
1

1MB304: Discrete structures for
bioinformatics II

(Al h f b f)

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 1

(or Algorithms for bioinformatics)

Torgeir R. Hvidsten

Lecturer:
Torgeir R. Hvidsten
Assistant professor in Bioinformatics
Umeå plant science center
torgeir.hvidsten@plantphys.umu.se

Research interests
Machine learning in bioinformatics
Protein structure prediction
Protein-drug interactions
Gene regulation

Assistant (responsible for exercises) :
Feifei Xu
The Linn e s entre for bioinform ti s

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 2

The Linnaeus centre for bioinformatics
xffhello@gmail.com

Course goals
After this course you should be able to:
1. describe the different algorithm design techniques and discuss

their pros and cons.
2. sketch a solution to a bioinformatics problem using pseudo-

code and analyze its time/space complexity
3 i h l i h d i h i d i i i

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 3

3. recognize the algorithm design technique used in an existing
bioinformatics solution, analyze its time/space complexity and
the plausibility of using other techniques.

4. translate a given a biological problem into a representation that
lends itself to be solved by one of the techniques, and
discuss/argue for your solution.

Course information (I)
Book: Jones and Pevzner. An introduction to bioinformatics algorithms,
ISBN 0-262-10106-8 (available at Akademibokhandeln).
Credit points: 5 (4 points: Exam, 1 point: hand-ins/project)
Obligatory hand-in exercises (4 of 6 exercises must be returned
and approved)
O bli j i l di i

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 4

One obligatory computer project including a written report, a
literature study, an oral presentation and student review (students
may work in pairs)
Bonus points on the exam:
− Up to one point for each approved exercise handed in within the

deadlines
− Up to four bonus points if the project is approved and handed in within

the deadline
− A maximum of 10 bonus points amounting to 10% of the exam

Student correction of exercises
For each exercise:
− One week to hand in a copy of your answers
− Another week to correct your answers using my suggestions to solutions

To get bonus points:
− Meet both deadlines
− At least 50% correct

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 5

At least 50% correct
− All tasks answered and corrected

Why? It gives you:
− A second chance to learn the material
− The opportunity to understand someone else's answers
− A chance to view your answers in the light of someone else's answers

No, it’s not less work for the teacher
No, it’s not more work for you (one topic/lecture less than last
year)

Course information (II)

Course webpage:
− http://www.trhvidsten.com/DSB/

Here you can find the

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 6

− course program
−deadlines

and download
− lecture slides
− exercises/project descriptions
− additional material not in the book

2

Content (I)

Exhaustive search (Chapter 4)
− Application: restriction mapping, finding regulatory motifs in

DNA sequences

Greedy algorithms (Chapter 5)

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 7

− Application: genome rearrangements, finding regulatory
motifs in DNA sequences

Dynamic programming and divide-and-conquer
algorithms (Chapters 6, 7.3, 7.4 and 9.8)
− Sequence alignments (global, local, gaps, multiple alignments)
− Application: gene prediction, BLAST

Content (II)

Hidden Markov models (Chapter 11 + research
article)
− Application: Modeling multiple alignments, Pfam

Randomized algorithms (Chapter 12)

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 8

g (p)
− Application: Motif finding

Content (III)

Protein structure prediction from sequence (Project description)
− Approaches based on fragment libraries
− The computer project: predicting local structure from

sequence

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 9

This lecture

Discrete structures
Algorithms and pseudo-code
Algorithm complexity

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 10

Bioinformatics and computational problems in
molecular biology

Discrete structures …

Discrete comes from the Latin word discretus
which means separate
Discrete mathematics: branch of mathematics
dealing with questions involving finite or

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 11

g q g
countably infinite sets
In computer science a computation is the
progression of a digital computer in a state space
as dictated by an algorithm
Molecular biology: DNA, RNA, proteins,
interaction networks, regulatory networks, etc.

