remove these lengths from *L* and add *y* (or *width* − *y*) to *X* (if not, backtrack)
- 5. Go back to step 2 until L is empty

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics I

Definitions

Before describing PartialDigest, first define $\Delta(y, X)$

as the multiset of all distances between point y and all other points in the set X

$$\Delta(y, X) = \{ |y - x_1|, |y - x_2|, ..., |y - x_n| \}$$

for $X = \{x_1, x_2, ..., x_n\}$

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II

16

```
PartialDigest(L)

1 width \leftarrow Maximum element in L

2 Remove width from L

3 X \leftarrow \{0, width\}

4 Place(L, X)

Place(L, X)

Place(L, X)

1 if L is empty

2 output X

3 return

4 y \leftarrow Maximum element in L

5 if \Delta(y, X) \subseteq L

6 Remove lengths \Delta(y, X) from L and add y to X

7 Place(L, X)

8 Remove y from y and add lengths y to y to y if \Delta(y, x) \subseteq L

10 Remove lengths \Delta(y, x) from L and add y to X

11 Place(L, X)

12 Remove y from X and add lengths \Delta(y, X) to L

13 return
```

An Example

 $L = \{2, 2, 3, 3, 4, 5, 6, 7, 8, 10\}$

Inititation:

width = 10, so delete 10 from L and add 0 and 10 to X

 $L = \{2, 2, 3, 3, 4, 5, 6, 7, 8\}$ $X = \{0, 10\}$

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II

An Example

$$L = \{2, 2, 3, 3, 4, 5, 6, 7, 8\}$$
$$X = \{0, 10\}$$

$$v = S$$

 $\triangle(y, X) = \{8, 2\}$, which is a subset of L

$$L = \{2, 3, 3, 4, 5, 6, 7\}$$
$$X = \{0, 8, 10\}$$

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II

An Example

$$L = \{2, 3, 3, 4, 5, 6, 7\}$$
$$X = \{0, 8, 10\}$$

$$y = 7$$

 $\triangle(y, X) = \{7, 1, 3\}$, which is <u>not</u> a subset of L $\triangle(width - y, X) = \{3, 5, 7\}$, which is a subset of L

$$L = \{2, 3, 4, 6\}$$
$$X = \{0, 3, 8, 10\}$$

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II

20

An Example

$$L = \{2, 3, 4, 6\}$$

$$X = \{0, 3, 8, 10\}$$

$$y = 6$$

 $\triangle(y, X) = \{6, 3, 2, 4\}$, which is a subset of L

$$L = \{\}$$

 $X = \{0, 3, 6, 8, 10\}$

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II

An Example

$$L = \{\}$$

$$X = \{0, 3, 6, 8, 10\}$$

L is empty! Output X

And continue searching for more solutions ...

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II

22

An Example

$$L = \{2, 3, 4, 6\}$$

$$X = \{0, 3, 8, 10\}$$

$$y = 6$$

 $\triangle(y, X) = \{6, 3, 2, 4\}$, which is a subset of L

 \triangle (width – y, X) = {4, 1, 4, 6}, which is <u>not</u> a subset of L

Backtrack!

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II

An Example

$$L = \{2, 3, 3, 4, 5, 6, 7\}$$

$$X = \{0, 8, 10\}$$

$$y = 7$$

 $\triangle(y, X) = \{7, 1, 3\}$, which is <u>not</u> a subset of L

Backtrack!

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II

An Example

$$L = \{2, 2, 3, 3, 4, 5, 6, 7, 8\}$$
$$X = \{0, 10\}$$

v = 8

 $\triangle(y, X) = \{8, 2\}$, which is a subset of L

 \triangle (width – y, X) = {2, 8}, which is a subset of L

 $L = \{2, 3, 3, 4, 5, 6, 7\}$ $X = \{0, 2, 10\}$

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II

An Example

$$L = \{2, 3, 3, 4, 5, 6, 7\}$$
$$X = \{0, 2, 10\}$$

y = 7

 $\triangle(y, X) = \{7, 5, 3\}$, which is a subset of L

 $L = \{2, 3, 4, 6\}$

 $X = \{0, 2, 7, 10\}$

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II

26

An Example

$$L = \{2,\,3,\,4,\,6\}$$

 $X = \{0, 2, 7, 10\}$

y = e

 $\triangle(y, X) = \{6, 4, 1, 4\}$, which is <u>not</u> a subset of L

 \triangle (width – y, X) = {4, 2, 3, 6}, which is a subset of L

 $L = \{\}$

 $X = \{0, 2, 4, 7, 10\}$

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II

An Example

 $L = \{\}$ $X = \{0, 2, 4, 7, 10\}$

L is empty! Output X

And continue searching for more solutions ...

