

A tutorial-based guide to the

ROSETTA system:

A Rough Set Toolkit for Analysis of Data

 by Torgeir R. Hvidsten
torgeir.r.hvidsten@umb.no

Edition 1: May, 2006

Edition 2: April, 2010

Edition 2.1 October 2013

Contents
Chapter 1 Introduction ___ 1

1.1 Machine learning in molecular biology ________________________________ 1

1.2 Rough set-based rule learning and the ROSETTA system ________________ 2

1.3 Readers guide __ 3

Chapter 2 Machine learning – an introduction __________________________ 5

2.1 Clustering methods __ 5

2.2 Bayes classification rule __ 6

2.3 Linear classifiers __ 6

2.4 Non-linear classifiers ___ 6

2.5 Context-dependent classifiers _______________________________________ 7

2.6 k-nearest neighbor classifiers __ 7

2.7 Decision trees ___ 7

2.8 Rule-based classifiers __ 7

2.9 Feature selection __ 8

2.10 Bootstrapping, bagging and boosting _________________________________ 8

2.11 Genetic algorithms __ 8

2.12 Time complexity __ 9

2.13 Classifier evaluation ___ 9

2.14 Performance measures and ROC analysis ____________________________ 10

2.15 Overfitting and classifier selection __________________________________ 11

Chapter 3 Rough set-based rule learning ______________________________ 13

3.1 The rough set theory __ 14

3.2 Reducts ___ 15

3.3 Decision rules __ 17

3.4 Classification __ 19

Chapter 4 The ROSETTA system ____________________________________ 21

Tutorial 1: Markers for the site of origin of metastatic Adenocarcinoma _________ 22

Chapter 5 Model evaluation in the ROSETTA system ___________________ 29

5.1 Cross validation __ 29

Tutorial 2: Cross validation __ 30

Chapter 6 Running the ROSETTA system command line ________________ 33

Tutorial 3: Command line cross validation __________________________________ 33

Chapter 7 Bioinformatics applications ________________________________ 35

Chapter 8 Advanced use of the ROSETTA system ______________________ 37

References ___ 39

- 1 -

Chapter 1 Introduction

1.1 Machine learning in molecular biology

Biology has traditionally focused on classifying living systems (hierarchically) into
increasingly smaller parts, and on studying these parts separately. This reductionistic
research approach has culminated in molecular biology, where single molecules in terms
of genes and gene products have been studied independently. With the publishing of the
first complete genome sequence in 1995 (the bacteria Haemophilus influenzae Rd
(Fleischmann, Adams et al. 1995)), the premises for this research have changed. A
number of genome sequencing projects are now providing researchers with the basic
instructions for the operation of entire organisms at an increasing speed (Bernal, Ear et al.
2001). Thus, DNA sequence data to some degree has facilitated a transition from
molecular genetics (i.e. the study of single genes) to genomics (i.e. the study of all genes in a
genome). Genomics has undergone a subsequent change from the mapping and
sequencing of genomes to the more complex task of understanding and determining, at a
genome-wide scale, gene and protein function, protein-protein interaction, protein-ligand
interactions, gene regulation, etc. This part of genomics has been coined functional genomics.

The development of functional genomics and high-throughput experimental
technologies created the need for computers to store and analyze large amounts of data.
As was the case for genomics, bioinformatics developed from being a discipline mainly
associated with sequence databases and sequence analysis to a computational science
using biological data to do e.g. functional genomics. Although different definitions and
views of bioinformatics exist, most researchers now use bioinformatics as a generic term
for both the storage and maintenance of biological data and the use of computational
data analysis methods and algorithms in functional genomics-related studies (Kanehisa
and Bork 2003). Bioinformatics thus involves a number of scientific fields including
mathematics, statistics, informatics, physics, chemistry, biology and medicine.

One commonly used methodology in bioinformatics and functional genomics is that of
machine learning. Machine learning addresses the problem of using computers to learn
general concepts from observations and knowledge, and has traditionally been developed
in two different schools. Statisticians develop learning methods based on the
mathematical frameworks of probability theory and statistics(Hastie, Tibshirani et al.
2001). Computer scientists often develop methods based on models of intelligent
systems (e.g. methods inspired by biology such as genetic algorithms and neural networks,
or methods based on logic such as rule learning, see the section on machine learning
below) (Mitchell 1997). The differences are primarily due to the fact that statisticians
have mostly been interested in pure data analysis, while computer scientist have also
been interested in building intelligent systems (e.g. robots with artificial intelligence (Russell
and Norvig 1995)). However, these different views are somewhat converging, forming
hybrids using elements from both statistics and computer science (e.g. pattern recognition
(Theodoridis and Koutroumbas 2003)).

Induction refers to generalizing from observations to broad concepts and differs from
deduction that refers to using general concepts (or theories) to infer specific hypotheses. In
molecular biology, induction is particularly relevant since the general theories have not
yet been worked out. For example, we know that a relationship exists between sequence

- 2 -

and structure, but this relationship is not well understood in terms of theories that may
be used to deduce good structural models for a particular protein sequence. However, we
do have examples of this relationship in terms of protein structures that are
experimentally solved. And machine learning methods are designed to induce models
based on examples, partially describing the assumed underlying functional relationship
between, in this case, sequence and structure. The most common application of such
models is that of prediction. However, given a model that can reliably predict protein
structure from sequence (in particular for unseen proteins, i.e. proteins that were not
available when the model was induced), this model obviously includes general concepts
that may also be used to understand the relationship. And this understanding may in time
lead to general theories. Consequently, machine learning may be used both for predictive
and for descriptive purposes. In molecular biology, and in particular in functional genomics,
a number of problems may be addressed using the concepts of examples and machine
learning. And successful application of such methods could lead to situations where
biological experiments are used to obtain information on a (representative) set of cases,
models are automatically induced from these examples and finally used to fill in the
missing knowledge for the remaining cases. This is the philosophy of structural genomics:
to solve the structure of at least one protein from each protein family experimentally and
to predict the structure of the remaining proteins using sequence similarity to proteins
with solved structures (Chandonia and Brenner 2006).

One of the major obstacles for effective use of machine learning in functional genomics
has been the lack of structure in the existing biological knowledge in terms of computer
readable databases and annotations. Text mining and automatic inference from free text
has therefore been one major part of bioinformatics and will continue to be so (Shatkay
and Feldman 2003). Thus, controlled vocabularies such as Gene Ontology (Ashburner,
Ball et al. 2000) for protein function has been important for machine learning approaches
to biology.

1.2 Rough set-based rule learning and the ROSETTA system

Rough set-based rule learning has proven to be a particularly successful approach in
bioinformatics. The approach condenses tabular data into IF-THEN rules. The IF-part
of each rule specifies a minimal pattern needed to discern observations with different
labels, e.g.

 IF Gene A is up-regulated AND Gene D is down-regulated

 THEN Tissue is healthy

 IF Transcription factor F bind AND Transcription factor V bind

 THEN Gene is co-regulated with Gene H

 IF Protein structure include motif D AND water-octanol coefficient of ligand > c

 THEN Binding affinity is high

Unlike most machine learning method, rule-based models are easily legible and may thus
be used to understand the underlying pattern in data in addition to be used for prediction.
The rough set framework is moreover particularly suited for handling noise and

- 3 -

ambiguous data by inducing approximate models in terms of models and rules that have
multiple outcomes.

The ROSETTA system is a software package that implements rough set-based rule
induction and include a number of additional features such as model validation. This
system is implemented with a user friendly graphical interface and is used by a large
community of scientists. Examples of applications in bioinformatics include:

 Cancer classification (Nørsett, Lægreid et al. 2004; Dennis, Hvidsten et al. 2005)

 Gene function prediction (Lægreid, Hvidsten et al. 2003)

 Gene regulation (Hvidsten, Wilczynski et al. 2005)

 Protein-ligand interaction modeling (Strömbergsson, Kryshtafovych et al. 2006;
Strömbergsson, Prusis et al. 2006)

See Chapter 7 for a complete list of applications.

1.3 Readers guide

Chapter 2 gives a general introduction to different machine learning method, putting the
current approach in context.

