5/11/2010

This lecture

* Go through Lab 3
* Correct versus incorrect algorithms
Lecture 4 * Time/space complexity analysis

* Basic algorithm design: exhaustive search, greedy

o) algorithms, dynamic programming and randomized
Torgeir R. Hvidsten

. - o ! algorithms
Assistant professor in Bioinformatics g
Umea Plant Science Center (UPSC)
Computational Life Science Centre (CLiC)
Algorithm Search space
Algorithm: a sequence of instructions that one must i

perform in order to solve a well-formulated problem
Correct algorithm: translate every input instance into
the correct output

Incorrect algorithm: there is at least one input instance
for which the algorithm does not produce the correct

output I
Many successful algorithms in bioinformatics are not ~——_
“correct”
[xfolx I?ljaj [xlolx
oM KRa) sl
Algorithm design (1) Algorithm design (ll)
Exhz}ustive algqrithms (brute forccj): examine every * Divide-and-conquer algotithms: splits the problem into
possible alterative to find the solution subproblems and solve the problems independently

Branch-and-bound algorithms: omit searching through
a large number of alternatives by branch-and-bound or
pruning

* Machine learning: induce models based on previously
labeled observations (examples)

* Randomized algorithms: finds the solution based on

Greedy algorithms: find the solution by always . .
! randomized choices

choosing the currently ’best” alternative

Dynamic programming: use the solution of the
subproblems of the original problem to construct the
solution

5/11/2010

Algorithm complexity

* The Big-O notation:
— the running time of an algorithm as a function of the size of
its input
— worst case estimate
— asymptotic behavior
* O(n%) means that the running time of the algorithm on
an input of size # is limited by the quadratic function
of n

Big-O Notation

A function f{x) is O(g(x)) if there are positive real constants ¢
and x;, such that f{x) < gg(x) for all values of x = x;,

20000

18000
16000
14000
12000
10000

8000

6000
4000
2000

Sorting algorithm

Sorting problem: Sort a list of # integers a = (a,, a,,

s a,)

SelectionSort(a,n)

1 for i «— 17 to n-1

2 /< Index of the smallest element
among a, d;,, ..., d,

3 Swap elements ¢;and 4,

4 return a

Example run

i=1 (7,92,87,1,4,3,2,6)
i=2 (1,92,87,7,4,3,2,6)
i=3 (1.,87,7,4,3,92,6)
i=4 (1.2.3,7,4,87,92,6)
i=5 (7,87,92,6)
i=6 (,87,92,7)
i=7 (92,87)

()

Complexity of SelectionSort

* Makes 7 — 7 iterations in the for loop
* Analyzes n—i +1 elements a;, a;,, ..., a,in iteration /
* Approximate number of operations:

— A (1) (12) 241 = nu1))2

* Thus the algotithm is O(#?)

Tractable versus intractable problems

* Some problems requites polynomial time
— e.g sorting a list of integers
— called tractable problems

* Some problems requite exponential time
— e.g listing every subset in a list
— called intractable problems

* Some problems lie in between
— e.g the traveling salesman problem
— called NP-complete problems

— nobody have proved whether a polynomial time algorithm
exists for these problems

5/11/2010

Traveling salesman problem

Exhaustive search:
Finding regulatory motifs in
DNA sequences

Random sample Implanting motif AAAAAAAGGGGGGG

Implanting motif AAAAAAGGGGGGG
Where is the implanted motif? with four random mutations

5/11/2010

Where is the motif? Why finding motif is difficult

rwppw——
A — [yepype—
A
it
)
A
it
\
A

\

\ S P T T /

Parameters Motifs: Profiles and consensus
aGgtacTt H .
CcAtacgt Line up the patterns by
DNA =8 Alignment acgtTAgt their start indexes
. acgtCcAt
| cetgatagacgctatctggctatccaGgtacTtaggtectetgtgegaatctatgegtttecaaccat CcgtacggG