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II

28

An Example

$$L = \{2,\,3,\,3,\,4,\,5,\,6,\,7\}$$

 $X = \{0, 2, 10\}$

y = 7

 $\Delta(y, X) = \{7, 5, 3\}$, which is a subset of L

 \triangle (width – y, X) = {3, 1, 7} which is <u>not</u> a subset of L

Backtrack and finish!

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II

Analyzing PartialDigest (I)

- \triangleright Let T(n) be the time PartialDigest takes to place n
 - No branching case: T(n) = T(n-1) + O(n)
 - Branching case: T(n) = 2T(n-1) + O(n)
- ightharpoonup The "No branching case" is quadratic $O(n^2)$ (like SelectionSort)
- ightharpoonup The "Branching case" is exponential $O(2^n)$

Analyzing PartialDigest (II)

$$T(n) = 2T(n-1) + O(n)$$

$$T(1) = 1$$

$$O(1) = 1$$

$$T(n) + O(n) = 2T(n-1) + O(n) + O(n) = 2(T(n-1) + O(n))$$

Let
$$U(n) = T(n) + O(n)$$

$$U(n) = 2U(n-1)$$

$$U(1) = 2$$

This gives the sequence: 2, 4, 8, 16, 32, 64, ... \rightarrow $U(n) = 2^n$

$T(n) = 2^n - O(n)$

Finding regulatory motifs in **DNA** sequences

Random sample

ctggtgagcaacgacagattcttacgtgcattagctcgcttccggggatctaatagcacgaagcttctgggtactgatagca

Implanting motif AAAAAAAGGGGGGG

ctattttttgagcagatttagtgacctggaaaaaaatttgagtacaaaacttttccgaataAAAAAAAA tgagtatccctgggatgacttAAAAAAAGGGGGGGtgctctcccgatttttgaatatgtaggatcattcgc tcccttttgcggtaatgtgccgggaggctggttacgtagggaagccctaacggacttaatAAAAAAAGG $gt caat cat gt t ctt gt gaat ggat tt \verb|AAAAAAAAGGGGGGGggaccgcttggcgcacccaaat tcag tg tg ggcgagcgcaacccaaat tcag tg tg ggcgaaccgcaacccaaat tcag tg tg ggcgaaccgcaacccaaacccaaacccaaacccaaaccaac$ cggttttggcccttgttagaggcccccgtAAAAAAAGGGGGGGcaattatgagagagctaatctatcgcgtgcgtgttcat $a acttgagtt \verb|AMAMAMGGGGGGGCctggggcacatacaagaggagtcttccttatcagttaatgctgtatgacactatgta|$ $ctggtgagcaacgacagattcttacgtgcattagctcgcttccggggatctaatagcacgaagctt \verb|AAAAAA||$

Where is the implanted motif?

tgagtatccctgggatgacttaaaaaaaggggggggtgctctcccgatttttgaatatgtaggatcattcgc gctgagaattggatgaaaaaaaagggggggtccacgcaatcgcgaaccaacgcggacccaa tcccttttgcggtaatgtgccgggaggctggttacgtagggaagccctaacggacttaata aacttgagttaaaaaaaagggggggctggggcacatacaagaggagtcttccttatcagttaatgctgtatgacactatgta aacttgacaaatggaagatagaatccttgcataa

Implanting motif **AAAAAAGGGGGGG** with four random mutations

T.P. Huideton: 1MP204: Diseasete etructures for bioinformation II.

Where is the motif?

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II

Why finding motif is difficult

Gene regulation

- A microarray experiment showed that when gene X is knocked out, 20 other genes are not expressed
 - How can one gene have such drastic effects?

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II

40

Regulatory proteins

- Gene X encodes a regulatory protein, a.k.a. a transcription factor (TF)
- ➤ The 20 unexpressed genes rely on gene X's TF to induce transcription
- ➤ A single TF may regulate multiple genes

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II

Regulatory regions

- > Every gene contains a regulatory region (RR) typically stretching 100-1000 bp upstream of the transcriptional start site
- ➤ Located somewhere within the RR are the transcription factor binding sites (TFBS), also known as motifs, specific for a given transcription factor
- ➤ TFs influence gene expression by binding to a specific location in the respective gene's regulatory region TFBS and recruiting the DNA polymerase

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II

Motif logo

- Motifs can mutate on non important bases
- ➤ The five motifs in five different genes have mutations in position 3
- > Representations called *motif* logos illustrate the conserved and variable regions of a motif

TGGGGGA **TGAGAGA TGGGGGA TGAGAGA TGAGGGA**

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II

The motif finding problem

Given a random sample of DNA sequences:

