Lecture 2

Torgeir R. Hvidsten
Assistant professor in Bioinformatics
Umea Plant Science Center (UPSC)
Computational Life Science Centre (CLiC)

Tlni

c lacrti v
111D ITULUI

~
C

* Go through Lab 1

e Introduction to Per] 2
— hashes
— data structures
— subroutines and modules

— references

The three fundamental datatypes in Per]

Yelongday
@days ;"; Thursday
$today :
Friday
Mon Mon Tue Wed Thu i
Monday
Sunday
Wednesday
Tuesday |
Scalar Array Hash

e The si2/ls $,@,% must always be used.

* You can use different datatypes with the same name in the same program.

Arrays to look up addresses on the same street

\Vasa / \\Flint

dams

5
Andersson Pettersson
O\ 5\ O\
i 0 Hl Y

A A\ O\
Easy St. - 27

Persson

Bush Rheinfelt

@owners_on_easy: undef | undef | "Flint" | undef | undef | "Vasa" | undef |"Adams"| ...

0 1 2 3 4 5 6 7

15 Main St.

What about
multiple streets?

42 Easy St.

foa

37 Main St. 32 Main St.
44 Main St.

-]

Owners Dogs

Hashing

* Hash algorithms convert strings of any length into
reasonably small numbers; these numbers may be used
to index an array.

* The same string must always give the same hash, but
different strings can give the same hash. This is called
a collision and is handled by Perl in a way that is
invisible to you.

() ‘V]O]]_M;‘rf)/]]Af\ﬁ]/_f 1nn4—<:r\nn
VVUOILI-111IACUL 114091171 U11CUL1IU1L1D
' o Input Hash sum
don't preserve the similarity i

Fox —|-| DFCD3454 |

fungtien

of their input. Hash functions
o The red fox -
do not sort their input. runs across —'{ funetion |~ 52EDBT9E

The red fox

walks across HE'?h — 46042841
_tha o8 function

Perl hashes

Hashes hold multiple, unordered pairs of keys and values. Each is a scalar.

Hashes are written with a leading %, like: %favorite_color

Hashes can be initialized by lists of keys and values using the "Big Arrow"
=>:

my %favorite_color = (dave => 'green’, jim => 'blue’, fred => "red");
Hashes are indexed by their keys. Notice the curly brackets!

my %fc = (dave => 'green’, jim => 'blue', fred => 'red);

print "Daves favorite color is $fc{dave}\n";

Daves favorite color 1s green

Each key in a hash must be unigue! Reuse of a key causes reassignment:
my %fc = (dave => 'green’, dave => 'blue);

print "Daves fave color is $fc{dave}\n";

Daves favorite color 1s blue

HLLCDDIIIB 1doIICO dlllu
Hash Slices

* You access hashes by key in curly brackets:

my $fave = “Fri”;

e @ T Qe Lt N — A T AN T (T
llly Kﬂ)LUudy,‘ﬂ)LUlllUllUW,@ldVUllLC) — K@udyb 1LV1U11;,41>L14)/5 1
print "$today $tomorrow $favorite\n";

Monday Tuesday Friday

* You can access a slice of a hash by a list:
my ($today,$tomorrow,$favorite) = @days{"Mon","Tue",$fave};

print "$today $tomorrow $favorite\n";
Monday Tuesday Friday

V@ Ao QL .
ucy,paayspravey

v

.........
L

Thursday
Friday
Saturday
Monday
Sunday
Wednesday
", Tuesday

+FAavratrina ~var hachAac
LCidl ||5 UVCI 11do11CO

lf\"\
ILCl d

* The keys function is the most common way to iterate over a

hash:
my %fc = (dave => 'green’, jim => 'blue', fred => 'red);
foreach (keys %fc) {

print "$_\'s favorite color is $fc{$_}\n";

b

jim's favorite color is blue
dave's favorite color is green
fred's favorite color is red

* The each function is less common, returning key-value pairs

while (my ($key, $value) = each %fc) {
print "$key\'s favorite color is $value\n";

j

5

)