S = (5, 99, -ees 5)

| agtactggtgtacatttgatCehfacgt

=5 { asacgtTa ctefcttegtagetet gatgtat et A 30103110 o Constructa profile with
i ‘\gz Profile C 24001400 f
| agcetcyatgtaagtcAtagetgtaactattacctgecaccectattacatcttacgtCeAtataca G 01400031 frequen_cles_ of each
[T 00051014 nucleotide in columns
k ctgttat gcgttttggtc Hl.l.gl.al.gt.u,gal.]gl.l.o\ chtacgel:
n =69 / Consensus ACGTACGT * Consensus nucleotide in
, cach position has the
s { ;=26 s,=21, 5;=3, 5,=56,5;= 50} Score 3+4+4+5+3+4+3+4=30 highest score in column
BruteForceMotifSearch Running Time of BruteForceMotifSearch
BruteForceMotifSearch(DNA, 4 1, /) * Varying (n—/+ 1)positions in each of #sequences, we're
1 bestSeore < 0 looking at (7 —/+ 1) sets of starting positions
2 for cach s=(s,,5,, ..., 5) from (1,7 .. .,7) to (n-/+1, ..., n-/+1)
3 if (Score(s,DINA) > bestScore) * For each set of starting positions, the scoring function
4 bestScore — Score(s, DNA) makes /operations, so complexity is
— r=
5 bestMotif < (5,85, ..., 5) Ln—=1+ 1) =O(r)
6 return bestMotif
* That means that for 7= &, » = 1000, and /= 10 we must
perform approximately 70?’ computations — it will take
billions of years!

5/11/2010

The median string problem

* Given a set of #DNA sequences, find a pattern that
appears in all 7 sequences with the minimum number of
mutations

* This pattern will be the motif

Hamming Distance

* Hamming distance:

— dy(sw) is the number of nucleotide pairs that
do not match when » and w are aligned. For
example:

4 (AAAAAA,ACAAAC) = 2

Total Distance: Example

+ Given » = “acgtacgt”

dun =1 g

dylv,x)=0 —_ jacgtacgt}
aagtcatagctgtaactattacct attacatcttacgtac

(v x) =1 iojaegtacat
ctgttatacaacgcgtcatggeggggtatgegttttggtegtegtacgctegategttaacgtaGgte

Vs the sequence in red, X is the sequence in blue

* TotalDistance(s,DNA) = 1+0+2+0+1 =4

Median string search algorithm

BruteForceMedianStringSearch (DNA, # #,)

bestWord «— AAA...A

bestDistance <—

for cach l-mer » from AAA...A to TTT...T

if Tota/Distance(v, DINA) < bestDistance

bestDistance <— TotalDistance(v, DINA)
bestWord «— v

return bestWord

~N & Ul AW~

Motif finding problem = median string problem

/
P — .
gthacTt e Atany column /
cAtacgt - . —
Alignment acgtTAgtl Score; + TotalDistance; = #
acgtCcAt
CcgtacggG
* Because there are / columns
A 30103110 Score + TotalDistance = / X #
Profile C 24001400
G 01400031
T 00051014 o Rearranging:
Score = / X ¢ - TotalDistance
Consensus acgtacgt
Score 3+4+4+5+3+4+3+4 .
* /X tis constant, thus the
TotalDistance 2+1+1+0+2+1+2+1 minimization of TotalDistance is
sum 55555555 equivalent to the maximization of

Score

Motif finding problem vs.
median string problem

Why bother reformulating the wotif finding problem into
the median string problem?
— The motif finding problem needs to examine
all the combinations for s. Thatis (v -/ + 1)’
combinations

— The median string problem needs only to
examine all 4/ combinations for ».

5/11/2010

Greedy search:
Finding regulatory motifs in
DNA sequences

Approximation algorithms

* These algorithms find approximate solutions rather than
optimal solutions

* The approximation ratio of an algorithm A on input 7
is:

A(m) / OPT(m)
where

A(m) - solution produced by algorithm A
OPT(xr) - optimal solution of the problem

Performance guarantee

e Performance guarantee of algorithm A is the maximal
approximation ratio of all inputs of size #

* For algorithm A that minimizes the objective function
(minimization algorithm):

A(x) / OPT(x)

* For maximization algotithms
— min| -, A(z) / OPT(x)

T omax) g -,

1=8
DNA
| cctgatagacgetatctggctatccatgtacT taggtectctgtgcgaatetatgegtttccaaccat
i agt: acatttgatCchfacgt gc
t=5 | aaacgtTA cttfcttcgtggetety gatgtat Tttt

iagc‘(hgatgtaag(c (tagctgtaactattacctgccaccectattacatcttacgtCeAtataca

| ctgttat: gcgttttggtcgtegtacge u,ga7 gttaCcgtacgGe

/

, n=69

s {5,226 s,=21,5,=3, s,=56,5,=60]