 $\verb|cctgatagacgctatctggctatccacgtacgtaggtcctctgtgcgaatctatgcgtttccaaccat|\\$ aaacgtacgtgcaccctctttcttcgtggctctggccaacgagggctgatgtataagacgaaaatttt

Find the pattern that is implanted in each of the individual sequences, namely, the motif

Definitions

number of sample DNA sequences

length of each DNA sequence

sample of DNA sequences ($t \times n \text{ array}$) length of the motif (/- mer)

starting position of an l-mer in sequence i

array of motif starting positions

DNA

Motifs: Profiles and consensus

Profile

Line up the patterns by their start indexes

$$\mathbf{s} = (s_1, s_2, ..., s_t)$$

- Construct matrix profile with frequencies of each nucleotide in columns
- ➤ Consensus nucleotide in each position has the highest score in column

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II

Consensus

- Think of consensus as an "ancestor" motif, from which mutated motifs emerged
- ➤ The distance between a real motif and the consensus sequence is generally less than that for two real motifs
- ➤ We need to introduce a scoring function to compare different motifs and choose the "best" one.

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II

Scoring motifs: consensus score

- \triangleright Given $\mathbf{s} = (s_1, \ldots s_d)$ and \mathbf{DNA} :
- > Score(*s*,*DNA) =*
 - $\sum_{i=1}^{l} \max_{k \in \{A,T,C,G\}} count(k,i)$

Score 3+4+4+5+3+4+3+4=30

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II

The motif finding problem

- ➤ Goal: Given a set of DNA sequences, find a set of /mers, one from each sequence, that maximizes the
 consensus score
- ➤ <u>Input</u>: A t x n matrix **DNA**, and l, the length of the pattern to find
- ➤ Output: An array of t starting positions $\mathbf{s} = (s_p, s_2, \dots s_t)$ maximizing Score(\mathbf{s} , \mathbf{DNA})

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II

50

BruteForceMotifSearch

BruteForceMotifSearch(DNA, t, n, l)

- 1 $bestScore \leftarrow 0$
- 2 **for** each $\mathbf{s} = (s_1, s_2, \dots, s_l)$ from $(1, 1, \dots, 1)$ to $(n-l+1, \dots, n-l+1)$
- 3 **if** (Score(s, DNA) > bestScore)
- 4 $bestScore \leftarrow Score(s, DNA)$
- 5 $bestMotif \leftarrow (s_1, s_2, \dots, s_t)$
- 6 return bestMotif

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II

Running Time of BruteForceMotifSearch

- ➤ Varying (n-l+1) positions in each of t sequences, we're looking at $(n-l+1)^t$ sets of starting positions
- For each set of starting positions, the scoring function makes / operations, so complexity is l(n − l + t)^t = O(ln^t)
- That means that for t = 8, n = 1000, and l = 10 we must perform approximately 10^{20} computations it will take billions of years!

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II

52

The median string problem

- Given a set of tDNA sequences, find a pattern that appears in all t sequences with the minimum number of mutations
- This pattern will be the motif

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II

Hamming Distance

- ➤ Hamming distance:
 - $-d_H(v,w)$ is the number of nucleotide pairs that do not match when v and w are aligned. For example:

 $d_H(AAAAAA,ACAAAC) = 2$

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II

Total Distance: Example For a control of the first sequence of the sequence

The median string problem

- ➤ Goal: Given a set of DNA sequences, find a median string
- ➤ <u>Input</u>: A *t* × *n* matrix *DNA*, and *l*, the length of the pattern to find
- > Output: A string v of l nucleotides that minimizes TotalDistance(v, **DNA**) over all strings of that length

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II

56

Median string search algorithm

BruteForceMedianStringSearch (DNA, t, n, l)

- 1 $bestWord \leftarrow AAA...A$
- 2 bestDistance $\leftarrow \infty$
- 3 **for** each l-mer v **from** AAA...A to TTT...T
- 4 **if** TotalDistance(v, DNA) < bestDistance
- 5 bestDistance \leftarrow TotalDistance(v,**DNA**)
- 6 bestWord $\leftarrow v$
- 7 **return** bestWord

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II

Motif finding problem vs. median string problem

Why bother reformulating the *motif finding* problem into the *median string* problem?

- The motif finding problem needs to examine all the combinations for s. That is $(n l + 1)^l$ combinations
- The median string problem needs only to examine all 4^l combinations for v.

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics I

Structuring the search

For the median string problem we need to consider all 4' possible *I*-mers:

How to organize this search?