Chapter 3 gives an introduction to rough set-based rule induction using the example of
cancer classification.

Chapter 4 introduces the ROSETTA system and guides the user trough a step-by-step
tutorial using data from a published cancer classification study.

Chapter 5 continuous the tutorial of Chapter 4 and introduce more advanced features
such as cross validation, indiscernibility graphs and ROC analysis.

Chapter 6 shortly describes how the ROSETTA system can be run in command-line.

Chapter 7 gives a list of bioinformatics challenges were the ROSETTA system has been
applied.

Chapter 8 gives guidelines and further references for the advanced user.

- 5 -

Chapter 2 Machine learning – an introduction
Machine learning deals with the problem of using computers to learn general concepts
from training sets. A training set consists of a finite number of observations labeled or
annotated with class knowledge and is assumed to constitute a partial description of an
underlying functional relationship between the observations and the classes. In general,
the labels may be continuous values or even more complex structures. However, here we
will deal with the so called classification problem in which the training observations are
assumed to belong to a finite set of classes and we want to learn a model or classifier
capable of assigning an observation to one of these classes. Moreover, we will in general
assume two classes, since problems with more than two classes easily may be reduced to
a set of two-class problems.

Most machine learning methods represent the observations in terms of features. Each
observation is a set of measurements, one for each such feature, collectively constituting
a feature vector. Each observation may alternatively be viewed as a point in the
multidimensional space spanned by the features (i.e. the feature space). Of course, not all
classification problems are easily represented in this way, and choosing the right features
is a very important issue specific to each classification problem.

The machine learning methods mainly differ in how they represent the induced model. A
number of different designs exist with different advantages and disadvantages. A short
overview will be given in the next paragraphs (Mitchell 1997; Theodoridis and
Koutroumbas 2003).

2.1 Clustering methods

Methods for discovering natural, underlying classes from a set of observations are called
clustering or unsupervised learning. These methods are used when no class knowledge is
available. Consequently, methods utilizing labeled training sets are called supervised learning
reflecting the conceptual idea that a supervisor provides the labels to the learning system.

Clustering methods are divided into iterative methods and hierarchical methods. The k-
means algorithm is the most used iterative approach. It starts with a set of k randomly
chosen clusters of observations and iteratively (a) calculates the center of each cluster (i.e.
the centroid), (b) assigns each observation to the cluster defined by the closest centroid
and (c) returns to (a) until no more observations change clusters. The centroid of a
cluster and the closeness of two observations may easily be calculated in the feature
space by using e.g. the notion of distance. The k-means algorithm is fast and uses little
memory, but depends on the initial number and configuration of clusters. A well known
related method is that of self-organizing maps.

The most popular hierarchical clustering method is agglomerative hierarchical clustering. It
starts with the observations as single clusters and subsequently merges the two most
similar clusters until all observations reside within one big cluster. The distance between
two clusters may easily be calculated as the average distance between all pairs of
observations in the two clusters (average linkage) or the longest/shortest distance between
two observations in the two clusters (complete/single linkage). The result of the algorithm is
a tree of clusters (dendrogram) illuminating the similarity structures in the data set. Since

- 6 -

the method needs to compute and store the distance between all clusters, it is much
slower and uses much more memory than for example the k-means algorithm.

2.2 Bayes classification rule

The Bayes classification rule states that an observation should be assigned to the class with
the highest probability given the probability distribution of feature vectors in each class.
It may be proven that this rule results in an optimal error rate for classification (i.e.
fraction of training observations classified to the wrong class). However, the true
probability distribution is normally not known and hence needs to be estimated. The
difficulty of estimating the distributions from the training data is why other methods
exist and often perform better on real world problems.

There are two basic concepts for estimating probability distributions from data; parametric
and non-parametric methods. A parametric method assumes a distribution structure (e.g.
the normal distribution) and calculates its parameters from the data (e.g. average and
variance for the one-dimensional normal distribution). A non-parametric method is
based on constructing histograms from the data using for example Parzen windows or k
nearest neighbor density estimation, or simulation methods such as Monte Carlo
simulation or bootstrapping. In the one dimensional case, a histogram is constructed by
dividing the observations into bins and using the fraction of observations from each bin
as probability estimates. In the multidimensional case, however, bins are replaced by
hypercubes (e.g. Parzen windows). If N observations are needed from each bin to get good
probability estimates in the one dimensional case, Nn observations are needed in the n-
dimensional case. The dramatic increase in the number of observations needed to get
good estimates is often referred to as the “curse of dimensionality”.

2.3 Linear classifiers

Linear classifiers use a line (in two dimensions) or a hyperplane (in multiple dimensions)
to separate two classes of observations in feature space. These methods generally consist
of a cost function (e.g. error rate) and an optimization algorithm which iteratively
changes the parameters defining the hyperplane so that the cost function is minimized
over the training set.

2.4 Non-linear classifiers

If linear classifiers do not yield good results, the problem might be that the classes are
not linearly separable. Artificial neural networks (ANNs) are one popular method for
nonlinear problems and are based on networks of so-called perceptrons. A perceptron is a
simple computational unit that multiplies each input value with a weight and sums up the
products. In principle, the output from the perceptron is 0 if the sum is less than a
particular threshold and 1 otherwise. ANNs consist of layers of perceptrons, where the
output of each perceptron in one layer is connected to the input of each perceptron in
the next layer. The first layer (i.e. the input layer) consists of the same number of
perceptrons as the number of features and the last layer (i.e. the output layer) consists, in
the case of two classes, of one perceptron. The network is trained by iteratively inputting
the feature vectors to the first layer, calculating the output of each perceptron until the
last perceptron, comparing the output value with the true class label and updating the

- 7 -

weights for each perceptron by propagating the error backwards in the network (the
backpropagation algorithm). The training stops when the network is no longer improving its
classification.

Another popular method for nonlinear problems is (nonlinear) support vector machines
(SVMs). The SVMs first map the observations in the feature space into another space
using a kernel function. A maximally separating hyperplane is then constructed based on
the observations closest to the region that separates the two classes (the support vectors).
The performance of SVMs greatly relies on the choice of kernel function and to what
degree the kernel function is able to map the original classification problem into a linearly
separable one.

2.5 Context-dependent classifiers

A classifier is context dependent if the classification does not only depend on the feature
vector of one observation, but also on the feature vectors of the other observations and
on the dependencies between the classes. The task then becomes to simultaneously
assign a class sequence to a sequence of observations. This corresponds to the problem
of optimally aligning two sequences and therefore often occurs in DNA and amino acid
sequence analysis. One of the most common approaches to this problem is to assume
that the class of one observation only depends on the class of the previous observation.
This model is called a (first-order) Markov model and may be utilized to find the optimal
class sequence with a reasonable amount of computation (using e.g. dynamic
programming).

2.6 k-nearest neighbor classifiers

k-nearest neighbor approaches are based on classifying observations according to the class
labels of the k closest training observations in the feature space. This is probably the
simplest and most intuitive approach among all supervised methods, and is therefore
commonly used.

2.7 Decision trees

Decision trees and rule-based classifiers work on discrete (i.e. categorical) values or by
dividing the feature space into boxes (two dimensions) or hypercubes (multiple
dimensions), and by combining these into complex decision surfaces (i.e. surfaces in the
feature space separating the classes).

Decision trees classify observations by sorting them down a tree from the root node to
the leaf nodes, where the leaf nodes actually provide the classification. Each node
corresponds to a feature and redirects the observations to different child nodes
depending on their values for that feature. The tree is constructed top-down by
iteratively selecting the most class-separating feature as a node.

2.8 Rule-based classifiers

A related approach is that of learning a set of IF-THEN rules. Note that a decision tree
may be represented as a set of rules by translating each path in the tree (from root to leaf)
into a rule. A number of rule learners exist, and a more detailed description of rough set-
based rule learning will be given in section Chapter 3.