Motifs: Profiles and consensus

aGgtacTt ;

ey tacgt ° Line up the patterns by
Alignment acgtTAgt their start indexes
acgtCcAt
Ccgtacgt

S = (5, 99, -ees 5)

) A 830103110 e Constructa profile with
Profile C 24001400 fi . £ h
C 01400031 tequencies of eac
T 00051014 nucleotide in columns

* Consensus nucleotide in
cach position has the
Score 3+4+4+5+3+4+3+4=30 highest score in column

Consensus ACGTACGT

Greedy motif finding

* Partial score: Score(s, 7, DNA)
— The consensus score for the first 7 sequences
* Algorithm:
— Find the optimal motif for the two first sequences

— Scan the remaining sequences only once, and choose the
motif with the best contribution to the partial score

5/11/2010

Greedy motif finding

GreedyMotifSearch(DNA, 1, n, 1)
1 se—(1,..,0

2 bestMotif — s

3 fors, «— Tton—/+1
4 for s, 1ton—1/+1

5 if Score(s, 2, DNA) > Score(bestMotif; 2, DNA)
6 bestMatif, — s,

7 bestMotify < s,

8 s bestMorif,

9 sy bestMotif,

10 fori«3tos

11 fors,«— Tton—/+1

12 if Score(s, i, DNA) > Score(bestMotif; i, DNA)
13 bestMotif; «— s;

14 ;4= bestMotif;

15 return bestMotif

Running time

* Optimal motif for the two first sequences
— [n—1+1)? operations
* The remaining 2 sequence
— (1= 2)ln— [+1) operations
* Running time
— O(l? + tn) ot O(?) if n>> ¢
* Vastly better than
— BruteForceMotifSearch: (- /+ 1)’
— BruteForceMedianStringSearch: 4/

Dynamic programming:
Sequence alignment

DNA sequence comparison:
First success story

* In 1984 Russell Doolittle and colleagues
found similarities between a cancer-causing
gene and a normal growth factor (PDGF)
gene using a database search

* Finding sequence similarities with genes of
known function is a common approach to
infer the function of a newly sequenced gene

Longest common subsequence (LCS) —

alignment without mismatches
icoords: 0 O 1 2 3 4 5 5 6 6 7

elements of v -|/T|G6|Cc |A|T|-]|A|-|C

elements of w A T - C - T G A T C

jcoords: 0 1 2 2 3 3 4 5 6 7 8

positionsin v : 1<3<5<6<7
Matches shown in red
positions in w : 2<3<4<6<8

TCTAC is a common subsequence of vand w

Every common subsequence is a path in a 2-D grid

Edit graph for the longest
common substring (LCS) problem

i A T C T G A T C
source

1 2 3 4 5 6 7 8
io Every path from
T source to sink is a
common
G 2 subsequence (CS)
Every diagonal
C s
edge adds an extra
A s element to the CS
T LCS Problem: Find
the path with the
A s maximum number
of diagonal edges
C 'sink

5/11/2010

Edit graph for the LCS problem

W

Computing LCS (1)

nm

e i e e N Letv, =v;, ... v, (prefix of v of length i)
Matches and w; = w;, ... w; (prefix of w of length j)
The length of LCS(v,w)) is equal to:
Sia i1,j-1 i-1,j
s = max Sij1 Deletion 1 |o
2 .
~TGCAT-A-C Seaga *1EVISW March 1 0N
AT-C-TGATC
LCS algorithm Example: initiation
LCS(v; 1, w, 7) i A T € T G A T C
o 1 2 3 a4 5 6 7 8
1 foti<71ton e 0 0 0 0 0 0) 0
2 5,00 T o1
3 forj« 1tom G2
4 5o, 0 0
5 fori«1ton €23
6 forj <« 1tom A st
J””"v/ T s 5
8 5 € max< g,
Sio g+ 1,if ;= iz A slg
10 return g, Cc 7

Example: Fori=1,j=1..m

Example: Fori=2,j=1..m

5/11/2010

Example: Fori=3...n,j=1...m

LCS Runtime

It takes O(nm) time to fill in the 7 X 7 dynamic
programming matrix

* The pseudocode consists of a nested “for” loop inside
of another “for” loop to set up a # X s matrix

What'’s so great about
dynamic programming?
* A naive exhaustive search would have the running time
O(3€(rz,m))
* An exhaustive search would recompute the same
subpaths several times

