5/11/2010

This lecture

* Go through Lab 1
¢ Introduction to Perl 2

Lecture 2 — hashes

— data structures

— subroutines and modules
Torgeir R. Hvidsten — references
Assistant professor in Bioinformatics
Umea Plant Science Center (UPSC)

Computational Life Science Centre (CLiC)

The three fundamental datatypes in Perl

“alongday

Arrays to look up addresses on the same street

@days /

$today |I E II

[v] [[on T rrue Twea a7 iEI i.
= !
/

Bush
Scalar Array Hash
¢ The ,fégi//f 3{3,@,0/0 must alWayS be used. @owners_on_easy: undef undef | "Flint" undef undef | "Vasa" | undef |"Adams"| ,,,
* You can use different datatypes with the same name in the same program. 0 1 2 3 4 5 6 7
15 Main St.
What about

multiple streets?

14 Easy St. ﬁ

42 Easy St.

o)

37 Main St. 32 Main St.

@ 1e

44 Main St.

-]

Owners Dogs

5/11/2010

Hashing

* Hash algorithms convert strings of any length into
reasonably small numbers; these numbers may be used
to index an array.

* The same string must always give the same hash, but
different strings can give the same hash. This is called
a collision and is handled by Perl in a way that is
invisible to you.

¢ Well-mixed hash-functions
Input

) oo —~{IDFCEER)

don't preserve the similarity
of their input. Hash functions
do not sort their input.

Ha: |
P it | SeEDARE

The rec fox e

Perl hashes

* Hashes hold multiple, unordered pairs of keys and values. Each is a scalar.
* Hashes are written with a leading %, like: %favorite_color
* Hashes can be initialized by lists of keys and values using the "Big Arrow"
=
my %favorite_color = (dave => 'green’, jim => 'blue', fred => "red');
¢ Hashes are indexed by their keys. Notice the curly brackets!
my %fc = (dave => 'green’, jim => 'blue', fred => "red');
print "Daves favorite color is $fc{dave}\n";
Daves favorite color is green
Each key in a hash must be nnigne! Reuse of a key causes reassignment:
) g Y g
my %fc = (dave => 'green’, dave => 'blue');
print "Daves fave color is $fc{dave}\n";

Daves favorite color is blue

Accessing Hashes and
Hash Slices

You access hashes by key in cutly brackets:
my $fave = “Fri”;

my ($today,Stomorrow,$favoritc)

ays {Mon},$days { Tuc} $days{$fave});

print "$tod

Stomorrow $favorite\n'

Monday Tuesday Friday

You can access a slice of a hash by a list:

Iterating over hashes

* The keys function is the most common way to iterate over a
hash:
my %fc = (dave => 'green’, jim => 'bluc', fred => 'red');
foreach (keys %fc) {
print "$_\'s favorite color is $fc{$_}\n";
1
i

jim's favorite color is blue

dave's favorite color is green

fred's favorite color is red

* The cach function is less common, returning key-value pairs
while (my (Skey, $value) = each %fc) {

print "$key\'s favorite color is $value\n";

my ($today,Stomorrow,$favorite s{"Mon","Tue" $fave}; }
print "$today Stomorrow $favorite
Monday Tuesday Friday
Iterating over hashes Existence and definedness
¢ Sorting by keys
my Y%fc = (dave => 'green’, jim => 'blue, fred => 'red); Use exists to check for the presence of a key in a hash, not defined

foreach (sort keys %fc) {

print "$_\'s favorite color is $fc{$_}\n";

worite color is green

avorite color is red
favorite color is blue
¢ Sorting by value:

= (dave

en', jim => bluc, fred => 'red');
foreach (sort {$fc{$a} cmp $fc{$
print "$_\'s favorite color is $fc{$_}

1
§

jim's f

orite color is blue

dave's favorite color is ¢

een
fred's favorite color is red

oddler"} = 3;
C

= undef;

ge{"Unborn"}

"
¥

Sage{"Phantasm

foreach my S$th "Toddler", "Unborn", "Phantasm", "Relic") {

print "$thi
print "Exists " if ¢ {Sthing};
print "Defined " if ¢ ge {Sthing};
print "\n";

H

Toddler: Exists Defined

Unborn: Exists Defined

Phantasm: Exists

Relic:

5/11/2010

Hashes as sets

¢ The uniqueness of keys in hashes make hashes useful models
of sets, and you can easily do set operations on hashes:

my %hashl = (a=>1,b=>1,d=>1);
my %hash2 = (a=>1,c=>1,d=>1);

my @common = ();
foreach (keys %hash1) {
push @common, $_ if exists $hash2{$_};
}
print "@common\n";
ad
¢ Write pseudo-code that solves the same problem with arrays!