Algorithm

Algorithm: a sequence of instructions that one
must perform in order to solve a well-
formulated problem
Correct algorithm: translate every input instance

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 12

g y p
into the correct output
Incorrect algorithm: there is at least one input
instance for which the algorithm does not
produce the correct output
Many successful algorithms in bioinformatics are
not “correct”

3

Algorithm design (I)

Exhaustive algorithms (brute force): examine
every possible alterative to find the solution
Branch-and-bound algorithms: omit searching
through a large number of alternatives by

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 13

g g y
branch-and-bound or pruning
Greedy algorithms: find the solution by always
choosing the currently ”best” alternative
Dynamic programming: use the solution of the
subproblems of the original problem to
construct the solution

Search space

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 14

Algorithm design (II)

Divide-and-conquer algorithms: splits the
problem into subproblems and solve the
problems independently
Machine learning: induce models based on

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 15

Machine learning: induce models based on
previously labeled observations (examples)
Randomized algorithms: finds the solution
based on randomized choices

Pseudo-code

Sorting problem: Sort a list of n integers a =
(a1, a2, …, an)

SelectionSort(a n)

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 16

SelectionSort(a,n)
1 for i ← 1 to n-1
2 j ← Index of the smallest element

among ai, ai+1, …, an
3 Swap elements ai and aj
4 return a

Example run

i = 1: (7,92,87,1,4,3,2,6)
i = 2: (1,92,87,7,4,3,2,6)
i = 3: (1,2,87,7,4,3,92,6)

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 17

i = 4: (1,2,3,7,4,87,92,6)
i = 5: (1,2,3,4,7,87,92,6)
i = 6: (1,2,3,4,6,87,92,7)
i = 7: (1,2,3,4,6,7,92,87)

(1,2,3,4,6,7,87,92)

Pseudo-code hides ugly details such as

“Swap elements ai and aj”

1 tmp = aj

2 =

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 18

2 aj = ai

3 ai = tmp

or

4

“j ← Index of the smallest element among ai, ai+1,
…, an”

IndexOfMin(array,first,last)
1 index ← first
2 f r k fi t + 1 t l t

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 19

2 for k ← first + 1 to last
3 if arrayk < arrayindex
4 index ← k
5 return index

Remember, though, that the devil is in the details!

Recursion

RecursiveSelectionSort(a,first,last)
1 if (first < last)
2 index ← Index of the smallest element

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 20

among afirst, afirst+1, …, alast

3 Swap elements afirst and aindex

4 a ← RecursiveSelectionSort(a,first+1,last)
5 return a

Algorithm complexity

The Big-O notation:
− the running time of an algorithm as a function of the

size of its input
−worst case estimate

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 21

worst case estimate
− asymptotic behavior

O(n2) means that the running time of the
algorithm on an input of size n is limited by the
quadratic function of n

18000

20000

Big-O Notation (I)

A function f(x) is O(g(x)) if there are positive real
constants c and x0 such that f(x) ≤ cg(x) for all values of
x ≥ x0.

11 3

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 22

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0 2 4 6 8 10 12

x

11x3

99x2 + 7

6000 log x

Big-O Notation (II)

A function f(x) is Ω(g(x)) if there are positive real
constants c and x0 such that f(x) ≥ cg(x) for all
values of x ≥ x0

A function f(x) is Θ(g(x)) if f(x) = O(g(x)) and f(x)

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 23

A function f(x) is Θ(g(x)) if f(x) = O(g(x)) and f(x)
= Ω(g(x))
− g is a tight bound for the function f

Complexity of SelectionSort

Makes n – 1 iterations in the for loop
Analyzes n – i +1 elements ai, ai+1, …, an in
iteration i
A i b f i

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 24

Approximate number of operations:
− n + (n-1) + (n-2) + … + 2 + 1 = n(n+1)/2
−plus the swapping: n(n+1)/2 + 3n

Thus the algorithm is O(n2)

5

Complexity of RecursiveSelectionSort

Running time may be described by the recurrence
relation:
− T(n) = n + T(n-1)
− T(1) = 1

Th f

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 25

Therefore,
− T(n) = n + T(n-1)

= n + (n-1) + T(n-2)
= n + (n-1) + (n-2) + …+ 3 + 2 + T(1)
= O(n2)

Tractable versus intractable problems

Some problems requires polynomial time
− e.g. sorting a list of integers
− called tractable problems

Some problems require exponential time
l b l

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 26

− e.g. listing every subset in a list
− called intractable problems

Some problems lie in between
− e.g. the traveling salesman problem
− called NP-complete problems
− nobody have proved whether a polynomial time algorithm

exists for these problems

Traveling salesman problem

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 27

Bioinformatics

Sequence analysis and sequence databases
− First success story: similarity searches to sequence databases

e.g. showed the relation between growth proteins and cancer
(Doolittle, early 80s)

