Computational Life Science Centre (

Lecture 3

Torgeir R. Hvidsten

Assistant professor in Bioinformatics

Umead Plant Science Center (UPSC)

5/11/2010

This lecture

* Introduction to Petl 3
— regular expressions
— parallelization
— running external programs and commands
* Object-oriented programming
* BioPerl
* Go through Lab 2

Examples of regular expression

if ($player =~ m/Kaka/) {

print ”Traitor!\n”;

if ($player =~ /[K|k]aka/) {

print “Still

}

my @genes

a traitor\n";

= split /\s+/, $line;

Regular expression elements

Symbol classes Quantifiers Logic Anchors

\s,\S Whitespace character * Zeroormore | Logical “or” A Beginning
\w, \W Word character + One or more (...) Grouping of string
\d,\D Digit ? Zero or one for $ End of string
[..] Character set {a,} aormore quantifiers \b Word-

[*...] Ssetcomplement {b} borless boundary

. Wildcard; any character {a,b} atobinclusive \B Non-word
\S, AL\ V4, ete. boundary

Quoted literals, meta-characters

o Jat/
e /laciou]/
e /[Maciou]/

o /\st/

o /\S+/

o /N\d+/

.« N
LVANW

. AW/

e/ this | that
o Jot/

o /bi24lt/

e/ b["t{2,4}

Perl regular expression

Match one or more a’s, ex: a,aa,aaa...
Match a vowel

Match a non-vowel

Match one or more whitespaces

Match one or more non-whitespaces
Match unsigned integer = /[0-9]+/

d+\.\d+/ # Match unsigned floats, ex: 3.1415

Zero or more word characters = /[a-zA-Z_0-9]*/

Zero or one non-word character = /[*a-zA-Z_0-9]?/
/ # Match #his or that = / th(is|at) /

Match cat, cut, ctt, c@t, c t, tic tac, ...

Match boot, beat, blast, b- t, bastat, bttttt
t/ # Match blast and beast but not brtttt

Perl regular expression

e /\bhunt/ # Match hunt, hunter, but not shunt or _hunt
o /\bscarch\B/ # Match searching, searches but not search
o AR/ # Match anything surrounded by []

o /O[A-Z)[a-z]*/ # Capitalized word at beginning of string

LIRVANYS # Match a period at the end of the string
o /\n/ # Match a new-line character
e /http: / # You need to quote literal slashes with backslashes

Basic comparision

Returns true if string $string contains substring "sought_text", false
otherwise:

$string =~ m/sought_text/;
Returns true if string $string contains substring "sought_text" at the very
beginning:

$string =~ m/"sought_text/;
¢ Returns true if the sought text is the very last text in the string:
$string =~ m/sought_text$/;

Returns true only if $string contains the sought text and nothing but the
sought text:

$string =~ m/"sought_text$/;
¢ Case insensitive comparision:
$string =~ m/"sought_text$/i;
¢ Note: m is optional
¢ =~ return true if $string matches the pattern, file |~ returns true if $string

does not match the pattern

5/11/2010

Back-references in Perl

* Besides for grouping (e.g. / th(is|at) /), parentheses save
the part they match for use later in the Perl code ($1 form).

* The value matched by the first set of parentheses is accessed

with $1, the value matching the second set in $2 and so on.
my $string = "Protein structure: lawa (P < 0.0001)";
$string =~ m/" % (\w{4}) \(P < \d\.\d+)\)$/;
print "$1 $2\n";

lawa 0.0001

Non-greedy versions of quantifiers

By default, regular expression match: 1) the left-most valid
substring, and 2) extend as far right as possible.

In Petl, you can change the second behavior with non-greedy
versions of quantifiers, e.g. +?7, 7, {2,4}?

my Stext = "milk and cookies"; Stext =~ /
Stext =~ /(\w+)/; print "$1\n";
print "$1\n"; mi
milk
my $buttons ="
Stext =~ /(mA)/; Sbuttons =~ /(<
print " print "$1\n";
milk and cooki top> <bottom
Sbuttons =~ /(<.3>)/;
print "$1\n";
<top>

Regex Substitutions:
s/l and slllg

* The substitution operator s/// is an incredibly powetful tool for
text transformation.