- 8 -

2.9 Feature selection

Feature selection refers to the problem of selecting the most important features so as to
reduce their number and at the same time retaining class separability allowing
classification. There are a number of reasons for doing feature selection. The obvious
reason relates to reducing the computational cost of inducing classifiers. However, more
important is the fact that the number of features translates directly into the number of
classifier parameters (e.g. the number of perceptron/weights in an artificial neural network).
And there is a fundamental principle in machine learning stating that the higher the ratio
between the numbers of training examples and the numbers of classifier parameters, the
better the induced classifier will perform on unseen observations (e.g. more observations
per dimension/feature gives better estimates of the probability distribution and hence
better performance using Bayes classification rule).

There are two broad approaches to feature selection. Filter methods select features
according to some evaluation criterion (e.g. correlation between the feature and the class
knowledge) and then induce a classifier based on these features. Wrapper methods use the
classifier itself as the evaluation criterion, and select the features that result in the best
classification performance.

Feature generation/extraction refers to constructing new features based on different
combinations of the old features. One example is rotating the feature space to possibly
obtain better class separation (e.g. using principle component analysis).

2.10 Bootstrapping, bagging and boosting

Bootstrapping (Efron and Tibshirani 1993) is a general re-sampling method that allows
statistical inference about a summary statistic (e.g. sample mean) from a data set without
knowing the sample distribution. The idea is to randomly draw with replacement a large
number of new data sets from the original data set and to calculate the summary statistic
from each such bootstrap sample. This provides several values for the summary statistic
which may be used to infer for example its variance or confidence interval.

Bagging (Breiman 1996) and boosting (Schapire 1990) are general methods for improving
the classification performance of any supervised method. Bagging (bootstrap aggregation)
uses bootstrapping to sample a large number of training sets from the original set of
examples. A model is induced from each such bootstrap sample and combined
(aggregated) during classification to obtain what is often a better classification
performance. Boosting is a similar method in which a weight is associated with each
training example. Models are iteratively induced from the training set according to these
weights and used to re-classify the examples. The weights are subsequently updated to
put more emphasis on incorrectly classified examples. If the applied learning method
cannot utilize the weights directly, bootstrap training sets may be constructed according
to the weights (i.e. each example is drawn with a probability corresponding to the weight).

2.11 Genetic algorithms

Genetic algorithms are used to solve search problems where solutions can be coded as
strings of 0’s and 1’s. An initial population of solutions is generated randomly and the
best solutions, according to some fitness function, are iteratively chosen to breed new

- 9 -

generations of solutions using genetic operators such as mutation and crossover.
Supervised learning involves a number of search problems that may easily be approached
with genetic algorithms. One example is feature selection, where each solution may be
interpreted as a mask for including or excluding features.

2.12 Time complexity

The big O notation is used to describe the worst case running time of an algorithm as a
function of its input size n. For example, the agglomerative hierarchical clustering
algorithm using single linkage has a time complexity of O(n2) (i.e. it computes the “all-
against-all” distance between observations in feature space). Hence, if 100 observations
take 10 seconds to cluster, then 10000 observations (which is a typical number of genes
in a microarray experiment) take 27.8 hours.

Algorithms that have a worst case running time of O(nk), where k is a constant, are so-
called polynomial-time algorithms. Problems for which no polynomial-time algorithm
has yet been discovered are said to belong to the class of NP-complete problems (NP
stands for non-polynomial). Such problems need to be approached with approximation
algorithms that find “good enough” solutions. For example, finding the optimal subset
of features (which is the goal of features selection discussed earlier) is NP-complete (i.e.
it requires searching trough all 2n-1 subsets and hence has a time complexity of O(2n)).
Feature selection may for example be approached with the wrapper method using a
genetic algorithm, or with the filter method using the correlation coefficient between
each feature and the class labels. The latter approach of reducing a multi-dimensional
problem into considering one dimension at a time (starting with the “best” dimension) is
often referred to as a greedy approach.

2.13 Classifier evaluation

A classifier is best evaluated by applying it to a set of unseen observations (i.e. a test set).
To obtain good estimates of the true classification performance it is important to use a
test set that is representative for the observations that the classifier is likely to encounter
in the future. In practice, it is common to divide the available labeled observations (i.e.
examples) randomly into a training set and a test set. The training set is used to induce a
classifier and the test set is used for estimating the classification performance. If few
observations are available, which is commonly the case, cross validation may get the most
out of the data in terms of performance estimation. k-fold cross validation refers to
dividing the examples into k equally sized subsets and using one subset for testing and
the rest for training. This is done repeatedly so that each subset acts as a test set once and
is part of the training set k-1 times. If k equals the number of examples, this method is
referred to as leave-one-out cross validation. To get good estimates of the classifier
performance it is important that information contained in the test set is not used in the
training. For example, feature selection should be done after splitting the available
examples into training and test sets. Doing feature selection on all available examples
implies using the class knowledge contained in future test sets to induce the classifier and
hence may lead to optimistic estimates of the true classification performance.

- 10 -

2.14 Performance measures and ROC analysis

A number of statistics exist for measuring the performance of a classifier on a test set.
Accuracy is simply the fraction of test observations classified to the correct class (error
rate = 1-accuracy). However, accuracy may provide insufficient information when the
classes contain different numbers of examples or when making one type of error is more
severe than making another.

Given two classes of positive and negative observations,

 false positives (FP) are negative observations classified to the positive class,

 false negatives (FN) are positive observations classified to the negative class,

 true positives (TP) are correctly classified positive observations and

 true negatives (TN) are correctly classified negative observations.

0

 se

ns
iti

vi
ty

 1

0 1-specificity 1

C

A
B

Figure 2 Example ROC curves.
Clearly, classifier A performs
better than both B and C.
However, classifier B only
performs better than C on low
threshold values, while C
performs better than B on high
threshold values. Nonetheless,
the AUC value of B is larger
than that of C.

Observation 1
Observation 2
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Observation n

Te
st

 se
t

Tr
ai

ni
ng

 se
t

Tr
ai

ni
ng

 se
t

Tr
ai

ni
ng

 se
t

Tr
ai

ni
ng

 se
t

Te
st

 se
t

Tr
ai

ni
ng

 se
t

Te
st

 se
t

Tr
ai

ni
ng

 se
t

Iteration 1 Iteration 3 Iteration 2

Fold 1

Fold 2

Fold 3

Figure 1 3-fold cross validation.

- 11 -

This information may be organized in a confusion matrix (Table 1).

Table 1 The confusion matrix

 Predicted
 Negatives Positives

A
ct

ua
l Negatives TN FP

Positives FN TP

Furthermore, sensitivity and specificity are the fractions of correctly classified positive
and negative observations, respectively (i.e. TP/(TP+FN) and TN/(TN+FP)). Many
classification methods do not perform classification directly, but rather output a value
representing the certainty that a test observation belongs to the positive class. Hence, we
are left with the problem of choosing a certainty threshold for selecting the positive class
as the classification. The receiver operating characteristic (ROC) curve may be
constructed by plotting sensitivity against specificity for the full range of possible
threshold values (see Figure 2). A number of classification applications are associated
with different costs for making a false positive classification compared to making a false
negative classification. The ROC curve graphically displays the threshold-independent
classification performance and provides a vehicle for controlling the number of false
positives and false negatives. Increasing the threshold value reduces the number of false
positives, but at the same time increases the number of false negatives. The area under the
ROC curve (AUC, (Hanley and McNeil 1982)) is often used to measure the threshold
independent classification performance using one single number (i.e. AUC equal to 1
signifies a perfect discrimination of the positive and negative examples, while AUC equal
to 0.5 signifies no discriminatory capability at all). The standard error of this measure is
calculated using the Hanley-McNeil formula (Hanley and McNeil 1982). However, one
should be aware that two ROC curves obtained using two competing classifiers may
intersect and hence indicate that one classifier performs better for one range of threshold
values, while the other performs better for another range of threshold values (see Figure
2). This information is of course lost when computing the AUC value.