~t
D
-5
ct
oq
@)
<
o)
-5
=5
Q)
(_I')
M
(0p)

Sorting by keys
my %fc = (dave => 'green’, jim => 'blue', fred => 'red");
foreach (sort keys %fc) {
print "$_\'s favorite color is $fc{$_}\n";
;
dave's favorite color is green
fred's favorite color is red
jim's favorite color is blue

Sorting by value:

my 0%fc = /rlave =>" O‘l‘PPﬁ 1Hm => 'h]nP' fred = 'red')-

N Rt [PSR LS 4

foreach (sort {$fc{$a} cmp $fc{$b}} keys %fc) {
print "$_\'s favorite color is $fc{$_}\n";

b

jim's favorite color is blue

dave's favorite color is green

fred's favorite color is red

)

0
O
M
Q)

Y
n
)
Q.
Q.
(g)
=
(D
Q.
=
(D
()
n

Use exists to check for the presence of a key in a hash, not defined

my %oage;

$age{"Toddler"} = 3;
$age{"Unborn"} = 0;
$age{"Phantasm"} = undef;

foreach my $thing ("Toddlet", "Unborn", "Phantasm", "Relic") {
print "$thing: ";
print "Exists " if exists $age {$thing};
print "Defined " if defined $age {$thing};
print "\n";
b
Toddler: Exists Defined
Unborn: Exists Defined
Phantasm: Exists
Relic:

I

LlAae~ A A ot
11AdOIITO do SCL

c
S

* The uniqueness of keys in hashes make hashes useful models
of sets, and you can easily do set operations on hashes:

my %hashl = (a=>1,b=>1,d=>1);
my %hash2 = (a=>1,c=>1,d=>1);

my (@common = ();
foreach (keys %hash1) {
push @common, $_ if exists $hash2{$_};

b

print "(@common\n'";
ad

* Write pseudo-code that solves the same problem with arrays!

NAactaAd AAa¥yAa c+riirdrivrac
INTOSLCU Udld Slli CLUICO

Scalars, arrays and hashes are not enough! We want to nest
data structures to create e.g. tables (arrays of arrays).

Perl cannot do arrays of arrays, however, it can do arrays of
references to arrays:

my @players = ("Maldini","Giggs","Inzaghi");

my $ref = \@players;

References are scalars that point to an address in memory

print "$ref\n";

ARRAY (0x23affd4)

Accessing values from references is called dereferencing.
print "$ref->[2]\n";

Inzaghi

print "@$ref\n";
Maldini Giggs Inzaghi

)

—h
D
O
M
W

M
-

I
M

* This:
my @players = ("Maldini","Giggs","Inzaghi");
my $ref = \(@players;
is equivalent to this:
my $ref = ["Maldini","Giggs","Inzaghi"];
* And this:
my %oplayers = (Maldini => 1, Giggs => 1, Inzaghi => 1);
my $ref = \%players;
is equivalent to this
my $ref = {Maldini => 1, Giggs => 1, Inzaghi => 1};
* §ref is called an anonymous array or hash.

§

nCGU|||5d LAUVIC ITUIITT 11T
my (@tab;
open (T, "tab.txt"); oy o
while (<T>) { T
chomp; Help
my @row = split /\s/; DEd Sk M %ﬁ
push @tab, \(@row; g T A e
close (T);
print "$tab[0]->[1]\n";
print "$tab[0][1]\n";
print "@{$tab[2]} \n";
70 For Help, press F1

7.0
5.0 6.0 9.0

Reading a table from file
stored as a hash of arrays

my Yoratings;

open (T, "tab.txt");

my @teams = split /\s/, readline *T;

while (<T>) { File Edit View Insert Format
chomp; Help
my @row = split /\s/; e Ed && # Jéﬂ
my $player = shift @row; g 20 3 1A 15
$mdngs{$PlaY€r} - \@fOW; | Juventus Lecce Udinese