R. Hvidsten: 1MB304: Discrete structures for bioinformatics II

Analyzing Search Trees

- ➤ Characteristics of the search trees:
 - The sequences are contained in its leaves
 - The parent of a node is the prefix of its children
- ➤ How can we move through the tree?

R. Hvidsten: 1MB304: Discrete structures for bioinformatics II

62

Visit the Next Leaf

Let **a** be an array of digits: $\mathbf{a} = \{a_1, a_2, ... a_L\}$ where $a_i \in [1, k], 1 \le i \le L$

Given a current leaf a, we need to compute the "next" leaf:

NextLeaf(a,L,k)

- 1 for $i \leftarrow L$ to 1
- 2 **if** $a_i < k$
- $a_i \leftarrow a_i + 1$
- 4 return a
- $5 \quad a_i \leftarrow 1$
- 6 return a

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II

Visit all leaves

Printing all permutations in ascending order:

AllLeaves(L,k)

- 1 $a \leftarrow (1,1,...,1)$
- 2 while forever
- 3 output a
- 4 $a \leftarrow \text{NextLeaf}(a, L, k)$
- 5 **if** a = (1,1,...,1)
- 6 return

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics I

Visit the next vertex

We can search though all vertices of the tree with a depth first search

i is the prefix length

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II

Bypass Move

Given a prefix (internal vertex), find the next vertex after skipping all its children

```
Bypass(\mathbf{a}, i, L, k)

1 for j \leftarrow i to 1

2 if a_j < k

3 a_j \leftarrow a_j + 1

4 return(a_j)

5 return(a_j0)
```

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics I

Bypass Move: Example root 11 12 13 14 21 22 23 24 31 32 33 34 41 42 43 44 T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 70

Brute force search again

BruteForceMedianStringSearchAgain(DNA, t, n, l)

1 $s \leftarrow (1,1,...,1)$ 2 $bestDistanee \leftarrow \infty$ 3 while forever

4 $s \leftarrow \text{NextLeaf}(s, l, 4)$ 5 $word \leftarrow \text{Nucleotide string corresponding to } (s_1, s_2, ..., s_l)$ 6 if (TotalDistance(word, DNA) < bestDistanee7 $bestDistanee \leftarrow \text{TotalDistance}(word$, DNA)

8 $bestWord \leftarrow word$ 9 if s = (1,1,...,1)10 return bestWord

Can We Do Better?

- ➤ Let TotalDistance(prefix, **DNA**) be the distance for a nucleotide string corresponding to (s₁, s₂, ...,s_i)
- ➤ Note that if the total distance for a prefix is greater than that for the best word so far:

TotalDistance (prefix, **DNA**) > BestDistance

there is no use exploring the remaining part of the word > Use ByPass()!

R. Hvidsten: 1MB304: Discrete structures for bioinformatics II

Bounded Median String Search

```
nchAndBoundMedianSttu.<sub>5</sub>
s \leftarrow (1,...,1)
beatDistance \leftarrow \infty
i \leftarrow 1
while i > 0
if i < l
prefix \leftarrow \text{Nucleotide string corresponding to } (s_1, s_2, ..., s_j)
optimistidDistance \leftarrow \text{TotalDistance}(prefix, DNA)
i \quad \text{if optimistidDistance} \rightarrow \text{BestDistance}
0 \quad (s_i) \leftarrow \text{Bypass}(s_i, l, d)
0 \quad \text{else}
10 \quad \text{else}
1 \quad (s_i) \leftarrow \text{NextVertex}(s_i, l, l, d)
10 \quad \text{else}
1 \quad \text{value} \quad \text{Nucleotide string corresponding to } (s_1, s_2, ..., s_j)
1 \quad \text{value} \quad \text{Nucleotide string corresponding to } (s_1, s_2, ..., s_j)
1 \quad \text{value} \quad \text{Nucleotide string corresponding to } (s_1, s_2, ..., s_j)
       Branch And Bound Median String Search(\textbf{\textit{DNA}},t,n,l)
7 optimited Distance \leftarrow Total Distance (profix, DNA)

8 if optimited Distance \gt best Distance

9 (s,i) \leftarrow Bypass(s,l, l, d)

10 else

11 (s,i) \leftarrow NextVertex(s,i, l, d)

12 else

13 word \leftarrow Nucleotide string corresponding to (s_p, s_p, ..., s)

14 if Total Distance (s,DNA) \lt best Distance

15 best Distance \lt Total Distance (word, DNA)

16 best Word \leftarrow word

17 (s,j) \leftarrow NextVertex(s,i,l, d)

18 return best Word
```

Running time

- ► As usual with branch-and-bound algorithms, there is no improved running time in the worst
- ➤ However, it often results in a practical speedup