2.15 Overfitting and classifier selection

A classifier is said to overfit the training set if there exists another classifier that performs
worse on the training set, but better on the test set. A general principle for handling
overfitting is related to the principle of Occam’s razor which states that the simplest model
fitting the data should be used. Hence, according to this principle we should for example
use the artificial neural network with the fewest perceptrons classifying the training set
satisfactorily. This principle also applies to choosing a classification method. One should
for example avoid using a nonlinear method on a linearly separable classification problem.
This is of course related to the principle that the ratio between the number of training
observations and the number of classifier parameters should be as large as possible (see
the discussion in the feature selection paragraph above).

- 13 -

Chapter 3 Rough set-based rule learning
Pawlak’s rough set theory (Pawlak 1982; Pawlak 1991; Komorowski, Pawlak et al. 1999) and
Boolean reasoning (Brown 1990) constitute a mathematical framework for inducing rules
from examples. It is this framework that is implemented in the ROSETTA system (Øhrn
1999; Komorowski, Øhrn et al. 2002).

This chapter will go through the core elements of this framework using examples.
Chapter 3 will then describe how this framework is implemented in the ROSETTA
system, and lead you through a step-by-step tutorial based on an extended version of the
example used here.

Table 2 An example decision table.

 Conditional attributes Decision
attribute

 Patients Gene1 Gene2 Gene3 Smoking Site of origin

O
bj

ec
ts

 (i
.e

. o
bs

er
va

tio
ns

)

P1 ↓ ↓ 0 Yes Lung

P2 0 0 0 Yes Lung
P3 0 ↓ ↑ No Colon

P4 0 0 0 Yes Lung
P5 0 ↓ 0 Yes Lung

P6 ↓ ↓ 0 Yes Lung
P7 ↓ ↑ 0 No Colon

P8 ↓ ↑ 0 No Colon
P9 0 ↑ 0 Yes Colon

P10 ↓ ↓ ↑ No Lung
P11 0 ↓ 0 Yes Lung

P12 0 ↓ 0 Yes Lung
P13 0 ↓ ↑ No Colon

P14 0 ↑ ↑ No Colon
P15 ↓ ↑ 0 No Colon

P16 ↓ ↓ ↑ No Colon
P17 0 ↓ 0 Yes Lung

P18 0 ↓ ↑ No Lung

- 14 -

3.1 The rough set theory

The rough set theory is a mathematical framework for analyzing tabular data. An information
system is a table with observations (called objects) as rows, features (called attributes) as
columns and discrete values as entries. The theory sees the data in terms of equivalence
classes, i.e. sets of objects that are indiscernible (indistinguishable) with respect to the
attributes. A rough set is a set of objects that cannot be uniquely represented by these
equivalence classes since the set only partly overlaps with at least one of them. It may
hence only be approximately described either by the equivalence classes completely
contained in the set (the lower approximation) or the equivalence classes with at least one
object in the set (the upper approximation) (see Figure 3).

The decision attribute is a unique attribute dividing the objects into decision classes and is
provided by domain experts or a separate source of information. The information system
with the decision attribute constitutes the training set or the so-called decision system (e.g.
Table 2). In particular, decision classes may be rough in which case the class knowledge
itself cannot be uniquely represented using the data in the information table.

Example 1

Table 2 is an example of a decision system. 18 cancer patients (i.e. objects) are divided into
two groups (i.e. decision classes) according to the location of the original tumor: lung (L) or
colon (C). Four properties (i.e. attributes) are recorded about the patients: the expression
level of three genes in the metastatic tumor compared to healthy tissue (0: unchanged, ↓
down-regulated, ↑ up-regulated) and whether the patient smokes or not.

Note for example that:

 Patients P5, P11, P12 and P17 are indiscernible with respect to the recorded
attributes and therefore constitute an equivalence class.

 Patients P3, P13 and P18 also constitute an equivalence class. However, these
patients belong to different decision classes. The set of all decision classes related to
an equivalence class (i.e. {C, L} in this case) is called the generalized decision of this
equivalence class.

Figure 3. The rough set (the ellipse) cannot be
uniquely defined by the equivalence classes
(the squares), and is defined by the lower ap-
proximation (dark grey) and the upper ap-
proximation (dark plus light grey).

- 15 -

The decision system may be summaries in terms of equivalence classes as follows:

Equivalence classes Gene1 Gene2 Gene3 Sm. Site of origin
(Generalized decision)

E1 = {P1,P6} ↓ ↓ 0 Yes {L}

E2 = {P2, P4} 0 0 0 Yes {L}

E3 = {P3,P13,P18} 0 ↓ ↑ No {C, L}
E4 = {P5, P11, P12, P17} 0 ↓ 0 Yes {L}

E5 = {P7, P8, P15} ↓ ↑ 0 No {C}
E6 = {P9} 0 ↑ 0 Yes {C}

E7 = {P10, P16} ↓ ↓ ↑ No {C, L}
E8 = {P14} 0 ↑ ↑ No {C}

The decision classes of lung and colon patients are rough sets because they cannot be
defined uniquely in term of the equivalence classes. They can, however, be defined by an
upper and lower approximation. Decision class L, for example, may be defined by those
equivalence classes where all patents have decision class L, that is, the lower approximation
(i.e. equivalence classes E1, E2 and E4), or by those equivalence classes that have at least
one patient with decision class L, that is, the upper approximation (i.e. E1, E2, E3, E4 and
E7):

Note that we in this example know which patients belong to which decision class. What
we really are interested in here is whether these classes can be recognized given the data
(i.e. the attributes).

3.2 Reducts

We will now see how Boolean reasoning can be used to reduce the data in a decision system.
A Boolean function (i.e. a function that evaluates to true or false), called the discernibility
function, is constructed for each object. This function is true for all attribute combinations
that discern this object from objects with a different decision. The function is simplified
and its minimal solutions interpreted as so-called reducts (Skowron and Rauszer 1992). A
reduct is a minimal set of attributes discerning one object from all objects with a
different decision. The reducts may be approximate (approximate reducts or α-reduct) in
which case a sufficiently large fraction α of objects are discerned (Skowron and Nguyen
1999).

Lung

Upper approximation:
 E1, E2, E3, E4, E7 Colon/Lung

E5, E6, E8 Colon

Lower approximation:
E1, E2, E4

- 16 -

Finding all reducts is an NP-complete problem (Skowron and Rauszer 1992). However,
there is a number of approximation algorithms, including greedy algorithms (Johnson
1974) and genetic algorithms (Vinterbo and Øhrn 2000), that may be used to search for
reducts. They are all based on constructing the discernibility function which has a time
complexity of O(n2).

Example 2

Again let us consider the equivalence class version of the decision system in Table 2:

Equivalence classes Gene1 Gene2 Gene3 Sm. Site of origin
(generalized decision)

E1 = {P1,P6} ↓ ↓ 0 Yes {L}

E2 = {P2, P4} 0 0 0 Yes {L}

E3 = {P3,P13,P18} 0 ↓ ↑ No {C, L}
E4 = {P5, P11, P12, P17} 0 ↓ 0 Yes {L}

E5 = {P7, P8, P15} ↓ ↑ 0 No {C}
E6 = {P9} 0 ↑ 0 Yes {C}

E7 = {P10, P16} ↓ ↓ ↑ No {C, L}
E8 = {P14} 0 ↑ ↑ No {C}

We may now construct the discernibility function by first building a discernibility matrix
specifying which attributes that discerns the different equivalence classes:

 E1 E2 E3 E4 E5 E6 E7 E8
E1 ∅

E2 ∅ ∅

E3 G1, G3, S G2, G3, S ∅
E4 ∅ ∅ G3, S ∅
E5 G2, S G1, G2, S G1, G2, G3 G1, G2, S ∅
E6 G1, G2 G2 G2, G3, S G2 ∅ ∅
E7 G3, S G1, G2, G3, S ∅ G1, G3, S G2, G3 G1, G2, G3, S ∅
E8 G1, G2, G3, S G2, G3, S G2 G2, G3, S ∅ ∅ G1, G2 ∅

Note for example, that:

 The entry E1-E1 is empty (∅) because, obviously, the equivalence classes E1
cannot be discerned from itself.

 The entry E1-E2 is also empty because we do not bother to discern equivalence
classes with the same generalized decision.