* Dynamic programming takes advantage of the rich
computational structure in the search space, and reuse
already computed subpaths

Scoring matrix: Example

* Notice that although R and K
are different amino acids, they

have a positive score

charged amino acids and will

A 1
®| - |7 ® * Why? They are both positively
N - 0

K 6

not greatly change the

function of protein

Scoring matrices and
the global alignment problem

* To generalize scoring, consider a (4+7) X (4+7) scoring
matrix 8

* In the case of an amino acid sequence alignment, the
scoring matrix would be (20+7) X (20+7)

* The addition of 7 is to include the score for
comparison of a gap character “-” (indels)

Sy (v -
5, = macx S0 06w
Sirr T d (v, W/

Local vs. global alignment (1)

* The Global alignment problem : find the longest path
between vertices (0,0) and (n,m) in the edit graph

* The Local alighment problem tries to find the longest
path between arbitrary vertices (i, j) and (’, j°) in the edit
graph

5/11/2010

Local vs. global alignment (1) Local vs. global alignment (l11)

¢ Global Ah'gnment
T CC-C-AGT—-TATGT-CAGGGGACACG—A-GCATGCAGA-GAC e

AAJrTG&Géc yrce!’ Jr +T£A(!————£A éTJrAJrGJ' &LéLT——é '—00’5"\5‘\9@@

* Local Alighment—better alignment to find
conserved segment

tccCAGTTATGTCAGgggacacgagcatgcagagac
IRRRRRRNRRIY
aattgccgcecgtegttttcagCAGTTATGTCAGatc

Global alignment

Free rides The local alignment recurrence

Yeah, a free ride! > The largest value of s;; over the whole edit graph is the score of

the best local alignment

Vertex (0,0) \ o
Al - 5. = max JM:/ + (1, =)
g RN ST Y i + 5 w/

St + 5@, w)

» The 0is the only difference from the recurrence of the global
The dashed edges represent the free rides from alignment problem

(0,0) to every other node.

Gap penalties BLAST (1)
In nature, a series of £ indels often come as a single event * Basic Local Alignment Search Tool (BLAST) finds
rather than a series of £ single nucleotide events: regions of local similarity between sequences
ATA--GC ATAG- GC * The program compares nucleotide or protein sequences
ATATTGC AT- GTGC

to sequence databases and calculates the statistical
significance of matches

I Normal scoring would [
This is more likely give the same score for This is less likely

both alignments

10

5/11/2010

BLAST (1)

e Tirst stage: Identify exact matches of length W (default
W=3) between the query and the sequences in the
database

* Second stage: Extend the match in both directions in an
attempt to boost the alignment score (insertions and
deletions are not considered)

* Third stage: If a high-scoring ungapped alignment is
found: Perform a gapped local alighment using dynamic
programming

Multiple alignment

* A faint similarity between two sequences becomes
significant if present in many

* Multiple alignments can reveal subtle similarities that
pairwise alighments do not reveal

AT - G C G -

A - CGT - A
AT C A C - A

2D vs 3D edit graph

2-D edit graph

3-D edit graph

Multiple alignment: Running time

* For two sequences of length 7, the run time is O(#%)
* For three sequences of length 7, the run time is O(#’)

* For £ sequences, build a 4-dimensional edit graph, with
run time O(#¥)

* Conclusion: dynamic programming approach for
alighment between two sequences is easily extended to £
sequences, but it is impractical due to exponential
running time

Multiple alignment induces
pairwise alignments

Every multiple alighment:
X: AC-GCGG-C

y: AC-GC-GAG
z: GCCGC-GAG

induces pairwise alignment:

X2 ACGCGG-C x: AC-GCGG-C y: AC-GCGAG
y: ACGC-GAC z: GCCGC-GAG z: GCCGCGAG

Reverse problem: Constructing multiple
alignment from pairwise alignments

Given three pairwise alignments:

X: ACGCTGG-C x: AC-GCTGG-C y: AC-GC-GAG
y: ACGC--GAC z: GCCGCA-GAG z: GCCGCAGAG

can we construct the multiple alignment that induces them?