Nested data structures

Scalars, arrays and hashes are not enough! We want to nest
data structures to create e.g tables (arrays of arrays).
Petl cannot do arrays of arrays, however, it can do arrays of

references to arrays:
my @players = ("Maldini","Giggs","Inzaghi");

my $ref = \@players;

print "$ref\n";
ARRAY (0x23affd4)

print "$ref->[2]\n";
Inzaghi

print "@$ref\n";
Maldini Giggs Inzaghi

References are scalars that point to an address in memory

Accessing values from references is called dereferencing.

References

* This:
my @players = ("Maldini","Giggs","Inzaghi");
my $ref = \@players;
is equivalent to this:
my $ref = ["Maldini","Giggs","Inzaghi"];
* And this:
my %oplayers = (Maldini => 1, Giggs => 1, Inzaghi => 1);
my $ref = \Yoplayers;
is equivalent to this
my $ref = {Maldini => 1, Giggs => 1, Inzaghi => 1};
* Sref is called an anonymous array or hash.

Reading a table from file

my @tab;

open (T, "tab.txt");

while (<T>) {
chomp;
my @row = split /\s/;
push @tab, \@row;

1

i

close (T);

print "$tab[0]->[1]\n";
print "$tab[0][1]\n";
print "@{S$tab[2]} \n";
7.0

7.0

5.0 6.0 9.0

[e oo

e 8 Yow jrsen Sgma
telp

DEFE &0 M .|

T

For Helg. press FL
SRR

Reading a table from file
stored as a hash of arrays

my Yratings;

open (T, "tab.txt");
plit /\s/, readline *T;

chomp;
my @row = split /\s/;
my $pls hift @row;
$ratings {Splayer} = \@row;

\

}

close (T);

print "$ratings {Maldini}->[1]\n";

print "Sratings {Maldini} 1

atings {Inzaghi} }\n"

For Helg. press FL

5.06.09.0

Reading a table from file
stored as a hash of hashes

{Maldini}-> {Ju

faldini} {Juvent

[e oo

[de [Y joes Ggme
tetp

DEFE &0 M .|
T 0

L T

For Helg. press FL
SRR

5/11/2010

Syntax summary

* Scalers:
$player
* Arrays:
(@players, Element: $players[1]
* Hashes:
Yoplayers, Value: $players {Maldini}

Syntax summary

¢ Array of arrays:
@/{$players[1]}, Element: $players[1][5]
¢ Hash of hashes:
Y% {S$players{Maldini} }, Value: $players{Maldini} {Udinese
¢ Hash of arrays:
@ {Splayers{Maldini} }, Element: $players {Maldini} [5]
¢ Array of hashes:

% {$players[1]}, Value: $players[1]{Udinese}

}

Subroutines and modules

* Modularizing code makes programming easier
— allows shorter and more easily maintainable code
— allows reuse of code

* Subroutines are functions

* Modules are collections of subroutines

Subroutines
print "Sm1\n"; * The default array @ has
= mean3.3, 18, 19, 45, 10 a similar function and
print "$m2\a"; use as the default scalar
sub mean { $_, but for subroutines
my @vector = @_; ° return returns a scalar or
my Soum = 0; an array

foreach (@vector) {
Ssum += $_;

my $mean = $sum/@vector

return $mean;

4
Module
Pass by value Pass by reference (file name: Statistics.pm) Program
my @vector = (1,4,3,8,9); my @vector = (1,4,3,8,9); package Statistics; use strict;
A use warnings;
multiply_by_n(\@vector, 2); multiply_by_n(\@vector, 2); sub mean
print "@vecto print "@vector\n";) p
a ¢ my @vector = @_; use Statistics;
sub multiply_by_n { sub multiply_by_n { my $sum = 0
o o my $m = Statisticszmean(1.2, 1.5, 1.7, 4.5, 6.7);
foreach (@vector) {)
my @vector = @{S_[0]}; my $vector = $_[0]; $sum += S print "$Sm\n";
my $n = S_[1]; my $n = S_[1]; } 312
my $mean = Ssum/@vector;
foreach (@vector) { foreach (@$vector) {)
N N ¢ . return $mean;
$_*=Sn; S_*=Sn; .
\ \ }
} }
H } 1
14389 2861618

5/11/2010

Acknowledgements

* Several slides were taken or re-worked from David
Atrdell and Yannick Pouliot.