 The entry E1-E3 has a different generalized decision and includes attributes
Gene1 (G1), Gene3 (G3) and Smoking (S) for which equivalence classes E1 and E3
have different values, e. g. G1 is down-regulated for E1 while it is unchanged for E4.

 The discernibility matrix is symmetric, for example, entries E1-E4 and E4-E1 are
identical and thus we only need to consider one half of the matrix.

- 17 -

The minimal information needed to discern E1 from all other objects with different
decision may now be represented in the form of a discernibility function:

fE1 (G1, G2, G3, S) =

(G1 OR G3 OR S) AND (G2 OR S) AND (G1 OR G2) AND (G3 OR S) AND (G1
OR G2 OR G3 OR S)

In order for this function to be true, at least one of the attributes from each E1-related
entry (blue) in the discernibility matrix need to be included. Thus, the function can be
simplified to:

fE1 (G1, G2, G3, S) = (G1 AND S) OR (G1 AND S) OR (G2 AND S)

which reflects the three reducts: {G2, G3}, {G1, S}and {G2, S}. Note that each reduct
contains the minimal set of attributes that are represented in all the ANDs in the
discernibility function. Thus, they constitute the minimal information needed to discern
equivalence class E1 from other patients not in decision class L.

Note that {S} is a possible approximate reduct or α-reduct. It would discern E1 from all
equivalence classes except E6, i.e. it would discern 16 of 17 objects (α = 0.94).
Approximate reducts are often applied in order to make the reducts more robust and less
susceptible to noise or errors in the data.

Note also that:

 We could build a discernibility function from all entries in the discernibility
matrix. The corresponding reduct would discern all objects from all other object with
different generalized decision. Such reducts are called full-reducts, while the reducts
found in the example above are called object-related reducts. The latter is most commonly
used for inducing rule models.

 We could also choose to fill in entries in the discernibility matrix even if the
generalized decisions are the same. This would result in reducts that discern objects
even from the same decision classes. The matrix we constructed above is built modulo
decision, which is the common choice when inducing rule models.

 Finally, we filled in all attributes in the matrix that had different attribute values
for the two equivalence classes in question. Of course, more complex definitions of
discernibility could be used, including definition that would make the discernibility
matrix non-symmetric. For example, we could decide that we only want to base our
decisions on whether genes are up-regulated or down-regulated: unchanged
expression cannot discern two objects. In this case patient P1, for example, would be
discernible from P2, but P2 would not be discernible from P1 (i.e. the discernibility
matrix would be non-symmetric). Such definitions of discernibility are often used
when the decision system includes missing values (e. g. the expression level of a gene
could not be determined).

3.3 Decision rules

IF-THEN rules are constructed by reading of the values for each attribute in the reduct
(IF-part called antecedent or premise, e.g. a1=v1 AND a2=v2, where a1 and a2 are attributes in

- 18 -

a reduct and v1 and v2 are attribute values) and associating them with one or more
decision classes (THEN-part called consequent, e.g. d=d1 OR d=d2, where d is the decision
attribute and d1 and d2 are decision classes). The THEN-part will only include one
decision class unless the decision class is rough with respect to the attributes in the
reduct. Rules are evaluated according to how general they are (i.e. coverage: the fraction of
objects from the decision class in the THEN-part that also matches the IF-part) and how
specific they are (i.e. accuracy: the fraction of objects matching the IF-part that are from
the decision class of the THEN-part) (both coverage and accuracy are computed for
each decision class in the THEN-part).

Example 3

Lets consider the reducts {G2, G3}, {G1, S} and {G2, S} discerning equivalence class E1 in
Example 2. These reducts would generate the following rules by reading of the attribute
values for equivalence class E1:

 Support Accuracy Coverage
R1 IF Gene2(↓) AND Gene3(0) THEN Site (Lung) 6 1.0 (6/6) 0.60 (6/10)
R2 IF Gene1(↓) AND Smoking(Yes) THEN Site (Lung) 2 1.0 (2/2) 0.20 (2/10)
R3 IF Gene2(↓) AND Smoking(Yes) THEN Site (Lung) 6 1.0 (6/6) 0.60 (6/10)

Note, for example, that:

 The first rule, R1, matches 6 objects in Table 2 and thus its support is 6 (i.e. patients
P1, P5, P6, P11, P12 and P17).

 Of all the 6 objects that match the IF-part of rule R1, all 6 are also members of the
decision class in the THEN-part of rule R1 (i.e. decision class Lung). Thus the accuracy of
the rule is 1.0.

 Of all the 10 objects matching the THEN-part of rule R1 (i.e. all objects from
decision class Lung in Table 2), 6 matches the IF part of rule R1. Thus the coverage is
0.60, i.e. the rule describes 60% of the objects in the decision class Lung.

 We want accurate and general rules (high accuracy and high coverage), thus R1 may
be considered a better rule than R2.

Moreover, the approximate reduct {S} from Example 2 would generate the following rule:

IF Smoking(Yes) THEN Site (Lung) OR Site (Colon)

This rule have two values for support/accuracy/coverage: one for each decision class in the
THEN-part:

 Lung Colon
Support 8 1
Accuracy 0.89 (8/9) 0.11 (1/9)
Coverage 0.80 (8/10) 0.13 (1/8)

- 19 -

By repeating the procedure in Example 2 for all equivalence classes, the following additional
rules would result (support, accuracy and coverage is given for lung first and colon second
when applicable):

 Support Accuracy Coverage
R4 IF Gene2(0) THEN Site (Lung) 2 1.0 0.20

R5 IF Gene2(↓) AND Gene3(↑) THEN Site (Lung) OR
Site (Colon) 2, 3 0.4, 0.6 0.20, 0.38

R6 IF Gene2(↓) AND Smoking(No) THEN Site (Lung)
OR Site (Colon) 2, 3 0.4, 0.6 0.20, 0.38

R7 IF Gene3(0) AND Smoking(No) THEN Site (Colon) 3 1.0 0.38
R8 IF Gene2(↑) THEN Site (Colon) 5 1.0 0.60

R9 IF Gene1(↓) AND Gene3(↑) THEN Site (Lung) OR
Site (Colon) 1, 1 0.5, 0.5 0.10, 0.13

Rules R1-9 thus constitutes our rule model and is a general description of the decision
system in Table 2. This model have two main proposes:

 Predictive purpose: It can be used to predict the site of origin for new patients (see
section 3.4).

 Descriptive purpose: It can be used to better understand what separates patients with
different sites of origin. For example, lung cancer is strongly linked to smoking (especially
apparent from the approximate reduct), but there is also strong patterns in the expression
levels (especially that defined by rule R1). The strongest pattern for colon cancer is the
up-regulation of Gene 2 (i.e. rule R8).

3.4 Classification

Objects are classified by first identifying the rules with a matching IF-part and then by
letting these rules cast votes to the decision classes in the corresponding THEN-parts.
The number of votes cast by each rule corresponded to the support of the rules (i.e. the
number of objects matching both the IF- and THEN-part of the rule), giving preference
to rules that are general.

When performing ROC analysis, the decision class(es) obtaining a fraction of votes
higher than the voting thresholds from the ROC analysis are considered predictions (see
section 2.14). If no particular costs are associated with making false positive
classifications over false negative classifications, the threshold corresponding to the point
on the ROC curve balancing sensitivity and specificity equally is often chosen (i.e. the
point closest to (0,1) or, equivalently, the “northwestern-most” point on the ROC curve).

Example 4

Lets assume that we have two new patients with the following measurement values:

Patient Gene1 Gene2 Gene3 Smoking Site of
origin

P19 ↓ ↓ ↓ Yes Unknown
P20 ↓ ↑ ↑ Yes Unknown

Patient P19 would match rules R2 and R3 in Example 3, casting 2 and 6 votes to
decision class Lung, respectively. Thus 8 out of 8 votes would say that lung is the site of
origin.

- 20 -

Patient P20 would match rules R2, R8 and R9. R2 casts 2 votes for Lung, R8 casts 5
votes for Colon, while R9 casts one vote for Lung and one for Colon. Thus Lung
receives 3 out of 9 votes (0.33), while Colon receives 6 out of 9 votes (0.66).