* The pattern between the first two delimiters is replaced by the
string between the last two.

* Use the g modified-form s///g to replace all matches in a line.

my $text = "milk and cookies";

$text =~
print "$text\n";
milk_and cookies

$text =~ s/\s/_/g;

print "$text\n";

milk_and_cookies

Object-oriented (O0) programming

* The key idea of OO programming is that all data is stored
and modified with special data structures called objects,

 and each kind of object can be accessed only by its defined
subroutines called methods.

* The user of an OO class is typically spared the effort of
directly manipulating data, and can use class methods for
this instead.

Understanding objects

* Object = Collection of data that logically belongs together.

— E.g, a “genome” object has parts (“attributes™) such as. ..
* Name of the species
¢ Its DNA sequence

Alist of genes, each associated with one or more transcripts

* Alist of start and end points for each exon
* ctc
* A type of object (e.g,, genome object) is called a c/ass
— All objects derive from a class

Understanding methods

* A Mezhod is just like a subroutine but associated specifically with a class;
they are not share. cept by “inheritance”

* Hach type of object has one or more methods that it can call, and only
those methods
— The only way to access the data in an object is via the methods defined for that class.
* E.g,agenome object might have ...
— A compare method, for whole-genome comparisons
— A list-gene-families method, for listing all gene families known to exist in a
genome
— A GC-percent function, for calculating %GC in specific areas of the genome,
orall of it.

5/11/2010

Understanding classes

* A Class is an object definition + a collection of
methods.

* A specific object (e.g. a genome object for H. sapiens) is
called an znstance of a class.

Example of class definition and inheritance

Porson Addrass
[Stroat
Phone Number 0.1 ivesat 1 | O
Ernail Addross - State

Postal Coda
Purchase Parking Pass Cou

Validate

Oulput As Label

Studint [Fealossor]

Student Number
Avarage Mark

is Elgibie To Enroll
Gel Seminars Taken

Cl: .
* 00 in Perl

The object constructor

sub new {
my Sself = {1; Program
Sself-> (NAME} = undef;
Sself> {AGE} = undef; use Person;
$self-> (PEERS) = [l

my Shim = Person->new

Shim->name("Jason");

e

>peers("Norbert", "Rhys", "Phineas");

if (@) { $self->{NAME} = shift } my @all_recs;
urn Sself-> (NAME}; 8 cecs. S H#s in array f
push @all_recs, $him; # save object in array for later
subage {

"4 is U

printf d years old.\n", $him->name, $him-

if (@) { Sclf> (AGE] = shif} print "His peers

,join(", ", Shim->
return $self->{AGE};

) printf "Last rec’s name is %s\n", Sall_recs|-1]->name;

st Jason is 23 years old.

Norbert, Rhys, Phincas

if (@) { @{ Sself-> {PEERS} } = @_}

0 @] Sself-> (PEERS) }; Last rec's name is Jason

His pec

BioPerl

BioPerl: >1,000 modules divided into several packages
— Free

— “Open Source” software

Bioperl Group Functions
bioper! (the core) Most of the main functionality of Bioperl.
bioperl-run Wrappers to a lot of external programs.

bioperl-ext Interaction with some alignment functions

and the Staden package.

bioperl-db Using bioperl with BioSQL and local
relational databases.

bioperl-microarray Microarray specific functions.

bioperl-gui Some preliminary work on a graphical user
interface to some Bioperl functions.

BioPerl

BioPerl provides object classes for various types of
bioinformatics analysis

— external programs (e.g. BLAST, FASTA, clustalw and
EMBOSS).

