

<section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

Knowledge-based agent cont.

- The semantics of the language determine the fact to which a given sentence refers (the meaning of the sentence)
- Because sentences are physical configurations of parts of the agent, reasoning must be a process of constructing new physical configurations from old ones
- New configurations should represent facts that actually follow from the facts that the old configurations represent

Logic

- A logic consists of:
- 1. A language with two aspects:
 - a) the syntax, which describes how to make sentences
 - b) the semantics, which states the systematic constraints on how sentences relate to affairs
- A syntactic inference method (proof theory) a set of rules for deducing the entailments of a set of sentences

	Examples of logics						
	Examples of formal languages and their ontological						
	and epistemological commitments:						
	Language	Ontological commitment (What exists in the world)	Epistemological commitment (What an agent believes about facts)				
	Propositional logic	facts	true/false/unknown				
	First-order logic	facts, objects, relations	true/false/unknown				
	Temporal logic	facts, objects, relations, times	true/false/unknown				
Probability theory		facts	degree of belief 01				
	Fuzzy logic	degree of truth	degree of belief 01				

	Propositional Logic – Validity						
	 Check validity of the following complex sentence: ((P∨H) ∧ ¬H) ⇒ P Valid: True in every situation 						
	Р	н	$\mathbf{P} \vee \mathbf{H}$	(P \vee H) $\wedge \neg$ H	(($P \lor H$) $\land \neg H$) $\Rightarrow P$		
	True	True	True	False	True		
	True	False	True	True	True		
	False	True	True	False	True		
	False	False	False	False	True		
	$ = ((P \lor H) \land \neg H) \Longrightarrow P$						
Исв				THE L	INNAEUS CENTRE FOR BIOINFORMATICS http://www.lcb.uu.se		

		Logi	cal equivalences
	$P \wedge (Q \vee R)$	\Leftrightarrow	$(P \land Q) \lor (P \land R)$
X	$P \lor (Q \land R)$	\Leftrightarrow	$(P \lor Q) \land (P \lor R)$
	$\neg(P \land Q)$	\Leftrightarrow	$\neg P \land \neg Q$
1 A	$\neg (P \lor Q)$	\Leftrightarrow	$\neg P \land \neg Q$
Ê	$\mathbf{P}\Rightarrow\mathbf{Q}$	\Leftrightarrow	$\neg Q \Rightarrow \neg P$
$ \overline{\Delta} $	$\mathbf{P} \Longrightarrow \mathbf{Q}$	\Leftrightarrow	$\neg P \lor Q$
A	$P \Leftrightarrow Q$	\Leftrightarrow	$(P \Longrightarrow Q) \land (Q \Longrightarrow P)$
18	$P \Leftrightarrow Q$	\Leftrightarrow	$(P \land Q) \lor (\neg P \land \neg Q)$
A	$\mathbf{P} \wedge \neg \mathbf{P}$	\Leftrightarrow	False
Ð	$\mathbf{P} \lor \neg \mathbf{P}$	\Leftrightarrow	True
A.			THE LINNAEUS CENTRE FOR BIOINFORMATICS http://www.lch.un.se

FOPL - Syntax cont.

Terms

- Any constant or variable is a term
- If f/n is a functor and t_1,\ldots,t_n are terms, then $f(t_1,\ldots,t_n\,)$ is a term

Atomic formulas

-~ If p/n is a predicate symbol and t_1,\ldots,t_n are terms, then $p(t_1,\ldots,t_n\,)$ is an atomic formula

- · Well-formed formulas (wff)
 - Any atomic formula is a wff
 - If F and G are wffs, then so are $\neg F,$ $F \land G,$ $F \lor G,$ $F \Rightarrow G,$ and $F \Leftrightarrow G$
 - If F is a wff and X is a variable, then $\forall X F$ and $\exists X F$ are wffs
- If F is a will and A is a value, such as a value ground

THE LINNAEUS CENTRE FOR BIOINFORMATICS

СВ

Prolog

Developed by A. Colmerauer and P. Roussel at the

Designed for natural-language processing but has

become one of the most widely used languages for

· Acronym for Programming in Logic

university of Aix-Marseille in 1971

artificial intelligence

- A clause is a formula $\forall (A_1 \vee \ldots \vee A_n)$ where each A_i is an atomic formula or the negation of an atomic formula
- A definite clause is a clause that contains exactly one non-negative atomic formula

$\forall (A_0 \lor \neg A_1 \lor \ldots \lor \neg A_n)$

LCB

- A₀ ⇐ A₁ ∧ ... ∧ A_n (n ≥ 0) (implicit universal quantifier!)
 Definite program: finite set of definite clauses gchild(X,Y) ⇐ child(X,Z) ∧ child(Z,Y)
- child(john,mary) ⇐ child(mary,bob) ⇐ } facts
- A definite goal is a clause with no head
 ⇐ child(john,X) ∧ child(X,bob)

Description Logic

- · Describe knowledge in terms of concepts and relations
- Concepts and relations are used to automatically derive taxonomies (i.e. classify concepts)
- Concepts are defined using other relations and concepts
- Example: Definition of the concept Enzyme
 - Concept: Protein
- Concept: Reaction
- Relation: Catalyses
- Composite concept: Protein which catalyses reactions
- Enables dynamic ontology's with automatic consistency check

THE LINNAEUS CENTRE FOR BIOINFORMATIC http://www.lcb.uu.s

<section-header><list-item><list-item><list-item><list-item><list-item>