If we consider making a wrong classification to decision class L equally costly as making
a wrong classification to decision class C, we would use a decision threshold equal to 0.5
for both classes (this corresponds to choosing the class with the highest fraction of
cotes). Thus we would predict lung as the site of origin for patient P19 and colon for
patient P20.

However, we might consider a wrong classification to decision class C much more costly
than a wrong classification to L. Let us assume that the rule system is used to decide
whether to look for the original tumor in the lung first or in the colon first. Lets further
assume that the latter is considerable more expensive. Thus, we decide that the decision
threshold for Colon is 0.7 and for Lung 0.3. In this case, both patients P18 and P19
would be predicted to class L.

- 21 -

Chapter 4 The ROSETTA system
The ROSETTA system is a software package for inducing rough-set based rule models
as described in Chapter 2. In addition to the core features described there, the system
includes a large number of algorithms for discretization, reduct computation, rule
pruning and classifier evaluation. All these features are facilitated by a graphical user
interface available for Windows. However, the system also includes a command line
version that has been compiled on many different platforms, including Unix and Linux.

The system has two main components: structures and algorithms. Structures are different
data sets such as decision systems, reducts, rules, etc. Algorithms are applied to structures
to produce new structures. For example, algorithms for reduct computation are applied
to decision tables to produce reducts:

In addition, the ROSETTA system includes a number of meta-algorithms that consists
of an ordered assembly of several algorithms to accomplish commonly used tasks. This
includes an algorithm for doing cross validation (described in detail in Chapter 5) and a
number of algorithms specifically written for common bioinformatics tasks (described in
a number of chapters starting with Chapter 6).

In this chapter, tutorial 1 gives a step-by-step instruction to how the ROSETTA system
can be used to induce rule models and how rule models can be used for prediction. The
tutorial is based on a published study (Dennis, Hvidsten et al. 2005), and the data is the
real world version of the toy example used to illustrate the rough set-based rule learning
framework in Chapter 3.

Structure X

E.g.

Algorithm Z
Structure Y

Decision table

Reducer

Reducts

- 22 -

TUTORIAL 1: MARKERS FOR THE SITE OF ORIGIN OF METASTATIC

ADENOCARCINOMA
Background: Most cancers present at their site of origin – that is, it is the primary tumor
which causes symptoms in the patient who then attends their doctor. Some 10-15% of
cancers, however, present as metastases in solid organs, body cavities or lymph nodes.
Most of these secondary tumors are adenocarcinomas, for which the seven commonest
primary sites are breast, colon, lung, ovary, pancreas, prostate and stomach. The
prognosis and therapy of patients with metastatic adenocarcinoma are linked to the site
of origin, so these sites, and others, are investigated by clinical examination, radiology
and serum tumor markers. If no primary cancer is found, then the metastatic deposit is
usually biopsied, to confirm the diagnosis of malignancy and to subtype the tumor.
Unfortunately, adenocarcinomas from different locations have similar microscopic
appearances, which confound identification of the primary site. Patients with metastatic
adenocarcinoma of unknown origin make up around 3% of all cancer patients and this
category is among the ten most common malignancies.

Data: The expression patterns of 27 markers were assessed in a series of 261
adenocarcinomas. 12 markers were scored as either present or absent (+ or -). The
remaining markers showed variation in intensity between tumors and were scored as
weak, intermediate or strong (0, 1, 2 or 3). Furthermore, Undefined indicates cores which
are missing and therefore cannot be scored.

Aim: To predict the site of origin using the expression profile of the 27 candidate
markers taken from the secondary tumor.

How?

To import the dataset (i.e. the decision table), select Open... from the main File menu.
Locate the file adenoca_markers.txt on your disk drive, select Plain format and press
OK twice. The decision table will now be placed immediately below the root of the
Structures node in the project tree:

Note:

- 23 -

 Plain format refers to a decision table that is stored in a plain text file.

 Other formats, such as Excel sheets can be imported using the Decision table
importer (ODBC) option rather than the Plain format option.

 You can change the name of structures in the project tree (as done in the
screenshot above) by selecting the structure, then clicking the structure once and
typing the new name. Note: Be sure to update the structure names as shown in
the screenshots throughout this tutorial. The default names given by ROSETTA
are not the names shown in the screen shots.

By double-clicking the decision table in the project tree, or, equivalently, right-clicking
the decision table and selecting View…, you can browse the data:

By using the scroll-bar at the bottom of the window you can view all the attributes. Note
that the last attribute is automatically interpreted as the decision attributes and is in bold.

 Obiouslty, the two first attribute (ID and type) cannot be used to induce a general rule
model. These attribute can be masked by right-clicking the attribute names and selecting
Masking…, Disable and then OK. These attributes will now be grey to indicate that
they will not take part in any further analysis:

- 24 -

You can close the window by clicking the red cross in the upper right corner.

We now want to do a simple analysis in which we induce a rule model on one part of the
data (training set) and use this model to classify the objects in the remaining data (test set).

Right-click the decision table, choose Other and select Split in two…:

The Split fraction is the fraction of data that should be part of the training set. The
RNG seed is the input to the random number generator that produces the random slit
of the data: the same seed will produce the same split, and thus this number is used for
reproducibility. Leave the values unchanged and press OK:

To induce rules, right-click the training set, choose Reduce and select Johnson’s
algorithm… This algorithm is very fast because it uses a greedy search to find one
reduct (or one reduct per object in the case of object-related reducts):

- 25 -

Select Object related as above and make sure that Approximate solutions is turn off
under Advanced parameters … Press OK twice. Reduct and Rule structures will now
appear in the project tree under the training set (Click + to expand the tree if necessary).
Double-click the rules:

In the screen shot above, the rules are sorted by RHS Coverage (i.e. RHS is Right Hand
Side or THEN part of the rule, LHS is Left Hand Side or IF-part of the rule). To sort the
rule, right-click the LHS Coverage tag and Select Sort. For each rule, the following
statistics are given:

 LHS support: Number of objects in the training set matching the IF-part.

- 26 -

 RHS support: Number of objects in the training set matching the IF-part and
the THEN-part (LHS and RHS support is the same unless the THEN-part contains
several decisions).

 RHS Accuracy: RHS support divided by LHS support (Accuracy is 1.0 unless
the THEN-part contains several decisions).

 LHS Coverage: LHS support divided by the number of objects in the training
set.

 RHS Coverage: RHS Support divided by the number of objects in the decision
class listed in the THEN part of the rule.

 RHS Stability: Not applicable for the Johnson algorithm (always 1.0).

 LHS Length: Number of attributes in the IF-part of the rule.

 RHS Length: Number of decisions in the THEN-part of the rule.

The rules can now be used to classify the objects in the test set. Right-click the test set
and select Classify…:

Select Standard voting as the classification method and make sure that Rules 1 is
selected under Parameters… Also, choose Pa as your fallback classification. If no rules
match an object, this class will be used. Press OK.

A new structure (a confusion matrix) will appear below the test set in the project tree.
Double-click this structure to see the classification results:

- 27 -

The confusion matrix shows the overall accuracy (i.e. 0.715385), as well as the sensitivity
and accuracy for each class. For example, the Ov decision class has a sensitivity of 0.54
(i.e. of 7+5+1 = 13 objects actually belonging to Ov, 7 was correctly classified as Ov:
7/13 = 0.54) and an accuracy of 0.88 (i.e. of 7+1 = 8 objects predicted to Ov, 7 were
actually belonging to this class: 7/8 = 0.88).

You can save the whole project tree by selecting Save as… in the main File menu, and
specifying the project name, e.g. adenoca_markers.ros.

The ROSETTA system includes a large number of other useful features not discussed
here. For example:

 By right-clicking a structure and selecting Statistics… you can find useful
information such as the class distribution in your training set:

 By right-clicking a structure and selecting Annotations… you can see which

- 28 -

algorithm and parameters you used to compute reducts:

 By right-clicking a structure you can also perform a number of other operations
such as exporting the structure in various file formats, removing the structure from
the project tree, duplicating the structure in the project tree (e.g. you might want to
remove rules to see the effect on classification, while still holding on to the original
rule set), etc.