11

5/11/2010

Combining optimal pairwise alignments
into multiple alignment

Can combine pairwise
alignments into multiple
alignment

Can not combine pairwise
alignments into multiple a
alignment

Profile representation of multiple alighment

- AGGCTATCACTCTG
TAG-CTACCAS-- -0
CAG-CTACCAS---G6
CAG-CTATCACS-GG
CAG-CTATCGC -GG
A 1 1 8 cw
[6 1 4 1 6 .2 o £
G 1.2 2 401 E]
T .2 1 .6 .2 e
- .2 8 4.8 .4 =& X
=G5
Aa8
& a2

* In the past we were aligning a sequence against a sequence

* With profiles we can align a sequence against a profile and
even a profile against a profile

Multiple alignment: Greedy approach

Choose most similar pair of strings and combine into a
profile, thereby reducing the alignment of £ sequences to
an alignment of £-7 sequences/profiles. Repeat!

This is a heuristic greedy method

(u,=ACGTACGTACGT... —% u,= ACg/tTACQ/tTACY/CT...

u, = TTAATTAATTAA. .. U, = TTAATTAATTAA. . k-1

k u; = ACTACTACTACT...
U, = CCGGCCGGCCGG. ..

| Uug=CCGGCCGGCCGG

CLUSTALW

1. Determine all pairwise alignhments between sequences
and the degree of similarity between them.

2. Construct a similarity tree.

3. Combine the alignments from 1 in the order specified
in 2 using the rule "once a gap always a gap“.

PSI-BLAST

Position-Specific Iterative (PSI) BLAST detect weak
relationships between the query and sequences in the
database (higher sensitivity than BLAST)

PSI-BLAST first constructs a multiple alignment from
the highest scoring hits in a initial BLAST search and
generate a profile from this alignment i.e. PSSM

The profile is used to iteratively perform additional
BLAST searches (called iterations) and the results of
each iteration is used to refine the profile

The iteration stops when no new matches with a
satisfactory score are obtained

Pfam

Pfam is a set of protein families (multiple alignments)
represented by Hidden Markov Models (HMMs)

12

5/11/2010

Scoring matches

Given a protein sequence x and an BLAST/PSI-
BLAST/HMM, what is a significant score?
— The score for the sequence x: p°
— Generate 1000 random sequences and score them:
Prand 1> Prand 25 +++> Prand 1000

— Fit a distribution to the random scores and calculate the false
discover rate (fdr)

— E-score = fdr - Size of query database (the expected number of false
positive hits)

Distribution
for rando
scores

Randomized algorithms

Randomized algorithms

* Randomized algorithms make random rather than
deterministic decisions

* The main advantage is that no input can reliably
produce worst-case results because the algorithm runs
differently each time

* These algorithms are commonly used in situations
where no correct polynomial algorithm is known

Two types of randomized algorithms

* Las Vegas Algorithms — always produce the correct
solution

* Monte Carlo Algorithms — do not always return the
correct solution

* Las Vegas Algorithms are always preferred, but they are
often hard to come by

Scoring strings with a profile

Given a profile: P =

A|1/2]7/8 | 3/8 0 |1/8 0
C|1/8 0 1/2 | 5/8 | 3/8 0
T | 1/8 | 1/8 0 0 11/477/8
G| 1/4 0 1/8 | 3/8 | 1/4| 1/8

The probability of the consensus string:
Prob(aaacct|P) = 1/2 x 7/8 x 3/8 x 5/8 x 3/8 x 7/8 = .033646

Probability of a different string:
Prob(atacag|P) = 1/2x1/8 x3/8x5/8 x 1/8 x 1/8 = .001602

P-most probable I-mer

Define the P-most probable /~mer from a sequence as an
/-mer in that sequence which has the highest probability
of being created from the profile P

1/2 | 7/8 | 3/8| 0 [1/8] 0
1/8 | 0 1/2 | 5/8 |3/8| 0
1/8 | 1/8 0 0 1/4 | 7/8
G| 1/4 0 1/8 | 3/8 | 1/4| 1/8
Given a sequence = ctataaaccttacatc, find the P-
most probable I-mer

v
1
H| 0| >

13

5/11/2010

P-most probable /-mer

P-most probable 6-mer in the sequence is aaacct:

String, Highlighted in Red Calculations Proba|P)
ctataaaccttacat 1/8x1/8x3/8x0x1/8x0 0
ctataaaccttacat 1/2x7/8x0x0x1/8x0 0
ctataaaccttacat 1/2x1/8x3/8x0x1/8x0 0
ctataaaccttacat 1/8x7/8x3/8x0x3/8x0 0

ctataaaccttacat 1/2x7/8x3/8x5/8x3/8x7/8 .0336
ctataaaccttacat 1/2x7/8x1/2x5/8x1/4x7/8 0299
ctataaaccttacat 1/2x0x1/2x01/4x0 0
ctataaaccttacat 1/8x0x0x0x0x1/8x0 0
ctataaaccttacat 1/8x1/8x0x0x3/8x0 0
ctataaaccttacat 1/8x1/8x3/8x5/8x1/8x7/8 .0004