} Maldini 6.5 7.0 8.5

| . Pato 6.5 7.0 6.0
close (T); Inzaghi 5.0 6.0 9.0

Kaka 4.5 5.5 6.5
print "$ratings {Maldini}->[1]\n";
print "$ratings {Maldini} [1]\n";
print "@ {$ratings {Inzaghi} } \n";
7.0

7.0

5.06.09.0

For Help, press F1

Reading a table from file
stored as a hash of hashes

my %ratings;

open (T, "tab.txt");
my @teams = split /\s/, readline *T;
while (<T>) {

chomp;

my @row = split /\s/;

Eile Edit View Insert Format
Help

my $player = $row]|0]; - -
for (1..$#row) { Ded S A ¢ a
$ratings {$player} {$teams[$_]} = $row[$_]; g t»1+1+:2+-1+-3-1:4-1:5"1
} | Juventus Lecce Udinese
} Maldini 6.5 7.0 8.5

. Pato 6.5 7.0 6.0
close (T); :
InrFaghi 5.0 6.0 9.0
Kaka 4.3 5.5 6.5
print "$ratings {Maldini}->{Juventus} \n";

print "$ratings {Maldini} {Juventus}\n";

print "Inzaghi\n";

foreach (keys % {$ratings {Inzaghi} }) {
print " $_: $ratings {Inzaghi} {$_}\n";

For Help, press F1

}
6.5

6.5

Inzaghi
Udinese: 9.0
Juventus: 5.0
Lecce: 6.0

:
:

(@)
Q)

(Vg
=
0

* Scalers:
$player
* Arrays:
(@players, Element: $players|1]
* Hashes:
“%players, Value: $players{Maldini}

)

L]

:
:

w
<
Q)
(0p)
Q)

Array of arrays:

@{$players[1]}, Element: $players|1][5]

Hash of hashes:

% {$players{Maldini} }, Value: $players{Maldini} {Udinese}
Hash of arrays:

(@{$players{Maldini} }, Element: $players{Maldini}[5]
Array of hashes:

% {$players[1]}, Value: $players[1]{ Udinese}

mThhhvraritfinAac amA maAaAdAnllAac
Ml LITITO dAdIIU 1T1ITUUUICO

C ~
9 U

* Modularizing code makes programming easier
— allows shorter and more easily maintainable code

— allows reuse of code
e Subroutines are functions

e Modules are collections of subroutines

my $m1 = mean(1.2, 1.5, 1.7, 4.5, 6.7);

print "$m1\n";

my $m2 = mean(3.3, 1.8, 1.9, 4.5, 10);

print "$m2\n";

sub mean {

my @vector = @_;

my $sum = 0;
foreach (@vector) {
$sum +=§_;

}
my $mean = $sum/@vector;

return $mean;

3.12
4.3

N

o
-5

O

-

rm

'aYe
1o

The default array @_ has
a similar function and
use as the default scalar
$, but for subroutines

return returns a scalar or
an array

Pass by value
my (@vector = (1,4,3,8,9);

multiply_by_n(\@vector, 2);
print "@vector\n";

sub multiply_by_n {

my @vector = @{$_[0]};

my $n = §_[1];

foreach (@vector) {
$_*=3n;
§

14389

o
-3
O

N

)

+
D

Pass by reference
my @vector = (1,4,3,8,9);

multiply_by_n(\@vector, 2);
print "@vector\n";

sub multiply_by_n {

my $vector = $_[0];
my $n = §_[1];

foreach (@$vector) {
$_ = $n;
b
b
2861618

NNAA A
IVIUUUICO
Module
(file name: Statistics.pm) Pr ogram
package Statistics; use strict;
sub mean { use warnings;
my (@vector = (@_; use Statistics;
my $sum = 0, .
foreach (@vector) { my $m = Statistics:mean(1.2, 1.5, 1.7, 4.5, 6.7);
$sum +=9$_; print "$m\n";
b 3.12

my $mean = $sum/@vector;

return $mean;

IIIf'\ \AII

Af‘ 7\
ML 1UVV

F+
wn

g Im

e Several slides were taken or re-worked from David
Ardell and Yannick Pouliot.