- 29 -

Chapter 5 Model evaluation in the ROSETTA system
Model evaluation is essential in supervised learning. In Tutorial 1 in Chapter 4 we simply
divided our data set into a training set and a test set and used the model induced from
the training set to predict the outcome (decision) of the objects in the test set. However,
dividing the data differently would most likely result in different performance as
measured in e.g. accuracy. Thus we want to test our model on several test sets in order to
estimate the variance of our performance measure. Also, there exists several different
performance measures. In addition to the common accuracy measure, ROSETTA also
supports Receiver Operating Characteristic (ROC) analysis (see section 2.14).

5.1 Cross validation

Cross validation is a technique that provides several test sets while fully utilizing all the
available data for training and testing (see section 2.13 and Figure 1). The data is divided
into k approximately equally sized subsets (i.e. folds). Each fold is then consecutively
used as a test set while the remaining k-1 folds are used as a training set. Thus each
object appears in the test set once and in the training set k-1 times. The prediction
performance is recorded for each test set and variance is computed.

The Rosetta system provides a meta-algorithm for performing cross validation. It takes
as input the specific algorithms that the user want to execute in each cross validation
iteration, and then performs the cross validation automatically. Tutorial 2 gives a step-by-
step introduction using the data set from Tutorial 1.

- 30 -

TUTORIAL 2: CROSS VALIDATION
Background: See Tutorial 1.

Aim: To obtained reliable estimates of the prediction performance of the ROSETTA
system applied to the metastatic adenocarcinoma data in Tutorial 1.

How?

Load the saved project from Tutorial 1 (or if this is not available, simply load the
adenoca_markers.txt file).

Right-click the data set, choose Execute and select Pipeline script with CV…:

The Number of CV iterations specifies the number of folds in the cross validation. The
Seed to RNG option ensures reproducibility (i.e. the same RNG seed produce the same
split into e.g. five folds).

Select Command and log files …:

- 31 -

The Command file is a text file that is expected to include a pipeline of algorithms to be
executed in each iteration of the cross validation. The Log file is simply the file in which
ROSETTA will output the results of the cross validation.

For example, the following command file will perform the exact same training and
classification as was done in Tutorial 1:

JohnsonReducer

{DISCERNIBILITY=Object; MODULO.DECISION=T; BRT=F;
SELECTION=All; IDG=F; PRECOMPUTE=F; APPROXIMATE=F}

BatchClassifier

{CLASSIFIER=StandardVoter; FRACTION=0.0; IDG=F; SPECIFIC=F;
VOTING=Support; NORMALIZATION=Firing; FALLBACK=T;
FALLBACK.CLASS=Pa; FALLBACK.CERTAINTY=1.0; MULTIPLE=Best;
LOG=F; CALIBRATION=F; ROC=F}

The first algorithm, the JohnsonReducer, searches for reducts and produces rules. It
will be applied to each training set in each cross validation iteration. The second
algorithm, the BatchClassifier, will use the rules from the JohnsonReducer algorithm
to classify the test set in that iteration.

Note:

1. The script could potentially include many algorithms for the training set, the test
set or both. These would be executed in sequence. The number of algorithms to
be used on the trainings set is specified by the Length of training pipeline in
the main cross validation window. The remaining algorithms will be used on the
test set. In this example, the Length of training pipeline is 1.

2. The name and the parameters of the different algorithms may be obtained by
first running the algorithm in the ROSETTA system, then right-clicking the
resulting structure and selecting Annotations… For example, the annotations
from the reduct structure in Tutorial 1 include the parameters for the
JohnsonReducer shown above (see the last screenshot of Tutorial 1) and the
confusion matrix include the parameters for the BatchClassifier.

Save the commands in a text file using a text editor and specify a log file:

Press OK, set the Length of training pipeline to 1 and the Number of CV iterations
to 10:

- 32 -

Press OK. The cross validation log-file will now appear in your project file. Double-click
to open it:

The log-file includes a confusion matrix for each test set in each iteration of the cross
validation. At the end of the file, the average accuracy and its standard deviation is given.

- 33 -

Chapter 6 Running the ROSETTA system command line
The ROSETTA system can be run command line with the syntax:

clrosetta algorithm parameters [filename]

TUTORIAL 3: COMMAND LINE CROSS VALIDATION
Tutorial 2 can be run command line with the following command:

Clrosetta CVSerialExecutor “INVERT=F; NUMBER=5; SEED=0; LENGTH=1;
FILENAME.COMMANDS= cv_script.txt; FILENAME.LOG=log.txt”
adenoca_markers.ros

where cv_script.txt is the command line from Tutorial 2:

JohnsonReducer

{DISCERNIBILITY=Object; MODULO.DECISION=T; BRT=F;
SELECTION=All; IDG=F; PRECOMPUTE=F; APPROXIMATE=F}

BatchClassifier

{CLASSIFIER=StandardVoter; FRACTION=0.0; IDG=F; SPECIFIC=F;
VOTING=Support; NORMALIZATION=Firing; FALLBACK=T;
FALLBACK.CLASS=Pa; FALLBACK.CERTAINTY=1.0; MULTIPLE=Best;
LOG=F; CALIBRATION=F; ROC=F}

Note that adenoca_markers.ros is assumed to be in the internal ROSETTA format (i.e.
saved from within ROSETTA).

TIPS: The name and the parameters of the different algorithms may be obtained by first
running the algorithms in the ROSETTA system GUI, then right-clicking the resulting
structure and selecting Annotations…

- 35 -

Chapter 7 Bioinformatics applications
Applications of the ROSETTA system spans a number of different bioinformatics areas:

 Medical diagnosis (Nørsett, Lægreid et al. 2004; Dennis, Hvidsten et al. 2005;
Beisvag, Lehre et al. 2006; Zhou, Zhou et al. 2006)

 Gene function prediction from gene expression profiles (Hvidsten, Komorowski
et al. 2001; Hvidsten, Laegreid et al. 2003; Lægreid, Hvidsten et al. 2003; Wabnik,
Hvidsten et al. 2009)

 Protein function prediction from structure (Hvidsten, Laegreid et al. 2009)

 Gene regulation (Hvidsten, Wilczynski et al. 2005; Wilczynski, Hvidsten et al.
2006)

 Molecular interaction prediction (Strömbergsson, Kryshtafovych et al. 2006;
Strömbergsson, Prusis et al. 2006; Kontijevskis, Wikberg et al. 2007; Kierczak,
Rudnicki et al. 2008)

 Structure classification (Cao, Liu et al. 2006)

For a continuously updated list of bioinformatics papers that have used the ROSETTA
system see: http://www.citeulike.org/user/TRHvidsten/tag/rosetta.

- 37 -

Chapter 8 Advanced use of the ROSETTA system
The ROSETTA system is an object library implemented in C++ and can be employed
directly in software development (code available here: http://rosetta.sourceforge.net/).
An overview of the classes can be found in The ROSETTA C++ Library: Overview of Files
and Classes (Øhrn 2000).

A more comprehensive description of algorithms available in the ROSETTA system are
found in the ROSETTA Technical Reference Manual (Øhrn 1999).

Also see the GENOMIC ROSETTA - Application Mode User Manual (Andersson and
Vesterlund 2005) for details about meta-algorithms developed for bioinformatics-specific
application of the ROSETTA system.

More information is found at the ROSETTA website:
http://www.lcb.uu.se/tools/rosetta/.

.

- 39 -

References
Andersson, R. and J. Vesterlund (2005). GENOMIC ROSETTA - Application Mode

User Manual. Uppsala, The Linnaeus Centre for Bioinformatics.
Ashburner, M., C. A. Ball, et al. (2000). "Gene ontology: tool for the unification of

biology. The Gene Ontology Consortium." Nat Genet 25(1): 25-9.
Beisvag, V., P. K. Lehre, et al. (2006). "Aetiology-specific patterns in end-stage heart

failure patients identified by functional annotation and classification of
microarray data." Eur J Heart Fail 8(4): 381-9.