How Gibbs sampling works

1) Randomly choose starting positions
§ = (§},...,%,) and form the set of /~mers associated
with these starting positions

2) Randomly choose one of the 7 sequences

3) Create a profile P from the other #-1 sequences

4) For each position in the removed sequence, calculate
the probability that the /~mer starting at that position
was generated by P

5) Choose a new starting position for the removed
sequence at random based on the probabilities
calculated in step 4

Repeat steps 2-5 until there is no improvement

6

=

Gibbs sampling: an example

Input:
#=5 sequences, motif length /=38

2. AAAATTTACCTCGCAAGG
3. CCGTACTGTCAAGCGTGG
4. TGAGTAAACGACGTCCCA
5. TACTTAACACCCTGTCAA

Gibbs sampling: an example

1) Randomly choose starting positions,
§=(5,,55,539,55) in the 5 sequences:

=7 GTAAACAATATTTATAGC
s,=11 AAAATTTACCTTAGAAGG
$5=9 CCGTACTGTCAAGCGTGG
5,4 TGAGTAAACGACGTCCCA
s5=1 TACTTAACACCCTGTCAA

Gibbs sampling: an example

2) Choose one of the sequences at random:
Sequence 2: AAAATTTACCTTAGAAGG

=7 GTAAACAATATTTATAGC
5,=11 AAAATTTACCTTAGAAGG
§5=9 CCGTACTGTCAAGCGTGG
5,4 TGAGTAAACGACGTCCCA
s5=1 TACTTAACACCCTGTCAA

Gibbs sampling: an example

3) Create profile P from /mers in the remaining 4 sequences:

1 A A T A T T T A
3 T C A A G C G T
4 G T A A A C G A
5 T A C T T A A C
A 1/4 | 2/4 | 2/4 | 3/4 | 1/4 | 1/4 | 1/4 | 2/4
C 0 |1/4]1/4] O 0 |2/4] 0 | 1/4
T 2/4 | 1/4 | 1/4 | 1/4 | 2/4 | 1/4 | 1/4| 1/4

G 1/41 0 0 0 1/4| 0 |3/4] 0
Consensus | A A A T C G A

String

14

5/11/2010

Gibbs Sampling: an Example

4) Calculate the prob(a| P) for every possible 8-mer in the
removed sequence:

Strings Highlighted in Red prob(a| P)
AAAATTTACCTTAGAAGG .000732
AAAATTTACCTTAGAAGG .000122
AAAATTTACCTTAGAAGG 0
AAAATTTACCTTAGAAGG 0
AAAATTTACCTTAGAAGG 0
AAAATTTACCTTAGAAGG 0
AAAATTTACCTTAGAAGG 0
AAAATTTACCTTAGAAGG .000183
AAAATTTACCTT, AGG 0
AAAATTTACCTT! \GG 0
AAAATTTACCTTAGAAGG 0

Gibbs Sampling: an Example

5) Create a distribution of probabilities of /-mers
prob(a/[P), and randomly select a new starting
position based on this distribution

To create a proper distribution, divide each
probability prob(a|P) by the sum of probabilities
over all position:

Probability (Selecting Starting Position 1) = 0.706

Probability (Selecting Starting Position 2) =0.118

Probability (Selecting Starting Position 8) =0.176

Gibbs sampling: an example

Assume we select the substring with the highest
probability — then we are left with the following new
substrings and starting positions

5=7 GTAAACAATATTTATAGC
=1 AAAATTTACCTCGCAAGG
5=9 CCGTACTGTCAAGCGTGG
=5 TGAGTAATCGACGTCCCA
55=1 TACTTCACACCCTGTCAA

Gibbs sampling: an example

6) We iterate the procedure again with the above starting
positions until we cannot improve the score any more

Gibbs sampler in practice

* Gibbs sampling needs to be modified when applied to
samples with unequal distributions of nucleotides
(relative entropy approach)

* Gibbs sampling often converges to locally optimal
motifs rather than globally optimal motifs

* Needs to be run with many randomly chosen seeds to
achieve good results

15