Bioinformatics today

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 28

Bioinformatics today
− Functional genomics: determining function for all

genes/proteins
− Systems biology: Predicting whole cell

regulations/interactions
− …

The ultimate goal: computational simulation of
complex living systems

Restriction mapping

Restriction Enzymes: Discovered in the early
1970’s
−Used as a defense mechanism by bacteria to

b k d th DNA f tt ki i

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 29

break down the DNA of attacking viruses.
−They cut the DNA into small fragments.

Can also be used to cut the DNA of organisms
−This allows the DNA sequence to be in a

more manageable bite-size pieces

Partial digest example

Partial digest results in the following 10 restriction
fragments

6

Goal: Given all pairwise distances between
points on a line, reconstruct the positions of
those points

Partial digest problem or
restriction mapping

Algorithms: brute force and improvements
using branch-and-bound techniques

Genome rearrangements

The human genome is just the mouse genome
cut into about 300 large genomic fragments and
then pasted together in a different order

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 32

Mouse

Human

Unknown ancestor
~ 75 million years ago

Mouse (X chrom.)

Human (X chrom.)

Sorting by reversals

Goal: Given two permutations, find the shortest

Reversal
1 2 3 4 5 6 1 2 -5 -4 -3 6

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 33

series of reversals that transform one
permutation into the other
Algorithms: Greedy search and approximation
algorithms

Motif finding

Transcription factors regulate
specific genes by binding
selectively to sequence motifs
Motif Finding Problem:
Given a list of sequences

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 34

Given a list of sequences,
find the “best” pattern that
appears in all of the
sequences
Algorithms: exhaustive,
greedy and randomized
strategies

Gene prediction

Gene prediction: Locate genes in a genomic sequence

St ti ti l din m nt (n) h t pi l q n n

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 35

Statistical: coding segments (exons) have typical sequences on
either end and use different subwords than non-coding
segments (introns)
Similarity-based: many human genes are similar to genes in
mice, chicken, or even bacteria. Therefore, already known
mouse, chicken, and bacterial genes may help to find human
genes (comparative genomics)
Algorithm: Dynamic programming

Multiple sequence alignment modeling

Model a multiple alignment of e.g. a protein family and
th d l t i th f il b (Pf)

FOS_RAT PEEMSVTS-LDLTGGLPEATTPESEEAFTLPLLNDPEPK-PSLEPVKNISNMELKAEPFD
FOS_MOUSE PEEMSVAS-LDLTGGLPEASTPESEEAFTLPLLNDPEPK-PSLEPVKSISNVELKAEPFD
FOS_CHICK SEELAAATALDLG----APSPAAAEEAFALPLMTEAPPAVPPKEPSG--SGLELKAEPFD
FOSB_MOUSE PGPGPLAEVRDLPG-----STSAKEDGFGWLLPPPPPPP-----------------LPFQ
FOSB_HUMAN PGPGPLAEVRDLPG-----SAPAKEDGFSWLLPPPPPPP-----------------LPFQ

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 36

use the model to recognize other family members (Pfam)

Hidden Markov Model (HMM)

7

Structure prediction
Goal: discover nature’s
algorithm for specifying the
three–dimensional structure
of proteins from their
amino acid sequences
(protein folding problem)

Method: HMMs

T.R. Hvidsten: 1MB304: Discrete structures for bioinformatics II 37

KKAVINGEQIRSISDLHQTLKKELALPEYYGENLDALWDCL
TGWVEYPLVLEWRQFEQSKQLTENGAESVLQVFREAKAEGC
DITIILS

KHCTISGRAVHSLDELYDEIARQLPLPDYFGRNLDALWDVL
STDIEGPVELIWEDSEHSKRSMGKDYERVVALLKDLTEERE
DFRIV

IIGSKIYTEQDFHNQISKIFSIQDYYGNNLDALWDLLSTNV
ERPITLVWKDAMFSKNQLENIFIEIVNVLERVKKQDED

QSKQEVLETIATSFLFPKHFGKNYDALYDCLTDLVQFVIVL
E--QLPVAQKFDKEGRETLLDVFREA