— vatious types of databases for storage and retrieval of data
— sequence analysis
— gene expression analysis

— etc

5/11/2010

Bio::Perl
module designed for beginners

¢ Bio:Perl is a module designed for beginners with easy access to a small number
of Bioperl's functionality

¢ Bio:Perl is not object-oriented

get_sequence - gets a sequence from standard, internet accessible databases
read_sequence - reads a sequence from a file

read_all_sequences - reads all sequences from a file

new_sequence - makes a Bioperl sequence just from a string

write_sequence - wites a single or an array of sequence to a file

translate - provides a translation of a sequence

translate_as_string - provides a translation of a sequence, returning back just the sequence as a string
blast_sequence - BLASTS a sequence against standard databases at NCBI

write_blast - writes a blast report out to a file

Bio::Perl example

use Bio:Perl;

the databases you can gt sequences from

are 'swiss', 'genbank’, 'genpept’, ‘embl', and 'refs

{
my Sseq = get_sequence('swiss,"ROAT_HUMAN");

write_sequence

BioPerl: the Sequence object

use BiozSeq; * use Bio:Seq; tells Perl to
o use a module on your
eq->new(-seq => !

RggRggRgeCegtt’ machine called
tgggggeggaggceeegtt’, s w

i => "#12345", Bio/Seq.pm".
-desc => Texample 17, ¢ The variable $seq_obj is a
Sequence object
sSseqobj=seq: e Arguments are passed to
the method new() using
”hash syntax”
display_id() and seq() are
methods that returns the id
and sequence as strings.

my $seq_obj = Bi

displ

“alphabet => "dna");

print $seq_obj->display_id(),

#12345: anaaigggese

uses the default database - nr in this case —
my Sblast_result = blast_sequence($seq); = T
write_blast(">roal.blast" Sblast_result;
BioPerl: The Seql/O object
use Bio:Seq; * The variable $seqio_objis a

use Bio::SeqlO; SeeglO object
* The “>” in the -file argument
indicates that we're going to

my $

eq_obj = BiozSeq->new(-seq
"aaaatgggegogogoocceegtt”,

"$12345", write to the file

~display_id

(3 epmmcm e - Wt

desc => "example 1", [
Bl [l uw en Fga e

-alphabet => "dna");

eqio_obj = Bio:SeqlO->new(-file =>

brmat 'fasta’);

>sequence.fasta’,

$seqio_obj->write_seq($seq_obj); |

| b, g i

BioPerl: The Seql/O object

¢ Changing format from
fasta to genbank in the
previous program
changes the output

 'This illustrates some of
the flexibility and power |
of using an IO object

over open o = i l|

BioPerl: The Seql/O object

use Bio:Se

* No “>” in the -file argument
indicates that we're going to
read from the file

$seqio_obj = Bic

"sequence.fasta", -format
* The method next_seq() is
Sseqio_obj->next_seq() { typical for BioPerl

while (my $seq_obj

print the sequence

print $seq_obj->seq(),"\n";

gttttaccat

5/11/2010

Retrieving a sequence from a database Retrieving sequences from a database

use BiozDB:SwissProt; * Bio:DB retrieves sequences from online use BiozDB:GenBank;
Jata use BiozDB::Query:GenBank;

* Other alternatives:

my $db_obj = BiozDBx:SwissProt->new;

- gﬂ"'l““*':i 5:»2?“‘[“““)*) my Squery =" DRGN] AND tof ase[TITL] AND 0:3000[SLEN]";
N . ~ . " — GenPept (BiozDB:GenPept) N . . . IR . ol |
my $seq_obj = $db_obj->get_Seq_by_acc("ROAI_HUMAN"); - I‘.MBI.P(BAO DB-EMBL) ¥ my $query_obj = BiozDB:Query:GenBank->new(-db > ‘nucleotide’, -query => Squery);