Bernal, A., U. Ear, et al. (2001). "Genomes OnLine Database (GOLD): a monitor of
genome projects world-wide." Nucleic Acids Res 29(1): 126-7.

Breiman, L. (1996). "Bagging predictors." Machine learning 24: 123-140.
Brown, F. M. (1990). Boolean reasoning : the logic of Boolean equations. Boston,

Kluwer Academic Publishers.
Cao, Y., S. Liu, et al. (2006). "Prediction of protein structural class with Rough Sets."

BMC Bioinformatics 7: 20.
Chandonia, J. M. and S. E. Brenner (2006). "The impact of structural genomics:

expectations and outcomes." Science 311(5759): 347-51.
Dennis, J. L., T. R. Hvidsten, et al. (2005). "Markers of adenocarcinoma characteristic of

the site of origin: development of a diagnostic algorithm." Clin Cancer Res 11(10):
3766-72.

Efron, B. and R. J. Tibshirani (1993). An introduction to the Bootstrap. London,
Chapman & Hall.

Fleischmann, R. D., M. D. Adams, et al. (1995). "Whole-genome random sequencing and
assembly of Haemophilus influenzae Rd." Science 269(5223): 496-512.

Hanley, J. A. and B. J. McNeil (1982). "The meaning and use of the area under a receiver
operating characteristic (ROC) curve." Radiology 143: 29-36.

Hastie, T., R. J. Tibshirani, et al. (2001). The Elements of Statistical Learning. New York,
Springer.

Hvidsten, T. R., J. Komorowski, et al. (2001). "Predicting gene function from gene
expressions and ontologies." Pac Symp Biocomput: 299-310.

Hvidsten, T. R., A. Laegreid, et al. (2003). "Learning rule-based models of biological
process from gene expression time profiles using gene ontology." Bioinformatics
19(9): 1116-23.

Hvidsten, T. R., A. Laegreid, et al. (2009). "A comprehensive analysis of the structure-
function relationship in proteins based on local structure similarity." PLoS One
4(7): e6266.

Hvidsten, T. R., B. Wilczynski, et al. (2005). "Discovering regulatory binding-site
modules using rule-based learning." Genome Res 15(6): 856-66.

Johnson, D. S. (1974). "Approximation algorithms for combinatorial problems." Journal
of Computer and System Sciences 9: 256-278.

Kanehisa, M. and P. Bork (2003). "Bioinformatics in the post-sequence era." Nat Genet
33 Suppl: 305-10.

Kierczak, M., W. R. Rudnicki, et al. (2008). Construction of Rough Set-Based Classifiers
for Predicting HIV Resistance to Nucleoside Reverse Transcriptase Inhibitors.
Studies in Fuzziness and Soft Computing, Granular Computing: At the Junction
of Rough Sets and Fuzzy Sets. Berlin / Heidelberg, Springer. 224: 249-258.

Komorowski, J., Z. Pawlak, et al. (1999). Rough sets: A tutorial. Rough Fuzzy
Hybridization: A New Trend in Decicion-Making. S. K. Pal and A. Skowron,
Springer: 3-98.

- 40 -

Komorowski, J., A. Øhrn, et al. (2002). The ROSETTA Rough Set Software System.
Handbook of Data Mining and Knowledge Discovery. W. Klösgen and J.
Zytkow, Oxford University Press: 554-559.

Kontijevskis, A., J. E. Wikberg, et al. (2007). "Computational proteomics analysis of
HIV-1 protease interactome." Proteins 68(1): 305-12.

Lægreid, A., T. R. Hvidsten, et al. (2003). "Predicting gene ontology biological process
from temporal gene expression patterns." Genome Res 13(5): 965-79.

Mitchell, T. M. (1997). Machine Learning. New York, McGraw-Hill.
Nørsett, K. G., A. Lægreid, et al. (2004). "Gene expression based classification of gastric

carcinoma." Cancer Lett 210(2): 227-37.
Pawlak, Z. (1982). "Rough Sets." International Journal of Information and Computer

Science 11(5): 341-356.
Pawlak, Z. (1991). Rough sets: theoretical aspects of reasoning about data. Theory and

decision library. Series D, System theory, knowledge engineering, and problem
solving. Dordrecht ; Boston, Kluwer Academic Publishers: 229.

Russell, S. and P. Norvig (1995). Artificial Intelligence. New Jersey, Prentice-Hall.
Schapire, R. E. (1990). "The strength of weak learnability." Machine learning 5: 197-227.
Shatkay, H. and R. Feldman (2003). "Mining the biomedical literature in the genomic era:

an overview." J Comput Biol 10(6): 821-55.
Skowron, A. and H. S. Nguyen (1999). Boolean reasoning scheme with some applications

in data mining. Third European Symposium on Principles and Practice of
Knowledge Discovery in Databases, Springer-Verlag.

Skowron, A. and C. Rauszer (1992). The discernibility matrices and functions in
information systems. Intelligent Decision Support: Handbook of Applications
and Advances in Rough Sets Theory. R. Slowinski, Kluwer Academic Publishers:
331-362.

Strömbergsson, H., A. Kryshtafovych, et al. (2006). "Generalized modeling of enzyme-
ligand interactions using proteochemometrics and local protein substructures."
Proteins 65(3): 568-79.

Strömbergsson, H., P. Prusis, et al. (2006). "Rough set-based proteochemometrics
modeling of G-protein-coupled receptor-ligand interactions." Proteins 63(1): 24-
34.

Theodoridis, S. and K. Koutroumbas (2003). Pattern recognition. Amsterdam ; Boston,
Academic Press.

Wabnik, K., T. R. Hvidsten, et al. (2009). "Gene expression trends and protein features
effectively complement each other in gene function prediction." Bioinformatics
25(3): 322-30.

Wilczynski, B., T. R. Hvidsten, et al. (2006). "Using local gene expression similarities to
discover regulatory binding site modules." BMC Bioinformatics 7: 505.

Vinterbo, S. and A. Øhrn (2000). "Minimal approximate hitting sets and rule templates."
International Journal of Approximate Reasoning 25: 123-143.

Zhou, W., C. Zhou, et al. (2006). Feature Selection for Microarray Data Analysis Using
Mutual Information and Rough Set Theory. IFIP International Federation for
Information Processing, Artificial Intelligence Applications and Innovations.
Boston, Springer. 204: 492-499.

Øhrn, A. (1999). Discernibility and Rough Sets in Medicine: Tools and Applications.
Trondheim, Norwegian University of Science and Technology.

Øhrn, A. (1999). ROSETTA Technical Reference Manual. Trondheim, Norwegian
University of Science and Technology.

Øhrn, A. (2000). The ROSETTA C++ Library: Overview of Files and Classes.
Trondheim, Norwegian University of Science and Technology.

	A tutorial-based guide to the ROSETTA system:
	A Rough Set Toolkit for Analysis of Data
	Contents
	Chapter 1 Introduction
	1.1 Machine learning in molecular biology
	1.2 Rough set-based rule learning and the ROSETTA system
	1.3 Readers guide

	Chapter 2 Machine learning – an introduction
	2.1 Clustering methods
	2.2 Bayes classification rule
	2.3 Linear classifiers
	2.4 Non-linear classifiers
	2.5 Context-dependent classifiers
	2.6 k-nearest neighbor classifiers
	2.7 Decision trees
	2.8 Rule-based classifiers
	2.9 Feature selection
	2.10 Bootstrapping, bagging and boosting
	2.11 Genetic algorithms
	2.12 Time complexity
	2.13 Classifier evaluation
	2.14 Performance measures and ROC analysis
	2.15 Overfitting and classifier selection

	Chapter 3 Rough set-based rule learning
	3.1 The rough set theory
	3.2 Reducts
	3.3 Decision rules
	3.4 Classification

	Chapter 4 The ROSETTA system
	Chapter 5 Model evaluation in the ROSETTA system
	5.1 Cross validation

	Chapter 6 Running the ROSETTA system command line
	Chapter 7 Bioinformatics applications
	Chapter 8 Advanced use of the ROSETTA system
	References