~ SeqHound (BiozDB:SeqHound)

my $gb_obj = Bio:DB:GenBank->new;

print Sseq_obj->seq(,"\n"; — Entrez Gene (BiozDB:EntrezGene)
~ RefSeq (BioxDBrRefSeq)
MSKSESPKEPEQLRKLFIGGLSFETTDESLRSHFEQWGTLT my $stream_obj = $gb_obj->get_Stream_by_query(Squery_obj);
DCVVMRDPNTKRSRGEGFVTYATVEEVDAAMNARPHKY
DGRVVEPKRAVSREDSQRPGAHLTVKKIFVGGIKEDTEL hile (v § R et e
while (my $seq_obj = Sstream_obj->next_seq) {

HHLRDYFEQYGKIEVIEIMIDRGSGKKRGFAFVIFDDHD N "
print $seq_obj->display_id, "\t", $seq_obj->length, "\n";

SVDKIVIQKYHTVNGHNCEVRKALSKQEMAS. RGR
SGSGNFOGORGGGEGONDNEGROGNFSGRGGECGSRG }
GGGYCOSCDOYNGEGNDGGYCOGOPOYSGOSRGYCS
GGQGYGNQGSGYGGSGSYDSYNNGGGRGFGGGSGSN . . .
GGGGSYNDEGNYNNQSSNEGPMKGGNEG GRSSGINGG * Use a stream object whenever you expect to retrieve a stream or series of
GGQYFAKPRNQGGYGGSSSSSSYGSGRRF sequence objects

¢ The stream object has a next_seq() method to retrieve one seqeunce at a time

* 0:3000[SLEN] limits hits to 3000 nucleotides

Running external programs/system Running external programs/system
commands commands

* Both Perl's exec() function and system() function execute a .
: * To capture the output of a system command, use the backtick operator:

system shell command) oo :
my $result = “dir bioperl.pl’;

e system() runs the command and returns when done. print "Sresult\n"s
system("mkdir TEST"); Volume in drive C is OS

print "Finished!\n"; Volume Serial Number is CA2C-F64B
Finished!
Directory of C:\Labs
¢ exec() runs the command and do not return. :

(M TR,
exec("mkdir THST"); 2009-05-12 14:20 732 biopetlpl
print "Finished!\n"; 1 File(s) 732 bytes

0 Dit(s) 848 bytes free

Running BLAST from Perl External programs in BioPerl

Bio:Tools:Run contains a large number of modules for running bioinformatics tools

Standard approach:

e BiosSeg;

use BiozTools:Run:StandAloneBlast;
system("blastall -d C:\Blast\db\yeast.nt -i sequence.txt >hits.txt”); my Sblst_obj = BiosTools:Run:StandAloncBlast->new(program => blase daabase => estnt)

my $seq_obj = BiosSeq->new(-id =>"test_query", -seq =>"TTTAAATATATTTTGAAGTATAGATTATATGTT")
open (H, "hits.txt"); my Sreport_obj = Sblast_obj->blastall§seq_obj

while(my $result = Sreport_obj->next_result) {

>)
Parse output whill(my $hit = Sresult->next_bit) {

while(my $Shsp = Shit->next_|

if (Ship->percent_idenity > 75) |

print "Hit: ", $hit->name, ”, Length: ", Shsp->length(total), ”, Percent_id: ",

close(H); Shsp->percent._identicy

Hit: gi[6323989 ref| NC_001146.1 |, Lengths 15, Percent_id: 101
Hit: gi| 6322623 |ref[NC_001143.1], Length: 17, Percent_id: 94.1176470588235

Parallelization

* Many bioinformatics problems can be divided into
smaller ones, which are then solved concutrently ("in
parallel").

— E.g finding paralogs in a huge genome. How?

¢ Parallelization has become more important in recent

years do to the commonness of multicore processors

5/11/2010

Parallelization in Perl

* A process is an instance of a computer program that is
being sequentially executed

e fork(): Create a duplicate process (child) of the current
process (parent)

* Each process is given a process ID by the operating
system

e fork() returns the child process ID to the parent on
success, 0 to the child on success and undef on failure
to fork

Parallelization in Perl

Acknowledgements

* Several slides were taken or re-worked from David
Ardell and Yannick Pouliot.

